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Abstract 

Protein-ligand binding site prediction is a useful tool for understanding the functional behaviour and potential drug-
target interactions of a novel protein of interest. However, most binding site prediction methods are tested by provid-
ing crystallised ligand-bound (holo) structures as input. This testing regime is insufficient to understand the perfor-
mance on novel protein targets where experimental structures are not available. An alternative option is to provide 
computationally predicted protein structures, but this is not commonly tested. However, due to the training data 
used, computationally-predicted protein structures tend to be extremely accurate, and are often biased toward a holo 
conformation. In this study we describe and benchmark IF-SitePred, a protein-ligand binding site prediction method 
which is based on the labelling of ESM-IF1 protein language model embeddings combined with point cloud annota-
tion and clustering. We show that not only is IF-SitePred competitive with state-of-the-art methods when predicting 
binding sites on experimental structures, but it performs better on proxies for novel proteins where low accuracy 
has been simulated by molecular dynamics. Finally, IF-SitePred outperforms other methods if ensembles of predicted 
protein structures are generated.

Introduction
A key part of early-stage drug development is building a 
thorough understanding of the protein target of interest. 
Identification of potential ligand-binding sites facilitates 
a host of techniques, such as hit identification, small mol-
ecule screening, functional prediction, off-target bind-
ing prediction and binding site comparison [1, 2]. Many 
methods have been developed to locate ligand-binding 
pockets on protein structures. Originally, these meth-
ods were designed for use on experimentally determined 
structures, but the development of AlphaFold [3] and 
other accurate protein structure prediction tools [4–6] 
now allows the exploration of the three-dimensional fea-
tures of the protein, including predicting or identifying 
the ligand binding site from structural models.
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Strategies for protein binding site prediction
Various strategies exist for protein binding site predic-
tion. Where the protein of interest has close homologues 
that have already been crystallised with ligands, the 
protein binding site can be inferred based on the align-
ment to these complexes [7–9]. However, if no homolo-
gous structural data is available, predictions must be 
made in other ways. Sequence-based methods use the 
amino acid sequence of the protein which is sometimes 
enriched with predicted structural features such as sec-
ondary structure, solvent accessibility or hydrophobicity. 
However, these methods achieve lower success compared 
with structurally-informed methods, and so they tend to 
be used for the prediction of specific ligand binding sites, 
such as carbohydrates [10]. Structurally-informed meth-
ods include geometry-based [11] and probe-based [12] 
methods, which use the shape of the protein surface to 
predict which regions are likely to bind ligands. While 
many new machine learning-based methods have been 
developed recently, there are some non-machine learn-
ing-based methods that are still commonly used, such 
as FPocket [11], FTSite [12], and DoGSite3 [13]. FPocket 
uses Voronoi tessellations to facilitate alpha-sphere label-
ling and clustering, followed by partial least squares fit-
ting for ranking of binding sites. FTSite places 16 small 
molecular probes over the surface of the protein and 
finds clusters of favourable positions using empirical free 
energy functions. DoGSite3 uses a difference of Gaussi-
ans algorithm for finding binding sites of specific ligands.

Machine learning in protein binding site prediction
The move to machine learning-based methods is driven 
by the requirement to learn underlying patterns in large 
sets of data that have proved difficult to learn or represent 
using physics-based or geometry-based approximations 
[14]. Where a protein of interest has no ligand-bound 
homologues, binding site prediction requires an under-
standing of the specific chemical environment needed to 
bind a ligand. The complexities of protein structure, the 
large number of data points and the number of features 
that make up this environment make this an ideal prob-
lem to approach via machine learning functions. Addi-
tionally, making predictions using machine learning can 
be significantly faster than other techniques, allowing 
predictions to be made on large sets of proteins with a 
lower computational cost.

Proteins can be represented in a variety of ways to 
facilitate machine learning approaches, and can be split 
broadly into two groups: featurised representations and 
learnt representations [15, 16].

Featurised representations consist of extracted spa-
tiochemical information such as atom type, residue 

type or euclidean coordinates, usually combined with 
calculated features such as solvent accessibility, sec-
ondary structure, hydrophobicity and charge [17–19]. 
These features are then represented by annotation of 
the atom or residue, usually as part of a point cloud, 
graph or voxelisation [20]. Alternatively, the protein 
surface itself can be represented using a mesh, Voronoi 
tessellation or pseudo-atoms annotated with features 
that describe their chemical environment. The chosen 
representation is then used to train a machine learning 
model that predicts on the same type of data. Examples 
of featurised methods include P2Rank [21], DeepPocket 
[22], BiteNet [23], DeepSurf [24], NodeCoder [25] and 
PUResNet [26].

Learnt, or non-featurised, representations commonly 
use a series of vectors to describe a protein. These are 
often weights from the final layer of a transformer 
architecture that has been trained to predict masked 
residues of a protein [27], and are often referred to as 
embeddings. They represent protein residues as con-
tinuous vectors rather than discrete variables, and 
describe the environment in which a residue exists 
with respect to neighbouring residues. By using these 
embeddings along with experimentally-determined 
labels, machine learning models have been trained to 
predict features [27] such as ligand binding [28], pro-
tein-protein interactions, disease variants [29] or struc-
tural features [16]. Unsupervised learning can also be 
conducted, and has been used for enzyme function 
prediction [30]. The previously mentioned embeddings 
generated by language models have previously been 
adopted to train a secondary model to identify ligand-
binding residues [31].

However, these techniques did not incorporate three-
dimensional structural information. In 2020, the geo-
metric vector perceptron (GVP) architecture, which did 
contain this 3D information, was introduced to lever-
age the proteins’ geometric and relational aspects in a 
sequence recovery task [32]. This particular architecture 
was later combined with a generic transformer to create 
ESM-IF1 [33] which produces embeddings that consist 
of 512-dimensional vectors for each residue of a protein 
structure. The ESM-IF1 embeddings have been used for 
epitope prediction [34] and protein-protein interaction 
(PPI) prediction [35]. Successes such as these suggest 
that the embeddings contain task-relevant information 
relating to the protein function and biochemical activ-
ity. The embeddings do not take into account side chain 
positions, but only the protein backbone, which should 
make the embedding robust to errors in the side chain 
positioning. This should offer advantages when making 
predictions on low-accuracy structures, whether experi-
mental or predicted.
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Binding site prediction on predicted structures
Most binding site prediction methods are designed to 
predict binding sites from the ligand-bound (holo) struc-
ture of the protein, however this is not necessarily the 
most useful task. Since mid-2021, highly accurate struc-
ture predictions for many proteins have been available, 
first from AlphaFold [3], and later from others, including 
RosettaFold [5], OmegaFold [6] and ESMFold [4]. This 
means that for many novel proteins, there is now a struc-
tural starting point for protein binding site prediction 
where previously there was no experimental information 
available.

To aid this process, AlphaFill [36] was developed fol-
lowing the release of AlphaFoldDB [37], a database of 
predicted protein structures. AlphaFill ‘fills in’ predicted 
protein structures with putative ligands by searching for 
areas of local sequence similarity between predicted pro-
teins and existing complexes in the PDB [38]. An align-
ment and ‘transplantation’ strategy places ligands in 
potential binding sites of AlphaFold-predicted protein 
structures (from here referred to as AF2 structures). For 
novel proteins that have regions of at least 85 residues 
with higher than 25% sequence identity to proteins with 
ligands bound in the PDB, AlphaFill provides a first step 
to locating ligand-binding sites. Where sequence identity 
for a minimum of 85 residues is higher than 40%, bind-
ing site RMSD is rarely higher than 2Å, suggesting a good 
match. AlphaFill was able to fill over 59% of proteins in 
AlphaFoldDB in February 2022 with ligands. This leaves a 
large proportion of proteins that do not have close homo-
logues already experimentally solved with ligands bound. 
These proteins will therefore require template-free bind-
ing site prediction.

Binding sites of predicted protein structures
The most commonly used accuracy measurement for 
protein structure predictions is the global RMSD of 
their backbone atoms when aligned to the experimen-
tally-solved structure (from here referred to as the PDB 
[38] structure); a value below 2Å is taken to indicate the 
model is of high quality. However, this global measure 
does not provide an assessment of the local quality of the 
binding site in this predicted structure.

Binding site prediction methods have already been 
applied to AF2 structures. FPocket [11] was used to com-
pare volumes of binding pockets in PDB structures and 
their high-accuracy AF2 counterparts (median all-atom 
RMSD of 1.54Å), and a 20% reduction in binding pocket 
volume in AF2 structures was found [39]. A 2022 study 
on AF2 structures showed that binding site prediction by 
AutoSite [40] was much less successful where mean resi-
due confidence (pLDDT) for a protein was below 90%, 

with F-scores reduced by around 80% compared with 
predictions on holo, apo or high-confidence AF2 struc-
tures [41]. The same study also found that only 25% of 
residues are predicted with confidence over 90%, indicat-
ing that many AF2 structures may be difficult targets for 
binding site prediction.

Several studies on docking small molecule ligands into 
AF2 structures have been published [39, 42, 43]. Despite 
high accuracy in the test structures (17 of 22 had RMSD 
lower than 2Å in [43]), docking proved much more diffi-
cult for AF2 structures than their PDB counterparts [43]. 
Even when controlling for the accuracy of the predicted 
structure around the binding site, docking remained a 
challenge: a recent study found that even proteins with 
binding site all-atom RMSD as low as 1Å were signifi-
cantly more difficult to dock into than experimentally-
determined structures [44].

These studies all suggest that even accurate predictions 
may exhibit significant differences in binding sites. How-
ever, in a recent paper [21], P2Rank was found to have 
similar levels of accuracy in predicting binding sites on 
several thousand AF2 structures and PDB structures of 
the same proteins on two different test sets (HOLO4K 
and COACH420).

Accuracy of predicted protein structures
The proteins in commonly-used test sets for binding 
site prediction (such as COACH420 and HOLO4K) are 
by definition publicly available as protein-ligand com-
plexes. Therefore, it is possible they contain many pro-
teins that are in the training sets for protein structure 
predictors [41]. This would result in predicted structures 
being much closer to the PDB structure than would be 
achieved for novel targets without existing close homo-
logues. The consequence of this would be that the data-
sets used to test tools on ‘predicted structures’ would not 
be representative of predicted structures of novel targets, 
limiting the effectiveness of any evaluation.

The Critical Assessment of Structure Prediction 
(CASP) [45] carries out rigorous blind testing of protein 
structure prediction methods and evaluation of results 
by independent assessors [46]. For the CASP iteration 
in which AF2 was first present (2020), the best predicted 
structure for each target was taken and the fractions of 
targets predicted at different levels of accuracy were cal-
culated. This provides insight into the accuracy of cur-
rent protein structure prediction methods based on the 
availability of structural information of related proteins. 
Proteins are grouped based on the availability of related 
proteins with existing structures: of the ‘Free Modelling’ 
(FM) group that have no detectable homology to existing 
protein structures, over 50% of proteins present in the 
CASP test set have RMSD values greater than 2Å when 
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aligned to the experimentally-solved structures. These 
are the proteins that cannot be filled by AlphaFill, so will 
require template-free binding site prediction.

One of the recent studies looking at docking into AF2 
structures specifically selected proteins that were not in 
the AF2 training set for their test set [44], and found that 
most of these structures had between 2 and 4Å all-atom 
RMSD when compared to the experimental structures, 
further confirming that novel proteins which are targets 
for template-free binding site prediction are expected to 
have RMSD values in this range. Therefore, we would 
expect template-free binding site prediction tools to be 
evaluated using AF2 structures that have up to 4Å all-
atom RMSD.

Protein dynamics and binding sites
Protein structures, whether experimentally-determined 
or predicted, represent just a single snapshot of dynamic 
systems. This can limit prediction success, as the protein 
pocket may not be present in the particular structure 
that is being used for prediction. An analysis of BiteN-
et’s predictions on a minimization molecular dynamics 
(MD) trajectory of an adenosine A2A receptor showed 
that an allosteric site became detectable by BiteNet at a 
backbone global RMSD value of just 0.4Å compared to 
the original structure [23]. This emphasises how signifi-
cant changes can happen to the structure of the binding 
sites at a local scale even when the change is negligible 
on a global scale. While this has importance in predic-
tion of binding sites of experimental structures, it is even 
more relevant when using predicted protein structures, 
as ‘highly-accurate’ structures (<2Å to the experimental 
structure) may contain large local differences that make it 
difficult to identify any binding sites correctly.

Currently, MD simulations remain the only proven way 
of generating multiple structures for protein binding site 
prediction but their usefulness is limited because these 
simulations are computationally costly. Computationally 
cheaper generation of multiple protein conformations is 
an area of much interest [47–51], however, it is not yet 
clear if these methods are able to replace effectively infor-
mation gained from MD simulations.

Summary
Here we describe IF-SitePred, a method for protein bind-
ing site prediction using representations obtained from 
ESM-IF1 [33]. We compare the performance of our 
method to other commonly-used binding site predic-
tion tools on PDB structures taken from the HOLO4K 
test set and their equivalent AF2 structures. We assess 
the accuracy of the predicted structures, and use molecu-
lar dynamics simulations of predicted structures to cre-
ate lower accuracy protein models (up to 4Å RMSD) 

and evaluate how binding site prediction success varies 
with structural accuracy. Finally, we show that by using 
ensembles of structure predictions, the prediction of 
binding residues can be greatly improved. We find that 
IF-SitePred achieves superior binding site prediction 
compared to commonly-used methods on low-accuracy 
protein structures, particularly where multiple structures 
are available.

Methods

Datasets
We selected HOLO4K as our test set to facilitate compar-
ison to other methods. For 4309 proteins in the HOLO4K 
set, we used the UniProt [52] ID mapping service to 
map each PDB code to the AlphaFold Protein Struc-
ture Database [37]. For the 3914 proteins that appeared 
to have a corresponding AF2 structure, we verified that 
the sequence identity between the PDB structure and the 
prediction was over 90% (100% was not always possible 
due to the presence of tags or absence of flexible regions 
in the PDB structure). This removed 1636 protein pairs, 
leaving 2278 proteins with correctly matched sequences. 
We then clustered each pair of sequences using MMseqs2 
[53] to ensure our test set did not contain any pairs of 
proteins more similar than 90%. This resulted in 691 via-
ble pairs of PDB and AF2 structures. To make it possible 
to evaluate predictions on the AF2 structures, we aligned 
each prediction to its corresponding PDB structure. 
Just 14 of the 691 predictions had a backbone RMSD 
above 2Å and each of these were visually inspected to 
check whether the binding sites aligned well enough to 
be included in the analysis. Of these, 11 were retained, 
including pairs with RMSD values up to 16Å (these con-
tained some large differences in relative domain positions 
compared with their PDB counterparts, but still had well-
aligned binding sites). We named the final set of 688 pairs 
the HOLO4K-AlphaFold2 Paired (HAP) set. We also 
extracted a set of 280 pairs which only contained proteins 
with lower than 25% sequence identity (calculated using 
Diamond [54]) to the P2Rank [17] training set (referred 
to as the HAP-small set).

Our training set consists of structures taken from 
Binding MOAD [55–57]. The Binding MOAD platform 
contains 11058 families (clusters) of proteins with each 
cluster containing a leader (the cluster centre) and mem-
bers which each have over 90% sequence identity to the 
leader. We first removed any family for which the leader 
had greater than 25% sequence identity to any protein 
in our test set. For each of the remaining 6550 families, 
we aligned all members to the family leader, and labelled 
the residues of the leader as follows: any residues within 
5Å of the ligand of the leader were labelled as binding 
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residues; any remaining residue within 5Å of any ligand 
bound to member structures were not used in the data-
set, to avoid the potential for false negative annotations; 
the remainder were labelled as non-binding. Only resi-
dues with relative surface accessibility over 0.02 (calcu-
lated using the PyMOL API [58]) were included. This 
resulted in 143,022 binding residues and 1,414,153 non-
binding residues for use in training.

Model training
For each protein in the training set an ESM-IF1 embed-
ding [33] was generated. The residue annotations were 
applied as above, and the residues were treated inde-
pendently. Each training set was balanced, made up of a 
random 80% sample of the binding residues and an equal 
number of randomly sampled non-binding residues. 
Using a bootstrapping sampling method with replace-
ment, we generated 40 training sets. We initially used 
AutoML [59] to train models on all 40 datasets and found 
that in the majority of models, the LightGBM model [60] 
had the highest performance on the validation data (ran-
domly taken from the training set). We therefore trained 
LightGBM models for all datasets, using a 10% random 
sample of the input data as a validation set. This valida-
tion set was removed from the training data, however it 
would be possible for validation data used for one model 
to be present in another model’s training data. For all 
models, the parameters were fixed. A binary objective 
was used, along with a ‘binary_logloss’ metric parameter. 
Based on commonly selected parameters in the AutoML 
models, gradient-boosted decision trees (GDBT) were 
used, with no feature pre-filtering and no early stopping 
round; the number of leaves was set at 200 and 200 itera-
tions were used.

Binding site prediction with IF‑SitePred
For a protein in the test set, an ESM-IF1 embedding was 
generated and each residue was independently predicted 
by each of the 40 models to be ligand-binding or non-
ligand-binding, with a minimum predicted probability of 
0.5 for positive labelling. Only if all 40 models predicted 
a residue to be binding was a positive label applied. Using 
the PyMOL API [58], a point cloud on a 1.5Å grid was 
generated around the relevant chain of the protein, con-
taining only points between 3 and 6Å from any protein 
atom. Other chains were not considered during analy-
sis. For every residue that was labelled as binding, points 
within 4.5Å of the residue were saved. Points that were 
saved three or more times (i.e. were within 4.5Å of three 
or more residues labelled as binding) were clustered 
using the DBSCAN algorithm from Scikit-learn [61], 
using a 1.7Å cutoff to separate clusters. Clusters were 
ranked simplistically, using the total number of points in 

the cluster (including repetitions of the same point), and 
the centres of the top-ranked clusters were calculated by 
taking the mean coordinates of all points. This process is 
summarised in Fig. 1. All distance thresholds in the point 
cloud labelling and clustering were selected to maximise 
success on training set proteins where all residues were 
labelled correctly (99% success when predicting top 1 
pocket). To explore how small changes in these thresh-
olds impact prediction success, we adjusted the thresh-
olds higher and lower within 1Å for all values except for 
the clustering distance threshold, which was adjusted by 
0.1Å   (Additional file 1: Table 1).

When predicting on an AF2 structure, the predicted 
structure was first aligned to its PDB counterpart prior to 
removal of the entire PDB structure. The point cloud gen-
eration and clustering protocol was then applied as above.

We developed a baseline rate of prediction success to 
compare our predictions with an unskilled method which 
had access to the structure of the protein but was not able 
to discriminate between ligand-binding and non-ligand-
binding residues. The baseline prediction was made as 
follows: the number of residues predicted by IF-SitePred 
as ligand-binding was calculated, and the same number 
of surface residues were randomly annotated as binding, 
keeping the same proportions of sub-surface (relative 
surface area between 0.01 and 0.05) and surface (relative 
surface area over 0.05) residues. An identical protocol 
to that above was used for point cloud generation and 
clustering.

Evaluation criteria
Several evaluation strategies have been used for bind-
ing site prediction. The traditional metrics of area under 
the receiver operator characteristic curve (AUROC) or 
accuracy are not appropriate for imbalanced problems 
as very high scores can be achieved by predicting all resi-
dues as non-binding [62]. DCA, DCC, DVO or atom IoU 
(Table 1) are commonly used, however DCC, DVO and 
IoU are based on the assumption that the ligand in the 
PDB complex is the perfect ligand. While this may be 
the case, it is not certain, and so we opted to use DCA 
to evaluate and compare our prediction method, where 
we measure success by whether the centre of the pre-
dicted site is within 4Å of any ligand heavy atom. This 
avoids reliance upon an over-specific definition of the 
binding site. Several methods calculate DCA for the top-
ranked pocket and top-n ranked pockets (where n is the 
number of ligands bound to the target protein), however 
this assumes that the experimental complex contains all 
possible correct ligands, and so we opted to use the top-
ranked pocket and the top-3 ranked pockets.

As a secondary evaluation method, we used F1 
score of residue annotation as ligand-binding or 
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non-ligand-binding. F1 score takes into account preci-
sion and recall, thus avoiding the issue created by the 
imbalanced number of positive and negative labels 
in the data. A score of 1 indicates perfect prediction, 
however predicting all residues as non-binding would 
yield an F1 score of 0.

Comparison to existing methods
We selected three popular methods for comparison, 
based on the range of techniques used, the availability 

of command-line software and the compatibility of their 
training sets with our test set: FPocket [11], P2Rank [17] 
and DeepPocket [22]. FPocket uses Voronoi tessellations 
and alpha-sphere clustering for prediction to find clefts 
on the protein surface that have the correct size and 
shape for ligand binding. P2Rank annotates points on the 
solvent-accessible surface area of the protein based on 
feature-vectors applied to exposed protein atoms, labels 
each point as ligand-binding or non-ligand-binding using 
a random forest classifier, and ranks sites according to 

Fig. 1 Summary of IF-SitePred and binding site centre calculation. ESM-IF1 embeddings were generated for each residue of the protein, 
and the model labelled each of these as binding or non-binding. A point cloud around predicted binding residues was generated, made 
up of points that were within 4.5Å of at least three predicted binding residues. These points were clustered using the DBSCAN algorithm. Clusters 
were ranked in order of number of points, and the mean coordinates of each cluster was taken as the binding site centre

Table 1  Commonly-used evaluation metrics for protein binding site prediction

Metric Definition

DCA Distance from site Centre to ligand Atom: the distance in Å from the predicted binding site centre to any ligand heavy atom 
from the experimentally-determined complex

DCC Distance from site Centre to ligand Centre: the distance in Å from the predicted binding site centre to the centre of the ligand 
from the experimentally-determined complex

DVO Discretized Volume Overlap: intersection over union of the volume of the predicted binding site and the volume of the ligand 
from the experimentally-determined complex

Atom IoU Atom Intersection over Union: for use in methods where protein atoms are individually labelled as ligand-binding or non-ligand-binding, 
intersection over union of the predicted ligand-binding atoms and the experimentally-observed ligand-binding atoms is calculated
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their cumulative ligand-binding score. DeepPocket is a 
3D-CNN based method which re-scores pocket centres 
identified by FPocket, then elucidates the shapes of the 
predicted pockets.

For all four methods, we compared binding site predic-
tion success as defined by DCA on the top-ranked pock-
ets and top-3 ranked pockets for PDB and AF2 structures 
for both the HAP and HAP-small sets, as defined above.

For FPocket and DeepPocket, default parameters were 
used for binding site prediction on all structures. For 
FPocket, the centre of each binding site was calculated by 
taking the mean coordinates of all points in the pocket. 
For P2Rank, default parameters were used for PDB struc-
tures, and for predicting on AF2 structures, the Alpha-
Fold-specific configuration was used.

Ligand similarity to training sets
Similar to the dataset splitting strategy for prevent-
ing protein sequence bias, we also checked whether the 
methods displayed a bias towards the ligands present in 
their training sets as follows. Ligand similarity was cal-
culated using RDKit [63] USRCAT [64] similarity. For 
each test protein, the USRCAT similarity for each ligand 
bound was calculated for every ligand bound to a train-
ing set protein. The highest value was taken and the top-1 
success rate for proteins at varying levels of ligand simi-
larity was compared with the mean top-1 success rate. 
This analysis was performed for each of IF-SitePred, 
FPocket, P2Rank and DeepPocket with their respective 
training sets.

Molecular dynamics simulations for testing predictions 
on low‑quality structures
The AF2 structures in the HAP set are highly accurate, 
with only 11 of 688 predictions having backbone RMSD 
values over 2Å to the PDB structure. This represents 
just 1.6% of the predictions, whereas the analysis of the 
best prediction for each target in CASP14 [46] suggested 
that for free modelling targets (those targets without 
a known structural homologue), over 50% of predic-
tions are likely to have an RMSD over 2Å. Additionally, 
a study on GPCRs found that most structural predictions 
that were not in the AF2 training set had RMSD values 
between 2 and 4Å [44]. To explore how binding site pre-
diction success changes as predicted structures become 
less accurate, we filtered the HAP set for physiologically 
monomeric proteins with fewer than 230 amino acids, 
resulting in a set of 21 proteins for which we conducted 
MD simulations to generate structures that were repre-
sentative of low-accuracy protein structure predictions.

We used the AF2 structures of each protein for the 
MD simulations. For each AF2 structure, pKa values 
were estimated using h++ [65–67] to assign residue 

protonation states. Ions were added using tleap [68] 
to neutralise the system. We then used the Amber [68] 
protein forcefield (fF14sb) within OpenMM [69] to heat 
the proteins from 298K to 548K, with the system simu-
lated for 20ns for each 10K interval. Using MDAnalysis 
[70], the trajectory was randomly sampled to extract 10 
structures for each 0.25Å interval from RMSD values up 
to 8Å when aligned to the PDB structure. We used this 
sampling method to ensure we could adequately assess 
prediction success at a range of RMSD values, while sam-
pling as uniformly as possible across the structures gen-
erated by our MD protocol.

Evaluation
For IF-SitePred, P2Rank and DeepPocket, we predicted 
binding sites for structures with RMSD values up to 7Å 
from the PDB structure. Mean rates of top-1 success and 
top-3 success for each 0.25Å interval were calculated for 
each method.

Combining predictions by using multiple models 
on multiple structures
We tested two ensembling methods. For the first, we 
trained 40 models on different samples of the train-
ing data, and combined the results of these to make our 
final predictions. For the second, we made predictions on 
multiple protein structures (these could be generated by 
different protein structure prediction tools or by molecu-
lar dynamics) and combined these.

We tested the improvements made by using multiple 
models and multiple medium-accuracy protein structure 
predictions. The protein structures we used to test this 
were from MD simulations of AF2 structures with RMSD 
to the PDB structures lower than 4Å, as this would cover 
around 82% of predictions on free-modelled proteins in 
CASP14 [46].

We implemented four prediction pathways to under-
stand the effects of using single or multiple models on 
single or multiple structures (Fig. 2). Residues were anno-
tated as ligand-binding or non-ligand-binding by either 
40 models (as previously) or by just one model, and 
point clouds were generated and clustered as previously. 
The top 3 binding sites for each structure were used to 
re-annotate only the residues within 5Å of their points 
as ligand-binding, as this is a commonly used distance 
threshold for intermolecular interactions. To view the 
effect of combining predictions on multiple structures, 9 
other MD-generated structures of the same protein were 
randomly selected, and only residues that were predicted 
as ligand-binding in at least 3 of the 10 structures were 
given a final prediction as ligand-binding. This minimum 
threshold of 3 positive predictions for a residue was arbi-
trarily selected. The F1 scores for these final predictions 
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were calculated to compare residue annotation for these 
four prediction pathways.

Additionally, we combined residue labels of 10 struc-
tures (as above) 1000 times for 150 randomly-selected 
frames of each of the 21 proteins for which MD had been 
performed using IF-SitePred, P2Rank and DeepPocket to 
compare which of these methods are able to benefit from 
this ensemble method.

Data availability
The PDB IDs of proteins used in the HAP and HAP-small 
datasets are available at https:// github. com/ oxpig/ bindi 
ng- sites, along with code for the prediction of binding 
sites using IF-SitePred.

Results
IF‑SitePred binding site prediction is competitive 
with state‑of‑the‑art methods
The prediction of ligand-binding sites on the sur-
faces of proteins is a useful step towards understand-
ing the function and druggability of novel targets. It 
is particularly important in the era of accurate pro-
tein structure prediction, where we often have a pre-
dicted structure before any experimental studies have 
been carried out. We developed IF-SitePred, a bind-
ing site prediction tool which avoids featurisation, and 
instead uses embeddings generated by ESM-IF1 as the 
basis for labelling protein residues as ligand-binding 

or non-ligand-binding. This is followed by point cloud 
annotation and clustering to determine the three most 
likely binding sites and their centres. To evaluate our 
method, we predicted binding sites on hundreds of pro-
teins in the HAP set and compared our rate of success 
to that of FPocket, P2Rank and DeepPocket. In particu-
lar, we compared prediction success on experimental 
(PDB) structures with those predicted by AlphaFold 
(AF2). To ensure that we evaluated the tools on a range 
of proteins that were sufficiently different to the train-
ing data from each method, we designed the HAP set 
to include 688 proteins (both PDB and AF2 structures) 
which have no more than 90% sequence identity to any 
other protein in the set and no more than 25% sequence 
identity to the training sets of IF-SitePred, FPocket 
and DeepPocket. The HAP-small set is a subset of 280 
proteins from the HAP set, made up of proteins that 
have no more than 25% sequence identity to the train-
ing data used for comparator method P2Rank. Predic-
tion success was measured by top-1 and top-3 DCA, 
which checks whether the predicted binding site centre 
is within 4Å of any heavy atom of the experimentally-
determined ligand. This measure avoids the assumption 
that the observed ligand perfectly fills the site.

The binding site prediction success rates for IF-SiteP-
red, FPocket, P2Rank, and DeepPocket are shown in 
Table 2. On PDB structures, all methods performed simi-
larly well. On the HAP set, P2Rank achieved the highest 

Fig. 2  Pathways implemented to compare multiple models on multiple structures. The four pathways implemented to compare the F1 scores 
achieved when predicting ligand-binding residues on 21 MD structures. These allowed us to explore the benefit gained from using multiple 
predictive models and from making predictions on multiple MD structures

https://github.com/oxpig/binding-sites
https://github.com/oxpig/binding-sites
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top-1 success rates, but was equalled or outperformed 
by IF-SitePred on top-2 and top-3 success rates. FPocket 
had the lowest success rates. By using the HAP-small set 
to compare methods, we observed that P2Rank outper-
formed all other methods at top-1 success, but shared top 
performance with IF-SitePred when considering top-3 
success. Overall, P2Rank had similar performance on the 
HAP and HAP-small sets, suggesting the method gener-
alises well. Similar results were observed for IF-SitePred, 
DeepPocket and P2Rank when predicting binding sites 
on AF2 structures, with these three methods sharing 
the highest success rates across the HAP and HAP-small 
sets. However, FPocket experienced a significant drop-
off in performance on AF2 structures. Given that Deep-
Pocket is a prioritisation method that takes FPocket’s 
predictions as an input, this suggests that the ranking 
procedure used by FPocket failed on AF2 structures, as 
opposed to FPocket having difficulties in identifying the 
ligand-binding sites on the protein’s surface. This could 
be due to the lower pocket volume of AF2 structures [39].

For proteins where IF-SitePred failed to make a suc-
cessful top-1 prediction on the PDB structure, around 
half were also failures when using the AF2 structure. 
However, the other half were successfully predicted when 
using the AF2 structure, suggesting that predicted struc-
tures sometimes contain information about ligand bind-
ing that is not present in the ligand-bound PDB structure. 
A similar result was found in the recent P2Rank paper 
[21].

We used bootstrapping to make an error estimation for 
each method on each dataset, with the results shown in 
Additional file 1: Tables 3–6. To understand the impact of 
AF2 prediction confidence on binding site prediction, we 

compared the AF2 confidence (pLDDT) with IF-SiteP-
red’s prediction success, and found that pLDDT is very 
high for all levels of predictive success (Additional file 1: 
Figure  1). A version of IF-SitePred with early stopping 
was also trained, with the results shown in Additional 
file 1: Table 2.

Accurate binding site prediction is not dependent 
on ligand similarity to the training set
By removing any protein from the training set with more 
than 25% sequence identity to any test set protein, we 
attempted to ensure that our predictions were not based 
on the model learning the sequences from the training 
set. However, the model could be learning ligand-based 
information that was contained in both the training 
and test sets. To explore this possibility, we investigated 
whether we were able to predict binding sites more suc-
cessfully on proteins that have similar ligands to our 
training set.

For each protein-ligand complex in the HAP-small 
set, we calculated the maximum ligand similarity to any 
ligand that bound to proteins in the training set for each 
of IF-SitePred, FPocket, P2Rank and DeepPocket. Ligand 
similarity was defined using USRCAT fingerprints, which 
takes into account the ligand shape and pharmacophoric 
features. These values were then compared to the mean 
top-1 success (found in Table 2). These results are shown 
in Table 3. Results from the same analysis using Morgan 
fingerprints are shown in Additional file 1: Table 7.

If our predictions were dependent on ligand similarity, 
we would observe that where ligands bound to the bind-
ing site are significantly different to the training set, the 
binding sites would be predicted with lower success than 

Table 2  Success rate of binding site prediction of IF-SitePred and commonly used existing methods. IF-SitePred, P2Rank and 
DeepPocket are competive across PDB and AF2 structures, whereas FPocket experiences a significant loss of performance on AF2 
structures. Success rates of top-1, top-2 and top-3 binding site prediction as measured using DCA is shown, where success is defined 
as the centre of the predicted binding site being within 4Å of any ligand heavy atom. We show results for IF-SitePred, FPocket, P2Rank 
and DeepPocket on two test sets that contain PDB and AF2 structures respectively 

The highest success rate is shown in bold, and the lowest success rate is shown in italics.

HAP: 688 proteins

PDB Baseline IF‑SitePred FPocket P2Rank DeepPocket AF2 Baseline IF‑SitePred FPocket P2Rank DeepPocket

Top 1 0.12 0.76 0.75 0.81 0.78 Top 1 0.09 0.77 0.50 0.81 0.78

Top 2 0.17 0.89 0.81 0.90 0.87 Top 2 0.17 0.89 0.60 0.88 0.87

Top 3 0.22 0.93 0.83 0.93 0.89 Top 3 0.20 0.94 0.67 0.89 0.90

HAP‑small: 280 proteins

PDB Baseline IF‑SitePred FPocket P2Rank DeepPocket AF2 Baseline IF‑SitePred FPocket P2Rank DeepPocket

Top 1 0.12 0.75 0.73 0.78 0.75 Top 1 0.10 0.76 0.48 0.76 0.75

Top 2 0.18 0.89 0.80 0.86 0.85 Top 2 0.17 0.88 0.58 0.85 0.86

Top 3 0.24 0.92 0.82 0.91 0.88 Top 3 0.20 0.94 0.65 0.88 0.90
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those where similar ligands were present in the training 
set. We did not see this trend in the IF-SitePred results, 
so we can be confident that our predictions do not rely 
on ligand similarity to the training set. P2Rank also does 
not exhibit a significant bias towards proteins that have 
ligands that bound to training set proteins. However, 
where a site binds a ligand with only dissimilar ligands 
in the training set (USRCAT similarity lower than 0.4), 
DeepPocket and FPocket are significantly less able to cor-
rectly predict the binding site at the highest rank.

In our tests IF-SitePred and P2Rank are not affected by 
similar ligands being available in the training set, whereas 
DeepPocket and FPocket are, meaning that they may not 
generalise well to the prediction of binding sites of novel 
ligands.

IF‑SitePred outperforms other methods in top‑3 binding 
site prediction on MD structures
When verifying the binding site alignment of the AF2 
counterparts of the test set proteins, we observed that 
only 11 proteins in the final HAP set had backbone 
RMSD to the PDB structure above 2Å (Fig. 3). This rep-
resents just 1.6% of the predictions, whereas analysis of 
CASP14 results [46] suggested that for free modelling 
targets, over 50% of predictions had an RMSD over 2Å, 
over 30 times what we observe in our dataset. The level 
of accuracy in the side-chain atoms of AF2 structures is 
slightly lower than for backbone atoms, however most 
structures had an all-atom RMSD below 2.5Å. This high 
level of backbone accuracy combined with some varia-
tion in side chain position may have made the binding 
sites larger, which would explain why IF-SitePred was 
able to make successful predictions on AF2 structures 
where predictions were unsuccessful on the corre-
sponding PDB structure.

To explore how binding site prediction success 
changes when the input structures are less accurate, we 
selected 21 monomeric proteins with fewer than 230 
amino acids from the HAP set for which we conducted 
molecular dynamics simulations, followed by binding 
site prediction.

We heated each protein from 298K to 548K, simulat-
ing for 20ns at each 10K interval, and sampled struc-
tures from every tenth frame. Structures were sampled 
uniformly up to 8Å RMSD (when aligned to the PDB 
structure) and binding sites were predicted using IF-
SitePred, P2Rank and DeepPocket. Using DCA, the 
probability of success for each 0.25Å RMSD inter-
val was calculated for top-1 and top-3 ranked bind-
ing sites (Fig.  4). The means of these probabilities for 
each interval were calculated, and a line of best fit was 
determined. Even at just 1Å RMSD, performance was 
significantly reduced for all methods, with a reduction 
in success rates of up to 15% compared to the PDB or 
original AF2 structures.

When comparing the three methods, we found that 
P2Rank performed best on structures up to 3Å RMSD, 
but had a greater loss of performance than IF-SitePred, 
which attained higher success rates at RMSD values over 
4Å. When evaluating top-3 success rates, IF-SitePred 
achieved higher success rates than P2Rank and Deep-
Pocket across almost all RMSD values. The difference 

Table 3   A comparison of ligand similarity to training set with 
success rates. DeepPocket performs worse than average on 
sites that bind ligands significantly different to the training set. 
We calculated the USRCAT similarity for the most similar ligand 
in the training set to that binding each protein in the HAP-
small set, and calculated the fraction difference between overall 
top-1 success rate (from Table 1) for each 0.2 interval of USRCAT 
similarity 

Success rates differing by over 10% from the mean value are shown in bold 
(performance loss) or italic (performance gain).

Ligand similarity 
to training set

IFSitePred FPocket P2Rank DeepPocket

0.2-0.4 + 0.14 + 0.11 + 0.04 − 0.22
0.4-0.6 + 0.11 − 0.36 − 0.06 − 0.40
0.6-0.8 + 0.03 + 0.22 + 0.14 + 0.05

0.8-1.0 − 0.03 − 0.01 + 0.14 + 0.06

Fig. 3  RMSD of AF2 structures in HAP set.  AF2-predicted structures 
in the HAP set are extremely accurate compared with most free 
modelling AF2 predictions on novel proteins. Backbone RMSD 
is shown on the x-axis, and all-atom RMSD is shown on the y-axis. 
Each axis has a corresponding histogram to show the spread 
of values. Over 98% of AF2 structures in the HAP set have backbone 
RMSD values below 2Å
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grew at higher RMSD values, with IF-SitePred able to 
succeed 60% of the time on structures with an RMSD 
of 5Å, compared to 50% and 47% success for P2Rank 
and DeepPocket respectively. These results all suggest 
that IF-SitePred is more robust to errors in the protein 
structure.

To verify that local changes to the binding sites were 
not disproportional to the global changes in structure, 
we compared global all-atom RMSD with binding site 
all-atom RMSD, and found that the local changes were 
of a similar level to the global changes (Additional file 1: 
Figure 2).

Combining predictions of multiple models on multiple 
structures improves predictive power
IF-SitePred uses 40 models that were trained indepen-
dently on 40 different samples of the training data. Due 
to the imbalanced nature of the number of binding and 
non-binding residues, this allows the different models to 
learn the features of different sets of the non-binding res-
idues, thus providing a final prediction informed by more 
data. Another strategy to maximise use of available data 
is possible when multiple structures of the same protein 
are available, whether by generating multiple structure 
predictions when using a tool like AlphaFold, or by per-
forming molecular dynamics simulations: predictions 

can be made on multiple structures and combined to give 
a final prediction.

We implemented four pathways which used a combi-
nation of different models and structures (see Methods) 
to understand the improvements made when combin-
ing different predictions. For each prediction on an MD 
structure with an  RMSD value lower than 4Å, we cal-
culated the F1 score of our predicted binding residues 
compared with the binding residues observed in the PDB 
protein-ligand complex (Fig. 5).

We first calculated the mean F1 scores of binding resi-
due prediction on PDB structures using a single predic-
tive model (0.62) and using 40 predictive models (0.68). 
When a single predictive model predicted the binding 
residues of single low-accuracy protein structures, the 
mean F1 score was just 0.41. When multiple models were 
used for the prediction, the mean F1 score rose to 0.43, 
and a further improvement to 0.59 was seen when mul-
tiple protein structures were also included. This repre-
sented an improvement of 44% when using two ensemble 
strategies compared to when only using single models 
and structures, and showed that by developing methods 
that take into account as much data as possible, we were 
able to mitigate errors in the data and make good predic-
tions on flawed data that were significantly closer to the 
accuracy seen when predicting on high-quality data.

Fig. 4  Binding site prediction on structures with decreasing accuracy. IF-SitePred outperforms P2Rank and DeepPocket when considering top-3 
success on low-accuracy structures. We predicted binding sites on MD structures at increasing RMSD when aligned to PDB structures. Points 
represent mean success rate at each RMSD interval (value to value plus 0.25Å) across all 21 targets. Based on these, lines of best fit are calculated 
and plotted (solid lines of identical colour). Standard error of the mean across all targets is represented by the shaded areas. The three methods 
performed similarly when considering only the top-ranked binding site (left), with P2Rank performing slightly better at low RMSD values. However, 
IF-SitePred achieved higher top-3 success than P2Rank and DeepPocket at all RMSD values (right)
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We additionally compared the benefits of using many 
structures to make final predictions for IF-SitePred, 
P2Rank and DeepPocket. This involved taking predic-
tions from a single structure and comparing the F1 score 
with the combined prediction of the same structure with 
nine additional randomly-selected structures. This was 
repeated 1000 times for each target to ensure that the 
results were as representative as possible of each method. 
While the F1 scores across methods do not directly cor-
respond to DCA success rate as the protocols for deter-
mination and ranking of protein binding site centres 
differ, we were able to compare the impact of combining 
multiple sets of predictions between methods. Addition-
ally, we used the frequency of prediction of each residue 
as ligand-binding to create a multi-structure prediction 
probability, and used this to plot precision-recall curves 
for each method.

When just one structure was used to make a predic-
tion, IF-SitePred slightly outperformed P2Rank and 
DeepPocket, in agreement with DCA-based results 
(Fig.  4). When predictions for 10 structures were com-
bined, all three methods had improved predictive power, 
showing the importance of understanding multiple states 

Fig. 5  Combining predictions of multiple models on multiple 
structures: IF-SitePred. Using multiple predictive models on multiple 
protein structures improves IF-SitePred’s predictive power. We 
compare F1 scores of predictions of binding residues for PDB and MD 
structures of 21 proteins when using single or multiple predictive 
models on single or multiple structures (MD only). Combining 
predictions of multiple models on multiple structures yielded 
the most accurate prediction of binding residues on MD structures, 
with F1 scores approaching those of predictions on PDB structures

Fig. 6  A comparison of the benefits of combining predictions for multiple structures. Left: Predictive power for binding residue annotation 
improves when predictions for 10 structures were combined for all three methods (blue, orange, green) compared to when predictions 
for single structures were used (grey). IF-SitePred had a slightly higher original F1 score, and also saw the greatest improvement of the three 
methods, increasing to 0.59. This trend is also reflected when the Matthews correlation coefficient is calculated (Additional file 1:Figure 3). Right: 
Precision-recall curves for all three methods reveal that IF-SitePred has a higher average precision (AP) (0.58) than P2Rank (0.50) and DeepPocket 
(0.50). Iso-F1 curves are shown in grey, demonstrating that IF-SitePred achieves higher F1 scores across all probability thresholds
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of the protein. IF-SitePred was able to benefit the most, 
with F1 score increasing by around 34%, compared with 
22% and 15% improvements from P2Rank and Deep-
Pocket respectively (Fig.  6a). We expect that this would 
translate to a higher DCA success rate for IF-SitePred 
compared to P2Rank and DeepPocket when predicting 
binding sites on error-prone structures. Additionally, we 
show that IF-SitePred has a higher average precision (AP) 
than P2Rank and DeepPocket for multi-structure predic-
tion (Fig. 6b). While the F1 scores were calculated based 
on a binary classification with only residues predicted as 
ligand-binding in at least 3 of 10 structures regarded as 
positive, the iso-F1 curves applied to the precision-recall 
curve show that regardless of threshold used, IF-SitePred 
will achieve a higher F1 score.

These results suggest that where multiple protein struc-
tures are available or can be generated, IF-SitePred is able 
to take greater advantage of the available data to outper-
form DeepPocket and P2Rank consistently.

To explore why IF-SitePred was able to take advantage 
of the information contained in multiple structures better 
than P2Rank and DeepPocket, we examined the rates of 
true positives (correctly-labelled ligand-binding residues) 
and false positives (non-ligand-binding residues labelled 
as ligand-binding) for residues that were predicted as 
positive in at least one of the 10 randomly-selected MD 
structures of the same protein (Fig. 7). We found that the 

number of false positives was reduced in residues that 
were predicted as positive in more structures, while the 
number of true positives remained similar. However, IF-
SitePred had consistently fewer false positives without a 
significant reduction in rate of true positives. Conversely, 
DeepPocket had the highest number of false positives 
of the three methods, with the number of false positives 
that were predicted in all 10 structures as ligand-binding 
almost triple those for P2Rank or IF-SitePred.

Discussion
IF‑SitePred binding site prediction is competitive 
with state‑of‑the‑art methods
We developed IF-SitePred, a binding site prediction 
method that labels residues based on embeddings gen-
erated by ESM-IF1, followed by point cloud cluster-
ing to determine the centres of predicted binding sites. 
We found that IF-SitePred’s performance is comparable 
with state-of-the-art tools on both PDB protein struc-
tures and their equivalent AF2 structures, showing that 
the ESM-IF1 embeddings contain important information 
on ligand-binding behaviour of protein residues. When 
considering the top-3 ranked binding sites on each pro-
tein, IF-SitePred achieved the highest success rates of 
the methods included in this study, detecting at least one 
correct binding site in around 93% of proteins.

In previous studies where different test sets are used, 
different methods rank differently: in the DeepPocket 
analysis [22], FPocket has a much lower success rate than 
DeepPocket, and DeepPocket significantly outperforms 
P2Rank. This indicates that even with large test sets, the 
composition of the set can make a significant difference 
to results. However, we have shown that in these test sets, 
IF-SitePred is competitive with state-of-the-art tools on 
both PDB and AF2 structures, despite no explicit featuri-
sation and a very simplistic pocket ranking strategy.

IF‑SitePred outperforms P2Rank and DeepPocket 
on low‑accuracy predicted structures
When analysing the AF2 structures, we found that the 
accuracy of the predicted structures was far higher than 
expected for true novel proteins which have no known 
homologues. We carried out MD simulations on AF2 
structures to study at what level of structural error bind-
ing site prediction was no longer successful. We found 
that IF-SitePred, P2Rank and DeepPocket exhibited simi-
lar correlations between RMSD of the protein structure 
(to the PDB structure) and top-1 prediction success: 
60% success is achieved on structures with 2Å RMSD or 
better, while at 4Å RMSD success rate drops to around 
40%. However, when considering top-3 prediction suc-
cess, IF-SitePred is able to maintain success levels around 

Fig. 7  Number of positive labels for each residue of 10 
randomly-selected structures. IF-SitePred predicted fewer residues 
incorrectly as ligand-binding. The frequencies of correctly-labelled 
(solid colour) and incorrectly-labelled (translucent) residues across 10 
randomly-selected MD structures of the same protein are shown. 
Non-ligand-binding residues were most likely to be incorrectly 
labelled as ligand-binding in 0 or 1 structure, whereas ligand-binding 
residues had a roughly equal likelihood of being labelled 
as ligand-binding up to 10 times. IF-SitePred consistently had a lower 
rate of labelling non-ligand-binding residues as ligand-binding, 
with only a small reduction in the number of correctly-labelled 
ligand-binding residues compared to other methods
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5% higher than comparators across all RMSD values 
measured.

While this analysis was performed on a small test set, 
the protein structures used were more representative 
of what is expected of novel proteins with no known 
homologues. Given that IF-SitePred is able to predict 
binding sites with higher success on these less accurate 
structures, these results suggest that IF-SitePred is more 
likely to correctly predict binding sites on the surface of 
protein structure predictions with low or unknown accu-
racy. This may be explained by the differences in repre-
sentations of proteins used by the different methods: the 
ESM-IF1 representation only contains information from 
backbone atoms, which are less error-prone in protein 
structure predictions than side chain atoms. DeepPocket 
and P2Rank use all-atom representations of the protein 
to calculate the binding sites, and so this could make their 
predictions more sensitive to errors in the side chains of 
protein structure predictions.

Across our key tests, we found that IF-SitePred, P2Rank 
and DeepPocket perform similarly when considering 
top-1 success on AF2 structures. Similarity in success 
rates across different methods on the same test set has 
also been observed in other areas, such as binding affin-
ity prediction [71], suggesting that data quality could be 
a limiting factor in prediction performance, rather than 
flaws in the architecture of the methods.

IF‑SitePred benefits from using combination prediction 
methods
Proteins are dynamic systems; experimental or compu-
tationally derived structures are only snapshots at single 
points in time, which can limit our prediction success. 
Additionally, ligand-binding residues are far fewer in 
number than those that do not bind ligands, which makes 
it difficult to include all possible data points in the train-
ing set for a machine learning model without overfitting 
on the less represented data. As a first strategy to address 
these issues, we adopted an ensembling strategy for 
which we trained multiple models on stratified sub-sam-
ples of the dataset, so that no single model was exposed 
to duplicate data, but in combination, all data was used 
in the training process. As a second strategy, we used MD 
simulations and generated additional structures to cap-
ture different snapshots of the same protein with the aim 
to improve overall prediction accuracy.

We found that both of these strategies yield improve-
ments in prediction accuracy. The first strategy improved 
prediction F1 score from 0.43 to 0.59. Interestingly, for 
the second strategy, the gain in performance was greatest 
for IF-SitePred, indicating that IF-SitePred would be able 
to consistently outperform other methods for binding 

site prediction where multiple structures of the protein of 
interest are available, via a reduced rate of false positives 
without significant loss in recall of true positives.

There are various ways in which multiple structures 
of the protein of interest may become available. In this 
paper we used basic MD simulations to generate an 
ensemble of structures that greatly increase the informa-
tion available to binding site prediction tools. With the 
availability of multiple protein structure prediction tools, 
it is possible to use a variety of tools to generate differ-
ent structural predictions, which would improve upon 
the information provided by just one structural predic-
tion. Additionally, several tools have been developed spe-
cifically to generate conformational ensembles of protein 
structures, such as idpGAN [49], which was trained on 
MD trajectories. Experimentally-determined structures 
also have the potential to be used as a conformational 
ensemble, such as where structures have been deter-
mined under different conditions.

Conclusions
As predicted protein structures become the initial input 
for tools locating ligand binding sites, it is important 
to evaluate whether these structures are accurate, and 
develop binding site prediction tools which are robust to 
errors in structure predictions.

In this study we describe IF-SitePred, a protein binding 
site prediction tool that is competitive with state-of-the-art 
tools on high-accuracy AF2 structures. However, we found 
that the AF2 models used to evaluate binding site prediction 
methods had far higher accuracy than would be expected 
for free modelling targets, which would be the primary tar-
gets for template-free binding site prediction. Therefore, 
we examined how binding site prediction tools perform on 
structures which are representative of novel protein targets.

To evaluate how the inaccuracies in the protein struc-
ture prediction impact binding site prediction, we used 
MD simulations to generate models of the target proteins 
with varying accuracy and found that IF-SitePred can 
consistently outperform competitors when predicting 
three binding site centres on lower-accuracy structures. 
By taking the most popular predictions on 10 medium-
accuracy structures (1–4Å RMSD), predictions made by 
IF-SitePred can be improved upon significantly, whereas 
competitors benefit less. This result suggests that by rep-
resenting the protein as a set of ESM-IF1 embeddings, it 
is possible to take greater advantage of the diversity in the 
ensemble of structures compared with the explicit featur-
isation used for P2Rank and DeepPocket.

By using a procedure specifically designed to evalu-
ate predictions on computationally-predicted structures 
of various accuracies, we improved our understanding 
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of the tools and how they performed in different use 
cases. As many methods are used to make predictions on 
computationally-predicted protein structures, a rigorous 
evaluation protocol such as the one we have described 
should help provide valuable insights into the strengths 
and weaknesses of methods.

Where the accuracy of a predicted structure for a novel 
target is thought to be poor, our results suggest that IF-
SitePred will provide the most reliable binding site pre-
diction of the tools currently available. Additionally, 
where a group of structures can be generated using MD 
or by making many structural predictions (by using one 
or multiple structure prediction tools), the accuracy of 
binding site prediction can be enhanced further. By accu-
rately locating ligand-binding sites on predicted protein 
structures, exploration of the target’s function and drug-
gability can begin.

Scientific contribution
We describe a protein binding site prediction tool (IF-
SitePred) that is competitive with state-of-the-art tools 
on high-accuracy predicted protein structures, but using 
a learnt representation of protein residues. We show that 
the predicted protein structures normally used to evaluate 
binding site prediction methods have far higher accuracy 
than expected. To address this, we design and apply a pro-
cedure to evaluate predictions made specifically on com-
putationally-predicted structures of various accuracies; 
this reveals that IF-SitePred is more robust to low-accu-
racy structures and is able to better exploit the informa-
tion contained in multiple structures of the same protein.
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