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Abstract 

Computational methods such as molecular docking or molecular dynamics (MD) simulations have been developed 
to simulate and explore the interactions between biomolecules. However, the interactions obtained using these 
methods are difficult to analyse and evaluate. Interaction fingerprints (IFPs) have been proposed to derive interac‑
tions from static 3D coordinates and transform them into 1D bit vectors. More recently, the concept has been applied 
to derive IFPs from MD simulations, which adds a layer of complexity by adding the temporal motion and dynamics 
of a system. As a result, many IFPs are obtained from one MD simulation, resulting in a large number of individual IFPs 
that are difficult to analyse compared to IFPs derived from static 3D structures. Scientific contribution: We introduce 
a new method to systematically aggregate IFPs derived from MD simulation data. In addition, we propose visualisa‑
tions to effectively analyse and compare IFPs derived from MD simulation data to account for the temporal evolution 
of interactions and to compare IFPs across different MD simulations. This has been implemented as a freely available 
Python library and can therefore be easily adopted by other researchers and to different MD simulation datasets.
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Introduction
To understand and model 3D conformations and inter-
actions crucial for the molecular recognition process and 
biological activity  [1–3], different computational meth-
ods such as Molecular Dynamics (MD) simulations have 
been developed  [4, 5]. These simulations produce long 
trajectories, which result in massive amount of time-
dependent data and consists of individual atoms and 
their coordinates at specific time points. Currently, there 
are several bottlenecks such as computational speed or 

data analysis. When considering data analysis, as the size 
and length of the trajectories increase due to the increase 
in computing power, frame-by-frame analysis becomes 
more difficult and tedious. [6–8].

This is a particular bottleneck when trying to com-
pare multiple simulations and highlight differences in 
i.e., interactions between simulations  [9]. To identify 
interesting points in the trajectory, where e.g., changes 
occur, established measures that are commonly ana-
lysed and visualised include root-mean-square deviation, 
root-mean-square fluctuation (RMSF), radius of gyra-
tion and energy-based approaches [2, 10]. The identified 
time points or frames of interest are then often visu-
ally inspected by looking at the 3D conformations and 
interactions.

Systematically analysing and visualising the interac-
tions derived from MD simulations is difficult. Dif-
ferent methods and tools have been proposed to aid in 
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this process and, for example, to investigate interactions 
between a protein and ligand. Most of those methods 
are based on visual inspection (e.g., VMD [11]), visuali-
sation of contact maps [12] (e.g., as a contact frequency 
map (MDContactCom  [13]), or as dynamic matrix 
(CONAN  [14])), or a list of interaction partners or dis-
tances (e.g., GROMACS [15] or MDAnalysis  [16]). Even 
though different solutions have been proposed, they have 
certain disadvantages, such as difficulties in perceiv-
ing differences in multiple matrix visualisations, lists are 
complicated to analyse and lack 3D representation, and 
dynamic visualisation is difficult to remember as trajecto-
ries usually have many frames or time steps.

Recently, the concept of interaction fingerprints (IFPs) 
has also been proposed for MD simulations  [17, 18]. 
They were originally designed to convert static 3D coor-
dinates, such as those obtained from molecular mod-
elling techniques or experimental studies, into a 1D bit 
vector  [4, 5]. Several methods have been developed to 
derive IFPs of protein-ligand interactions, and most have 
been used as post-processing methods for virtual screen-
ing approaches (i.e., large-scale docking approaches) and 
conformational space analysis  [4, 19–28] and have also 
been used for machine learning approaches  [3, 29–31]. 
Unlike static structures, IFPs derived from MD simula-
tions are more challenging to analyse because MD simu-
lations allow studying the temporal motion and dynamics 
(e.g., conformation, interaction) of a system  [1]. There-
fore, many IFPs are derived from a single MD simula-
tion [17, 18].

One of the first approaches to analyse IFPs of MD sim-
ulations was introduced by Kokh et al.  [17]. A workflow 
was proposed to investigate ligand-protein interactions 
and calculate and analyse MD-IFPs for large systems of 
several hundred compounds. MD-IFPs developed in 
this approach were introduced to study unbinding (i.e., 
dissociation routes) and residence times in a trajectory 
and conformations of a series of compounds. MDAnaly-
sis [16] and RDKit [32] were used and combined to read 
and iterate over MD simulation frames and to identify 
and compute interactions which were mapped to a bit 
vector. The resulting MD-IFPs were then mapped based 
on the ligand centre of mass on a 3D grid in either a 
physical or IFP space, and subsequently clustered with 
k-means or Gaussian methods. Transitions between 
the identified clusters were visualised and used to study 
intermediate states (meta-stable structures) relevant 
to dissociation. In addition, different matrix visualisa-
tions were proposed, which include either Euclidean dis-
tance between clusters, or a comparison of interactions 
between clusters [17].

In 2021 a python library called ProLIF (Protein-
Ligand Interaction Fingerprint) was proposed by 

Bouysset and Fiorucci  [18]. ProLIF calculates IFPs 
from experimental data, docking poses or MD simula-
tion data for a variety of molecules. It supports many 
different interaction types and additional ones can be 
added or edited by the user. Similar to the approach by 
Kokh et  al.  [17] MDAnalysis is combined with RDKit 
to analyse interactions either on residue or atomic 
level and results are provided as data frame for further 
processing and options for visualisation. Individual 
interactions are represented as a timeline, while for 
the analysis of all interactions, a so-called aggregated 
frame, is calculated. For the calculation of the aggre-
gated frame, all interactions identified in the IFPs are 
summed up over time and interactions that occur more 
than 30% of the time are considered as present in the 
aggregated frame (see Fig.  1). The aggregated frame, 
or any specific frame at a specific time, can be interac-
tively visualised at the atomic level for the ligand and at 
the residue level for the protein. The atom group high-
lighted on the ligand is the atom group most frequently 
interacting with the protein residues. In addition, a res-
idue interaction network is provided, as well as a Tani-
moto similarity matrix, which indicates the similarity 
of each MD simulation frame (or time point) to assess 
whether interactions (or IFPs), and therefore protein-
ligand binding, change over time [18].

To systematically study and explore interactions that 
occur in large MD simulations, IFPs are a valuable tool 
as they are easy to handle as 1D bit vectors. Neverthe-
less, IFPs proposed for MD simulation data in previous 
work have the disadvantage of massively aggregating 
data by considering only frequently occurring interac-
tions (i.e., more than 30% of the time) resulting in one 
representative IFP [18], or by loosing information after 
aggregation to clusters [17]. In addition to the one rep-
resentative IFP, the ProLIF library, for example, also 
provides access to the individual IFPs corresponding 
to each frame in the MD simulation trajectory, which 
can be accessed and visualised as a network  [18]. The 
advantage is that the user can select interesting IFPs 
from a particular frame of the simulation. The disad-
vantage is that it produces as many IFPs as the number 
of MD simulation frames analysed, and gives no indica-
tion to the user as to which IFPs might be of interest. 
For these reasons, the aim of this work was to develop 
a new method for the analysis and visualisation of IFPs 
derived from MD simulation data in order to system-
atically aggregate interactions and thereby reduce the 
number of IFPs, that is, the number of time frames. 
Furthermore, the developed methods facilitate the 
comparison of multiple simulations of the same system, 
which has been neglected so far.
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Application
Data set
As a case study, we use the previously published MD 
simulations of PPP1 in complex with Microcystin con-
geners  [33–36]. Microcystin (MC) congeners are a class 
of potent toxins released during cyanobacterial blooms 
worldwide  [37]. They share a common overall cyclic 
structure  [38] and can cause serious intoxications  [39] 
and in extreme cases death [40–42]. The toxicodynamics 
inside the cell involves reversible and irreversible bind-
ing to PPP1, PPP2A, PPP5 and PPP6 [43–45]. Therefore, 
binding of MC congeners to PPP1 has been studied and 
analysed by Jaeger-Honz et  al.  [33]. Two simulations of 
MC-congeners, namely MC-LR and MC-LF, indepen-
dently in complex with PPP1 were selected to analyse 
interactions. Since coordination via water molecules 
and manganese ions (Mn2+ ) is crucial for binding, these 
molecules have been included in the simulation  [46]. 
Three replicates are available for each MC congener 
with a total length of 280 ns. After discarding the initial, 

non-equilibrated portion of the simulation, approxi-
mately 75,000 frames remain for analysis. [33].

Interaction fingerprint calculation
To calculate IFPs from the MD simulation, ProLIF 
(v1.1.0)  [18] was used with RDKit (v2021.03.5)  [32] and 
MDAnalysis(v2.4.0)  [16, 47] as described in the ProLIF 
tutorials.

Different interaction types are available for IFP 
calculation in ProLIF: Anionic, CationPi, Cationic, 
EdgeToFace, FaceToFace, HBAcceptor, HBDonor, 
Hydrophobic, Interaction, MetalAcceptor, MetalDo-
nor, PiCation, PiStacking, XBAcceptor, XBDonor and 
VdWContact. X denotes halogen atoms. VdWContact 
was removed from the IFP calculation, because test 
runs showed that all interactions were changed to van 
der Waals contact rather than more specific ones. For 
Mn2+ VdWContact was analysed separately, as this 
interaction might be more unspecific. Mn2+ which are 
crucial for binding do not have a van der Waals radius 

Fig. 1 Aggregated frame with interactions occurring more than 30 % of the time calculated and visualised with ProLIF [18] (own data, 
PPP1‑Microcystin‑LR complex)
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assigned in MDAnalysis which is necessary for interac-
tion calculation. Therefore, the parameters of magne-
sium ions were assigned as they have a similar size and 
coordination preference compared to Mn2+  [48] and 
were also used for the simulations used here (see Jae-
ger-Honz et  al.  [33]). The IFPs were calculated for all 
frames in our MD simulation data, and replicates were 
treated as a single entity. Therefore, approximately 
75,000 IFPs could be obtained for each MC congener.

Implementation
We here present IFPAggVis, which is a Python library to 
aggregate, visualise and compare IFPs of MD simulation 
data. There are two major steps: 

1. Pre-processing: IFPs are modified to summarise rel-
evant interactions, and aggregated based on interac-
tion or time (see orange boxes in Fig. 2),

2. Visualisation and comparison: Visualisation of simi-
larity within IFPs of the same simulation and in 
between simulations are compared, evaluated, and 
visually assessed (see Fig. 3).

Fig. 2 Flow chart of pre‑processing and aggregation of IFP data frame derived from MD simulation. int1 , int2 etc. stands for interaction 1, 
interaction 2 etc. The Python packages used in each step are shown in the rotated white boxes
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IFPAggVis is designed to work with pre-processed data 
frames of IFPs (e.g., computed with ProLIF). The fol-
lowing libraries were used for implementation: MDAn-
alysis (v2.4.0)  [16, 47], RDKit (v2021.03.5)  [32], ProLIF 
(v1.0.0  [18]), NumPy (v1.21.2)  [49], tqdm (v4.62.3)  [50], 
pandas (v1.3.3)  [51], scikit-learn (v1.0)  [52], Matplot-
lib (v3.4.3)  [53], imageio (v2.28.0)  [54], Networkx 
(v2.6.3) [55] and DyNetx (v0.3.1) [56].

In the following, the individual steps of pre-process-
ing and visualisation, as well as comparison of IFPs are 
summarised.

Pre‑processing of interaction fingerprints
The individual steps of the pre-processing pipeline are 
shown in Fig.  2 (see orange boxes) and summarised as 
follows: 

1. Load data frame of IFPs which were pre-calculated 
with ProLIF (see “Interaction fingerprint calculation” 
section and green box in Fig. 2).

2. Restructure the data frame to resolve the multi-index 
generated by ProLIF and map the Boolean values 
(True/False) to a bit vector (1/0) to indicate presence 
or absence of interactions

3. Processing of the sliding window. To aggregate inter-
actions, a sliding window is calculated over each 
interaction (i.e., columns) with pandas. To determine 
the size of the sliding window, x 1 is calculated which 
is a percentage value based on the trajectory length 
(i.e., number of IFPs). The sliding window is centred 
around the currently calculated data points to con-
sider interactions close in time together. The value 
assigned to the current data point is the mean value 
across the window.

4. Filtering of the calculated mean based on x 2 (x2 sets 
the interaction to present (1) or absent (0) if a mean 
value is greater than x 2 ). The variable x 2 is based on 
the percentage of occurrence within a sliding win-
dow.

5. Aggregation of processed IFPs. The derived IFPs are 
aggregated based on two different approaches: 1) 
interaction-based where any identical IFPs independ-
ent of the temporal dimension is summarised, and 2) 
time-based where identical IFPs which occur imme-
diately after each other are summarised. If IFPs are 
summarised, the number of IFPs summarised are 
saved.

The filtering based on x 1 and x 2 smooths the data of the 
retrieved IFP. While the x 1 filter evaluates the occur-
rence of interactions within a time window, x 2 considers 
only frequently occurring interactions which occur more 
often than a threshold within the sliding window. Since 

numerical simulation data has a limited accuracy and 
calculation errors occur, and interactions can occur very 
rarely within a very small-time window, they are filtered 
out using the x 1 and x 2 filters. As the x 1 and x 2 filter are 
dependent on the MD simulation and probably also the 
data set studied, both filters of x 1 and x 2 can be adjusted 
by the user. To investigate effects of different parameters 
of x 1 and x 2 , different thresholds were studied. For x 1 we 
evaluated: 0.5 %, 1 %, 1.5 %, 2 %, 2.5 %, 5 %, 7.5 % and 10 
%; for x 2 the calculated mean values were filtered based 
on 0.00, 0.01, 0.02, 0.025, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 
0.35, and 0.40. Because the mean values range between 
0 and 1, the values correspond as well to percentage of 
occurrence of an interaction within the window. For this 
reason, the x 2 filter is also referred to as a percentage 
in this paper for ease of reading. The percentage values 
evaluated were chosen to cover a wide range of differ-
ent values to appropriately evaluate, as they are likely to 
depend on the data set and simulation settings. Both fil-
tering values have been limited at the upper end, as data 
smoothing is already high at these percentage values 
and unlikely to provide meaningful results. In addition, 
for the smaller percentage values the steps chosen were 
smaller, since smaller values are considered to be more 
sensitive to changes than larger ones. The aggregation 
based on interactions and time has different advantages 
and disadvantages. The interaction-based filtering results 
in a collection of unique IFPs through the simulation 
and therefore the lowest number of IFPs without further 
aggregation, but the temporal evolution of interactions is 
lost. The time-based filtering on the other hand preserves 
the temporal component but may lead to duplicates of 
IFPs as states could be revisited and therefore result in a 
higher number of IFPs. For these reasons, both aggrega-
tion methods have been considered in the workflow with 
IFPAggVis so that the user can change the aggregation 
type and different thresholds. The processed, filtered and 
aggregated IFPs are provided to the user as Pandas Data-
Frame, which can be accessed computationally and saved 
to files or used for further downstream processing.

Visualisation and comparison of interaction fingerprints
To compare and assess the similarity of IFPs within a MD 
simulation, the number of absolute differences was calcu-
lated (see Eq. 1).

To compare and evaluate similarity of IFPs of differ-
ent MD simulations, the Rogers-Tanimoto dissimilar-
ity metric was computed as implemented in scikit-learn 
(v1.0)  [52] and SciPy distance functions (v1.7.1)  [57] 

(1)NDiff =

n−1∑

i=0

|IFP1i − IFP2i|



Page 6 of 15Jaeger‑Honz et al. Journal of Cheminformatics           (2024) 16:28 

as they are optimised for efficient calculation on large 
amount of data.

The Rogers-Tanimoto dissimilarity is defined in Eq. 2, 
where cij is the number of occurrences in two 1-D vec-
tors at position i and j, cTT is the number of bits set on (1, 
interaction present) in both vectors, cFF is the number of 
bits set off (0, interaction absent) in both vectors, and cTF 
and cFT is the number of bits set on in the first vector and 
off in the second vector and vice versa. For IFP compari-
son, the dissimilarity is a value between 0 (similar) and 1 
(dissimilar).

The similarity of two IFPs is calculated as shown in 
Eq.  3. Up to now, the Tanimoto coefficient has mostly 
been used to evaluate the similarity of molecules or IFPs. 
However, a study by Racz at al. [58] has shown that there 
are other coefficients that produce consistent results 
on different benchmark datasets and are viable alterna-
tives to the Tanimoto coefficient, i.e., the Rogers Tani-
moto. Therefore, this metric was selected in this work 
because of the possibility for fast computation but can 
be exchanged with other similarity or dissimilarity met-
rics as offered by the Python libraries scikit-learn [52] or 
SciPy [57] for pairwise distance calculation.

The number of differences as well as the similarity calcu-
lations are available to the user as a NumPy array and can 
be used for further downstream processing.

Different visualisations were proposed to support anal-
ysis and comparisons of IFPs (see Fig. 3), because it is not 
possible to cover all aspects of IFPs relevant for analysis 
and comparison with a single visualisation. IFPAggVis 
partly provides the visualisation as summarised visualisa-
tions. The proposed combinations show different aspects, 
which together should aid in analysing and understand-
ing the aspects of IFPs derived from simulation.

For visualisation and comparison, two different 
approaches are available: 1) within the same MD simula-
tion, and 2) between two different MD simulations. For 
both approaches, the pre-processed and aggregated IFPs 
are used as input (see green box, Fig. 3). To compare IFPs 
within the same simulation, circular charts, line plots, 
histograms, a similarity matrix and a network visualisa-
tion were developed (see orange box, Fig. 3).

The visualisation of interactions as circular chart 
summarise each residue individually with all interac-
tion types occurring. The circular chart gives an over-
view of the interaction length and makes it easier to 

(2)
Dissim.Rogers−Tanimoto

=
2× (cTF + cFT )

cTT + cFF + 2× (cTF + cFT )

(3)Similarity = 1− Dissim.Rogers−Tanimoto

compare which interactions appear and disappear over 
time, or are constantly present or absent over periods 
of time.

The number of differences between IFPs are visualised 
as a histogram and as a matrix visualisation. The histo-
gram shows the distribution of the number of differences, 
and therefore how similar all IFPs are to each other. In 
the matrix visualisation, this is colour-coded using the 
viridis colour map, which is perceptually uniform and 
robust to colour blindness. The matrix gives an impres-
sion on the development of differences between the IFPs 
over the course of the simulation, and can keep the tem-
poral information or individual frames.

Two different line plots are available. One line plot 
shows the number of occurrence of an individual aggre-
gated frame, that is, how many IFPs have been aggre-
gated structure-based or time-based to the respective 
IFP. The second line plot links identical IFPs (i.e., the 
number of difference is zero) within an MD simulation 
with a vertical line. The frame numbers are shown by 
two horizontal lines.

The interactions between a ligand and protein are 
shown as star graphs, where the ligand is in the centre 
and residues are arranged around it. Initially calculated 
x, y coordinates can be saved to a file for reuse in fur-
ther visualisations. The different interaction types that 
are analysed with ProLIF are encoded with different 
glyphs and are summarised in Table  1. In addition to 
the network visualisation, a line plot is provided show-
ing the number of occurrence of an individual IFP as 
well as its index to give the user an estimate of the 
occurrence of individual networks in the data set.

Table 1 Glyphs and colours used to encode different 
interactions as network with a ligand

Interaction Glyph Colour

Hydrophobic Circle Blue

HBAcceptor Square Blue

HBDonor Square Red

Anionic Arrow down Blue

Cationic Arrow down Red

CationPi Arrow left Red

PiCation Arrow left Blue

PiStacking Arrow up Blue

EdgeToFace Arrow right Red

FaceToFace Arrow right Blue

MetalAcceptor Tick up Red

MetalDonor Tick up Blue

XBAcceptor Tick down Red

XBDonor Tick down Blue

VdWContact Circle Red
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For comparison of IFPs of two different simulations 
(see lower orange box, Fig. 3), further processing of the 
aggregated IFP sets is necessary, as some interactions 
may be unique to one of the simulations. Therefore, a 
so-called merged IFP set is built out of the two original 
aggregated IFP sets. All detected interactions are added 
as columns and if not previously present, the interac-
tion is considered absent. To quantify and compare 

differences between IFPs of two simulations, similarity 
or dissimilarity of IFPs has to be evaluated. The com-
parison of two different IFP sets leads to a higher differ-
ence between the individual IFPs, therefore comparing 
the number of differences was not considered appropri-
ate any more. For this reason, the Rogers-Tanimoto dis-
similarity was calculated and converted into similarity (as 
shown in Eqs. 2 and 3).

Fig. 3 Flow chart of visualisations developed to compare IFP sets within and in between MD simulation. The Python packages used are shown 
in the rotated white boxes
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Three different classes have been chosen to categorise 
IFPs to assess similarity: identical, similar and dissimi-
lar. Similarity of fingerprints is a fuzzy concept and also 
data set dependent [59–63]. For molecular similarity, dif-
ferent thresholds have been suggested. In some papers, 
a Tanimoto coefficient (Tc) of Tc > 0.85 is considered as 
structurally similar  [62, 64], others consider a Tc > 0.5 
as similar, and Tc ≤ 0.5 as dissimilar [65]. Thresholds for 
IFPs for MD simulations have not been systematically 
evaluated, and exact thresholds are likely to also depend 
on the data set.

Based on visual inspection of the IFP sets derived from 
the MD simulation, we decided to set the threshold for 
similarity of Tc ≥ 0.95 as identical, 0.85 ≤ Tc < 0.95 as 
similar and Tc < 0.5 as dissimilar. The thresholds can be 
adjusted by the user dependent on the data set studied. 
The IFPs classified as identical, similar and dissimilar are 
returned as a dictionary for each class and can be saved 
with Pickle to file.

To compare the IFPs of two different sets, a line plot 
was developed to evaluate similarity within and in 
between simulations. Each IFP set (i.e., MD simulation 
set) is represented by three lines: 1) as dark blue lines (a, 
b, c) and 2) as bright blue lines (d, e, f ) with IFP number 
on x-axis. Identical IFPs within the same MD simulation 
are shown between a and b, and e and f. Identical and 
similar IFPs between simulations are visualised between 
c and d, and they are shown in black and red, respectively.

All introduced visualisations are returned as Matplot-
lib figure, which can be saved to file. The network visu-
alisations are saved as image files or GIFs due to the large 
number of figures generated.

Results and discussion
In the following, the MD simulations are referred to by 
MC congener name instead of PPP1-MC congener as in 
Jaeger-Honz et  al.  [33] for easier readability. The aggre-
gated frame derived based on the ProLIF paper (with 
occurrence more than 30%) is referred to as aggre-
gatedocc30 IFP to distinguish from interaction- and time-
based aggregation. Key findings are briefly summarised: 
Filtering and aggregation of IFPs 1) massively reduces 
their number, 2) helps to identify important residues of 
major representatives, 3) retrieves interactions known 
from the literature that never occur simultaneously in an 
IFP, and 4) aids in comparing IFPs across MD simulation 
sets to assess similarity of binding patterns.

Aggregation and filtering of interaction fingerprints
The influence of pre-processing was investigated by cal-
culating the number of interactions and IFPs retrieved. 
First, the aggregation by interaction or time is compared 
to the aggregatedocc30 IFP, and second, the effect of 

applying different filtering options with aggregation by 
interaction or time was investigated. For an explanation 
on the filtering and aggregation options, see “Pre-pro-
cessing of interaction fingerprints” section.

By generating and analysing IFPs of different MC 
congeners simulation without further processing with 
IFPAggVis, 86 interactions could be detected for MC-LR, 
and 55 for MC-LF. The number of detected interactions 
in the aggregatedocc30 frame drops to 14 and 20, for 
MC-LR and MC-LF, respectively. Therefore, we conclude 
that the aggregatedocc30 frame provides a good overview 
of the major interactions, but looses a lot of information 
by aggregating to one IFP.

The number of IFPs after aggregation by interaction or 
time varies dependent on the simulation and aggregation 
type. In the original data set approximately 75,000 IFPs 
could be retrieved. When aggregating the IFPs by inter-
action, the number of IFPs could be reduced to 36.7% 
(27529) for MC-LR and 30.7% (23009) for MC-LF, which 
is still too many to analyse visually. In comparison, the 
aggregation by time reduces the number of IFPs to 95.7% 
(71764) for MC-LR and to 95.5% (71613) for MC-LF, 
which is almost as many as retrieved without aggregation.

The x 1 filter (sliding window) massively reduces the 
number of IFPs (see Fig. 4 a and b). For the interaction-
based aggregation, the number of IFPs is lower, as states 
can be revisited if aggregated by time. Independent of 
the size of the window chosen, less than 2% of the origi-
nal number of IFPs remain. Smaller window sizes (0.5% 
and 1%) result in a higher difference between structural 
and temporal aggregation, which gradually disappears 
for larger window sizes (2%, 2.5%, 5%, 7.5% and 10%). 
For some sliding window filter sizes, a U-shaped curve is 
obtained (see Fig. 4 a and b). The curve shape is depend-
ent on: 1) the aggregation type, as this effect is smaller 
with interaction-based aggregation, 2) the size of the slid-
ing window as larger window sizes average out variance 
that may be present, and 3) the MC congener or the sim-
ulation analysed. This result seems to be counterintuitive 
at first. However, the number of IFPs left is not neces-
sarily reflected by the filtering of occurrences. For some 
filtering options, the mean value before x 2 filter is close 
to the selected x 2 filter. Therefore, a change in threshold 
can lead to generation of several new IFPs by fluctuating 
absent and present interactions.

The number of interactions (see Fig.  4 c and d) is 
quickly reduced by using small x 2 filter (percentage of 
occurrence) values (0 to 2.5%). Those interactions rarely 
occur within a small-time window and are probably not 
relevant, as they only exist for a short time span in the 
simulation and might be an artefact. Increasing the x 2 fil-
ter above 20% does not lead to much further reduction of 
the number of interactions.
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The filtering and aggregation settings for further 
IFP comparison and visualisation on our data set is 
therefore:

• Temporal aggregation: Revisitation of IFPs is consid-
ered important. Aggregation by interaction does not 
result in a significantly lower number of IFPs and is 
therefore not used.

• x1 filter (sliding filter) of 1% and x 2 filter (occurrence 
filter) of 20%: The number of interactions decreases 
rapidly for a x 1 filter below 1%, probably due to noise 
in the data. Window sizes of 2% and 2.5% show lit-
tle difference to 1%. Larger window sizes than 5% 
have a high level of data smoothing, as interaction- 
and time based aggregation do almost not differ in 
the number of interactions. The 1% window on this 
dataset is approximately 7.5ns. With an x 2 filter of 20 
% an interaction is detected as present, if it occurred 
approximately 1.5 ns in the simulation, which is 
roughly the timescale where side-chain rotation and 
fluctuation occurs ( 10−9s) [66]. This is considered as 
biologically appropriate, since shorter time scales are 
less relevant to interaction. In addition, the number 
of IFP and interactions retrieved between 10% and 
20% are relatively constant.

Analysis of interaction fingerprints of molecular dynamics 
simulation
IFP comparison within MC congeners simulation
The visualisations of filtered and aggregated IFPs of MC-
LR and MC-LF MD simulation with PPP1 (see Fig.  5 
and Additional file 1: Fig. S1a) show similar trends. Both 
matrix visualisations have areas of higher similarity 
indicated by large blue squares, which are divided into 
smaller nested squares that indicate regions of high simi-
larity with a low number of differences. The number of 
differences increase over time (see yellow areas for dis-
tant IFPs), therefore changes accumulate over time. Iden-
tical IFPs are close together in time, which is visualised 
as vertical connections in the line plot above the matrix. 
The histogram visualising the total number of differences 
has two peaks: 1) small, around 10 differences, and 2) 
around 20 differences, indicating a group of IFPs that are 
close to each other but distant from others. The line plot 
with number of occurrence of individual IFPs show that 
there are major representatives that occur frequently.

The residues important for interaction between MC 
congeners and PPP1 have been reviewed and summa-
rised by Fontanillo and Köhn [46]. In brief the following 
interactions are important: 1) hydrogen bonds form with 
Arg96, Tyr134 and water to enable indirect coordination 

Fig. 4 Number of IFPs (a, b) and interactions (c, d) after x 1 and x 2 filters are applied on MC‑LR and MC‑LF dataset. The x 1 filters are coloured 
by value: 0.5% is grey, 1% is blue, 2% is orange, 2.5% is green, 5% is pink, 7.5% is yellow and 10% is cyan. The x‑axis shows the x 2 filter values. Solid 
and dashed lines represent aggregation based on time and interaction, respectively. The number of interactions is not affected by aggregation. 
Therefore, both lines are superimposed
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to manganese ions, 2) interaction with water is replaced 
by interaction between MC congener and Asn124, 
His125, Ile130, Tyr134 and Trp206, 3) hydrophobic inter-
actions with Cys127, Ile130, Ile133, Trp206, Tyr272 and 
Gly274, and 4) a covalent bond which can be formed with 
Cys273 which is irrelevant here as bonds are not broken 
or formed with classical MD simulations as described 
here. Since different residues can interact in multiple 
ways with MC congeners, one residue is not restricted 
to one interaction. The three most common IFPs for 
MC-LR are 1) IFP 36 (Fig.  6a) located at the beginning 

of the simulation, 2) IFP 497 (Fig.  6b) and 3) IFP 507 
(Fig.  6c) located at the end of the simulation. Some 
known interactions (Trp206, HOH) described in litera-
ture  [46] were observed for all IFPs, others only for IFP 
36 (His125, Tyr272, Cys273, Gly274) or for IFP 497 and 
IFP 507 (Asn124, Ile130, Cys127 (IFP507)), whereas some 
(Ile133, His125, Tyr134) were not found for any of the 
three major IFPs. Although the interactions with known 
residues are not necessarily of the same type as described 
in literature, the important residues and interactions have 
been identified, but never occur all together in the same 

Fig. 5 Comparison of IFP similarity within MC‑LR. a Occurrence of each IFP with the three most frequent IFPs marked with arrows, b line plot 
connecting identical IFPs with vertical lines. The number of differences is shown as c histogram and d matrix with colour
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IFP. In addition, we could identify Phe276, Val223 and 
Gln249 as important residues that were not identified in 
literature so far and might be relevant for further studies 
and evaluation. Phe276 and Val223 could also be identi-
fied with the aggregatedocc30 frame proposed by Bouys-
set and Fiorucci [18] (see Additional file 1: Table S1), but 
Gln249 was not detected, highlighting the importance of 
analysing individual networks as they occur over a period 
of time. For MC-LF a similar trend is observed and the 
most frequent IFP patterns are shown in the appendix 
(see Additional file 1: Fig. S1b–d).

IFP comparison between MC congeners simulation
The IFP sets of MC-LR and MC-LF were merged to 
compare them and similarity evaluated based on the 
inverse Rogers-Tanimoto dissimilarity. A small propor-
tion of identical IFPs (0.58%, 865 IFPs) could be identi-
fied between both MC congeners, 18.12% (or 26913 IFPs) 
were identified as similar, and 85.89% (127550 IFPs) as 
dissimilar. Please note that the numbers do not add up 

to 100% because one IFP can belong to several similarity 
classes depending on the reference IFP used for similarity 
calculation, therefore the values reflect the total number 
of comparisons in a data set.

Based on the number of IFPs in the different similarity 
classes, we conclude that while toxic MC congeners share 
some binding patterns, they also have distinct binding 
patterns which are specific to the respective MC conge-
ner. Figure 7 shows identical and similar IFPs of MC-LR 
and MC-LF. Similar and identical IFPs are connected by 
red or black vertical lines, respectively. IFPs of MC-LR 
map back to approximately four larger areas in MC-LF, 
which shows that both MC congeners share certain bind-
ing patterns, which confirms our initial hypothesis. The 
two MC congeners do not share too many binding pat-
terns, as the majority of IFPs are not linked.

In Fig. 8a–c, a set of identical and similar IFPs of both 
MC congeners that map to each other were selected 
based on the majority of occurrences. The two identical 
IFPs occurs 755 times in MC-LR (IFP 185, see Fig.  8a) 

Fig. 6 Comparison of the three most frequently occurring IFPs within MC‑LR simulation

Fig. 7 Comparison of IFP between MC‑LR and MC‑LF simulations. The first MC congener is shown in dark blue, the second in light blue. Identical 
and similar IFPs within the same simulation are indicated by vertical connections in the corresponding blue colour. Identical and similar IFPs 
between different simulations are shown as black and red lines respectively
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and 79 times in MC-LF (IFP 397, see Fig. 8b). Both IFPs 
differ in only one interaction (Ile133 in MC-LR) dem-
onstrating that our similarity threshold for identical 
IFPs is suitable to detect common IFPs across MC con-
geners and therefore across MD simulation data sets. 
Ile130, Ile133, Tyr134 and Trp206 are known in literature 
and could be efficiently retrieved. In comparison to the 
aggregatedocc30 IFP not all interactions were retrieved 
for both MC congeners. Interestingly, Ile133 is more 
frequently occurring for MC-LF, although it was identi-
fied here for MC-LR which was not even detected in the 
aggregatedocc30 IFP.

The two similar IFPs is also IFP 185 of MC-LR (occur-
rence 755, see Fig. 8a) and IFP409 in MC-LF (occurrence 
2733, see Fig. 8c). Both share an overall interaction pat-
tern with a difference in two protein residues (Arg96, 
Tyr272) and four interactions, indicating a good thresh-
old chosen for similar IFP. Again, important residues for 
binding were identified that are described in literature: 
Cys127, Ile130, Ile133, Tyr134, Trp206 (both MC con-
geners), and Arg96 and Tyr272 for MC-LF. Interestingly, 
also here the aggregatedocc30 IFP misses some interac-
tions (e.g., Ile133 for MC-LR) even though this inter-
action should be retrieved for MC-LF, but not for this 
frequently occurring IFP (see Fig. 8c) identified here.

Conclusion
Here we presented IFPAggVis, a library for systematic 
aggregation and comparison of IFPs to reduce the num-
ber of IFPs derived from MD simulations. The visu-
alisations provide an overview to analyse simulations 
to derive biological knowledge and temporal develop-
ment of interactions during simulation. We were able to 

identify representative IFPs based on our example data. 
Moreover, our aggregation method has the advantage of 
representing more realistic networks and analyse specific 
differences, since non-covalent interactions can form 
and break. Our analysis showed that we could repro-
duce known interacting residues from literature, which 
do never occur together in our representative IFPs. In 
addition, we were able to show that the aggregatedocc30 
IFP is a valid approach for a quick overview of IFPs, but 
suffers from missing interactions that occur frequently 
in individual IFPs and are therefore likely to be impor-
tant. Moreover, we provide an estimate and visualisation 
to compare IFPs derived from different MD simulations 
and help to assess similarity of IFPs. IFPAggVis is a first 
step towards aggregation and comparison of IFPs derived 
from MD simulations and can be easily applied to other 
systems. Therefore, there are many possibilities for future 
developments. Currently, interactions are analysed at the 
residue level and the ligand is treated as a single entity. 
Incorporating interaction-based analysis at the atomic 
level could facilitate comparison between IFPs from dif-
ferent MD simulations. In addition, this approach could 
help to include or exclude certain atomic groups of the 
ligand that are of particular interest to the user. Moreo-
ver, the inclusion of interaction analysis in the 3D view 
could help to facilitate the analysis of interactions. From 
MD simulations, we can derive the 3D coordinates, but 
it is currently difficult to map the individual selected 
IFPs back to the respective frame of the MD simulation 
trajectory. Therefore, we want to include an automatic 
mapping of the IFPs to the frame of the MD simulation 
trajectory to improve the understanding of the interac-
tion by including a 3D representation of the interacting 

Fig. 8 Comparison of IFPs between MC‑LR and MC‑LF simulations. The most frequent identical (a, b) and similar (a, c) IFPs of MC‑LR and MC‑LF are 
visualised as networks
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molecules. In addition, the next step is to incorporate 
atom-based analysis, which will allow the inclusion and 
exclusion of specific chemical groups and could lead to 
improved analysis of interactions and comparison of IFPs 
between different MD simulations. Although we were 
able to massively aggregate the number of IFPs derived 
from the MD simulation, we believe that it is still possi-
ble to further aggregate and reduce the number of IFPs 
to a few representatives. These representatives could be 
analysed in more detail to improve our understanding 
of interaction and binding, or used for machine learning 
approaches.
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