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Abstract 

Chemical structure segmentation constitutes a pivotal task in cheminformatics, involving the extraction and abstrac-
tion of structural information of chemical compounds from text-based sources, including patents and scientific 
articles. This study introduces a deep learning approach to chemical structure segmentation, employing a Vision 
Transformer (ViT) to discern the structural patterns of chemical compounds from their graphical representations. 
The Chemistry-Segment Anything Model (ChemSAM) achieves state-of-the-art results on publicly available bench-
mark datasets and real-world tasks, underscoring its effectiveness in accurately segmenting chemical structures 
from text-based sources. Moreover, this deep learning-based approach obviates the need for handcrafted features 
and demonstrates robustness against variations in image quality and style. During the detection phase, a ViT-based 
encoder-decoder model is used to identify and locate chemical structure depictions on the input page. This model 
generates masks to ascertain whether each pixel belongs to a chemical structure, thereby offering a pixel-level classifi-
cation and indicating the presence or absence of chemical structures at each position. Subsequently, the generated 
masks are clustered based on their connectivity, and each mask cluster is updated to encapsulate a single structure 
in the post-processing workflow. This two-step process facilitates the effective automatic extraction of chemical 
structure depictions from documents. By utilizing the deep learning approach described herein, it is demonstrated 
that effective performance on low-resolution and densely arranged molecular structural layouts in journal articles 
and patents is achievable.
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Introduction
Extracting chemical structure depictions constitutes a 
fundamental task in chemistry and related disciplines. 
This process involves identifying and capturing graphical 
representations of chemical structures, including molec-
ular formulas, chemical reactions, and molecular dia-
grams. Traditionally, researchers and practitioners have 
relied on manual extraction, a process that is labor-inten-
sive, time-consuming, and susceptible to human error.

The segmentation process entails identifying graphical 
representations of chemical compounds within docu-
ments and abstracting these into formats conducive 
to easy processing and analysis. This task poses chal-
lenges due to the diversity and complexity of chemical 
structures, coupled with the variability in their graphi-
cal representations across various documents. To tackle 
these challenges, a range of approaches has been pro-
posed, encompassing both rule-based methods [1–9] and 
machine learning-based methods [10–12]. Rule-based 
methods depend on predefined rules and heuristics 
to identify chemical structures within documents. For 
instance, the open-source OCR tool OSRA incorporates 
a rule-based page segmentation algorithm. This mecha-
nism identifies chemical structure depictions by analyz-
ing the dimensions of a rectangular bounding box around 
regions of interest and the ratio of the black pixels to 
the total area of the rectangle [8]. This class of chemical 
structure depictions was also called ‘feature density’ in 
the open-source tool ChemSchematicResolver (CSR) [13] 
and DECIMER-Segmentation [18].

Despite the hand-coding of many specific rules, rule-
based methods still struggle in various situations, includ-
ing wavy bonds, overlapping lines (e.g., bridges), limited 
flexibility, difficulty in handling variability, sensitivity to 
noise and errors, maintenance overhead, and lack of gen-
eralization. In contrast, machine learning-based meth-
ods utilize statistical models and algorithms to learn the 
patterns of chemical structures from training data. For 
instance, the open-source tool ChemSchematicResolver 
(CSR) [13] is capable of segmenting images containing 
only labels and chemical structure depictions. Classifica-
tion of objects into labels or structure depictions employs 
k-means clustering based on so-called “feature density”. 
Feature density was indicated by the ‘skeletonized-pixel 
ration’ in CSR. This ration value could be used as a crude 
measure of the ‘density of features’ of the figure. Gen-
erally speaking, when this density is high for the entire 
figure, it is likely to be more crowded with regions of 
chemical structures. However, CSR [13] cannot handle 
scanned pages or images containing objects other than 
structure depictions and labels.

Deep learning-based approaches have recently gained 
significant attention for their ability to learn complex 

patterns and representations from data [11, 14–16]. In 
2019, Staker et  al. developed a chemical structure seg-
mentation procedure using a deep learning method [15]. 
Unlike the feature density-based approaches used by 
OSRA [8] and CSR [13], Staker et al. employed a U-Net 
model to tackle the segmentation challenge [17]. Each 
image undergoes multiple processing steps at differ-
ent resolutions, with the model’s generated masks being 
averaged. The model was trained on a semi-synthetic 
dataset, where OSRA identified bounding boxes around 
potential chemical structure depictions across various 
publications and patents. Subsequently, these areas were 
excised from the original documents and substituted 
with structures from publicly available datasets. For data 
augmentation, the images underwent random modifica-
tions during training, such as binarization and brightness 
adjustments. However, reports of independent segmen-
tation accuracy are scarce, with overall accuracy for the 
entire segmentation and structural resolution process 
across various datasets ranging from 41 to 83% [15]. 
Later, in 2021, Kohulan et al. developed a toolkit named 
DECIMER-Segmentation [18], based on Mask R-CNN 
for detecting and segmenting chemical structures from 
scientific literature [19]. However, DECIMER-Segmen-
tation cannot ensure that each segmentation represents 
a pure single chemical structure; segments may include 
non-molecular parts, such as arrows from chemical 
reactions, additional lines from tables, and other labels. 
Furthermore, some fonts within the chemical structures 
may be overlooked, leading to inaccurate or incorrect 
chemical structures. Therefore, their segmented images 
require further segmentation or even manual verification 
to ensure structural accuracy before they can be trans-
formed into right SMILES or chemical graph data. Given 
the diversity of approaches, we have compiled Table  1. 
This table aims to provide a clearer understanding of the 
methodologies employed by various models.

In 2023, the “Segment Anything Model (SAM)” 
emerged, attracting significant attention as a versatile 
and powerful vision segmentation model [22]. Despite 
its robust performance on natural images, the application 
of the SAM model to chemical structure segmentation 
has not been previously reported. It might fail in chemi-
cal structure segmentation without careful optimization 
of network architecture and weight refinement. In the 
ChemSAM project, we extended the SAM model’s capa-
bilities to the chemistry domain, marking a significant 
step toward the ultimate goal of “Segment Anything.” 
To our knowledge, we are the pioneers in proposing an 
adaptation approach for general chemical structure seg-
mentation and automating the extraction process from 
patent documents and scientific literature. We also 
incorporated domain-specific chemical knowledge in 
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the adapter’s design. The algorithm comprises two main 
stages: initially, during the detection phase, ChemSAM 
generates masks delineating the positions and poten-
tial shapes of chemical structures from an input image. 
The mask may not completely cover the chemical pixels, 
as displayed in Fig. 1B. This is followed by a mask post-
processing procedure, wherein potentially incomplete 
masks and redundant masks are refined to accurately 
represent the chemical structure, as shown in Fig.  1C. 
To ensure widespread availability of ChemSAM [21], the 
main codes have been published. Our application is also 
accessible via email request, and we are seeking further 
collaboration.

Materials and methods
Implementation
The ChemSAM Segmentation backend mechanism was 
developed in Python 3 using Pytorch [23]. It was trained 
on a Linux system, but its inference can be run on Win-
dows, macOS and Linux systems. It primarily involves 
the recognition of chemical structure diagrams through a 
deep learning model and the subsequent post-processing 
of the resulting masks.

The implementation details of the key elements, along 
with the complete workflow that accepts PDF documents 
or image files as input and returns the segmented chemi-
cal structure diagrams as output, are described below.

Table 1 Comparative summary of chemical structure segmentation models and methodologies

Model Approach Methodology or model

Staker et al. [15] Deep learning-based U-Net model

DECIMER-segmentation [18] Deep learning-based Mask R-CNN

SwinOCSR [12] Deep learning-based Transformer

MolMiner-ImgDet [20] Deep learning-based MobileNetV2

OSRA [8] Rule-based Custom function with feature density

CSR [13] Rule-based K-means clustering with feature density

ChemSAM [21] Deep learning-based SAM + adapter

Fig. 1 Illustration of ChemSAM’s segmentation process. A Displays the original page being analyzed. B Shows the output from the initial detection 
phase, where ChemSAM generates masks to delineate the positions and shapes of chemical structures. C Demonstrates the post-processing step, 
refining potentially incomplete or redundant masks to accurately represent chemical structures, highlighting the model’s capability in enhancing 
segmentation accuracy
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Deep learning method
The ChemSAM network architecture comprises three 
primary components: an image encoder, a prompt 
encoder, and a mask decoder. As depicted in Fig. 2B, the 
image encoding process within ChemSAM involves sev-
eral steps. Initially, the image undergoes 2D convolution. 
Subsequently, it is processed through 12 encoder block 
layers, each featuring two adapters to integrate chemical 
domain knowledge. Ultimately, the final image embed-
ding is achieved by applying two layers of 2D convolution 
and regularization. Specifically, the image encoder block 
utilizes a pre-trained standard Vision Transformer (ViT) 
[24], trained using a Masked Autoencoder (MAE) [25]. 
Figure 2A illustrates an encoder block, detailing that the 
first adapter follows the multi-head attention phase, and 
the second adapter precedes the MLP layer in the subse-
quent pathway.

In the ChemSAM model, the prompt encoder is divided 
into two main components: dense prompts (masks) and 
sparse and positional prompts (points, boxes, text). Spe-
cifically, dense prompts, such as masks, are embedded 
using 2D convolution and regularization techniques. 
Sparse prompts, including points and boxes, are encoded 
using positional encodings [26], subsequently combined 
with learned embeddings for each prompt type. Further-
more, free-form text is processed using a pre-existing 
text encoder from CLIP [27].

Furthermore, the mask decoder efficiently maps the 
image, dense, and sparse and positional embeddings to 
a mask. As illustrated in Fig. 2C, the process starts with 
an element-wise summation of the dense embedding and 
the image embedding. This combination draws inspira-
tion from Transformer segmentation models [28], fea-
turing a modified standard Transformer decoder with a 
dynamic mask prediction head [29]. Simultaneously, the 
learned output token embedding is inserted into the set 

of cue embeddings, to be utilized in the decoder’s output, 
akin to the [class] token as mentioned in reference [24]. 
Subsequently, the image embedding is up-sampled by a 
factor of 4× using two transposed convolutional layers, 
yielding a representation that is downscaled relative to 
the original image. Meanwhile, the image embedding is 
then further up-sampled, and an MLP (Multi-Layer Per-
ceptron) maps the output to a dynamic linear classifier. 
The intersection over union (IoU) thresholds calculates 
the mask’s foreground probability at each image location.

In addition, rather than fully fine-tuning all param-
eters, we chose to keep the pretrained SAM [22] param-
eters frozen and introduced several adapter modules at 
specific positions, as illustrated in Fig.  2. The Adapter 
module, designed as a bottleneck model, consists of a 
sequence of operations: down-projection, ReLU activa-
tion [30], and up-projection. The down-projection step 
reduces the embedding’s dimensionality via a simple 
MLP layer, whereas the up-projection step restores the 
compressed embedding to its original dimension with 
another MLP layer. Outputs from the decoder network 
are scaled with a sigmoid activation function, normaliz-
ing values between 0 and 1.0. This facilitates probability-
based predictions for pixel-wise mask labels, indicating 
whether pixels correspond to molecular structures.

Datasets and training
ChemSAM training utilized synthetic data derived from 
self-collected real-world datasets. We devised a system-
atic approach to generate training data for the automatic 
identification of optical compound structural formulas. 
Initially, we gathered 50 PROTAC-related patents and 41 
papers from publicly accessible patent databases (such as 
Google Patent, EPO) and academic databases (such as 
Google Scholar). These patents and papers were divided 
and saved as individual pages. We manually filtered out 

Fig. 2 Chemical segment anything model (ChemSAM) overview and adaptions
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pages, retaining only those without chemical structure 
data, resulting in a total of 550 base pages, comprising 
277 patent and 273 paper pages.

For the molecular data, molecules were sourced from 
the United States Patent and Trademark Office (USPTO) 
[31] and drug-like molecules from the ZINC15 database 
[32], with the complete atomic distribution depicted 
in Additional file  1: Fig. S1. Specifically, to mimic real-
world scenarios that involve the clustering of multiple 
molecules in specific areas of a page, molecular files were 
carefully selected from the USPTO dataset. As shown in 
Fig. 3A, the selection criterion was focused on mol files 
having a total atom count within the dataset ranging from 
250 to 300, including non-heavy atoms such as hydrogen. 
This selection process guaranteed that the selected mol-
ecules closely mirror real-world data, featuring coordi-
nates in close proximity. For the ZINC15 dataset, 1 to 6 
individual molecules were randomly positioned on each 
page, with care taken to ensure no overlap between them 
and adherence to a total number of heavy atoms ranging 
from 15 to 28 as shown in Fig.  3B. Additionally, a total 
of 8764 non-molecular structure images were collected 
from patents and papers as negative samples. Simi-
lar to the molecules, the negative sample images were 
randomly placed on the pages, with measures taken to 
ensure no overlap with the molecules, to mimic the lay-
out of real-world page.

Specifically, RDkit [33] (https:// www. rdkit. org/) was 
utilized to convert molecules into images, which were 
then randomly rotated within a range of 0 to 30 degrees 
and superimposed onto the page. It was ensured that 
the molecular structures were completely placed on 
the page against a white background. To accommodate 
the varying quality of molecular structure images in 

real-world scenarios, the thickness of the molecular lines 
was adjusted during the molecule construction process. 
Additionally, grid lines were added around the molecular 
structures to simulate occasional disruptions caused by 
table grid lines in the molecular structure images. Cor-
responding mask pages were generated for each covered 
page, with pixels representing the molecules set to 1 and 
other areas set to 0. An example from the training data 
is shown in Fig. 4. The training data comprises approxi-
mately 30,784 pairs.

Instead of training from scratch, the above synthetic 
data was utilized to refine the ChemSAM model derived 
from SAM-B, previously trained on the SA-1B data-
set, which contains over 1 billion masks and 11 million 
images [22]. In detail, a total of 3784 samples and masks 
were created for the model’s training.

ChemSAM inherited the predefined hyperparameters 
from SAM, as established by the Meta AI team. Further-
more, four images per batch were set, taking into account 
the limited GPU memory resources. A learning rate of 
0.001, a learning momentum of 0.9, and an image size of 
512 × 512 were established. Details of the configuration 
settings are available in the supporting materials. The 
model underwent training on a workstation equipped 
with an Nvidia 3080 GPU card, 64 GB of RAM, and two 
Intel(R) Xeon(R) Silver 4114 CPUs. The entire training 
process took approximately 28 days in total.

Post‑processing
Three common problems exist within our ChemSAM 
molecular structure segmentation. The first problem is 
that chemical structures are often displayed within tables, 
particularly in patents and scientific journals. Occasion-
ally, the table lines overlap with chemical structures. 

Fig. 3 The distribution of used source real-world data. Among them, the abscissa represents the number of atoms in the molecule, 
and the ordinate represents the number of molecules

https://www.rdkit.org/
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ChemSAM may consider the table lines as part of the 
molecular structures. A line removal workflow was intro-
duced to eliminate long, straight horizontal and vertical 
lines in both images and predicted masks, utilizing the 
Hough transform [34].

The second problem involves predicted masks not per-
fectly covering the original chemical structures, some-
times resulting in incomplete coverage or the addition 
of extraneous masks, as indicated in Fig.  1B. To ensure 
molecular integrity, a custom mask updating algo-
rithm was developed. This algorithm overlays the pre-
dicted masks on the scaled images, adjusting them to 
add necessary coverage for all chemical structures and 
remove extraneous non-chemical masks. The workflow 
for updating predicted masks begins with binarizing 
the input image using an adaptive threshold, which is 
determined by the mean value of the image. Binariza-
tion ensures that any non-white backgrounds or artifacts 
from low-quality scans are filtered out. Subsequently, 
dilation is applied to the binary image of chemical struc-
tures to connect and close gaps, such as those between 
atomic element symbols and adjacent bonds, through 
the expansion of non-white pixels. The scanning matrix 

used for dilation is a scaled square, its size dependent on 
the dimensions of the input image. The pixel-wise masks 
obtained from ChemSAM are binarized to eliminate low-
confidence pixels, followed by the aforementioned post-
processing steps, including table line removal and binary 
dilation.

Then, the dilated masks acted as initial points for the 
subsequent updating process, involving the addition 
and deletion of masks. By overlaying the mask and pixel 
pages, pixels corresponding to these initial points are 
iteratively examined, as displayed in Fig. 5. Starting from 
each pixel, the process performs a neighbor search, col-
lecting adjacent black pixels. The search persists until a 
non-black pixel is encountered or no additional adjacent 
pixels are discovered. Masks retain the same positions as 
the added adjacent pixels and their corresponding initial 
points. This mask-adding step enables the capture of all 
pixels within the intact molecular structure, provided 
that a single mask prediction is successful. Note that the 
mask’s background is black, and white represents the pre-
dicted structural mask, whereas this is reversed for most 
patents and papers, which feature a white background 
and black text. Following the pixel-level addition process, 

Fig. 4 A training example of synthetic page and mask page
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the molecular pixel masks are reduced in size, with 
efforts made to maintain the same number of molecular 
pixels by aligning the input with the mask page, as shown 
in Fig.  1C. Additionally, extra masks are filtered out by 
removing areas too small to be considered structures, 
counting the number of pixels in a contiguous area and 
deeming it a non-structure if the pixel count falls below 
a threshold (400 pixels at 512 × 512 height-width). Indi-
vidual entities, defined as single, contiguous groups of 
positively predicted pixels within the refined masks, are 
presumed to contain single structures. These are utilized 
to crop structures from the original inputs, yielding a 
collection of individual structure images, as indicated in 
Fig. 6B.

Last but not least is the challenge of false positive 
detection. ChemSAM can automatically avoid many 
common cases, such as Western blot figures and statis-
tical analysis charts. However, in some special cases, as 
displayed in Additional file  1: Fig. S2, ChemSAM still 
fails to separate the non-chemical parts. Indeed, the 
chemical parts are tightly connected to the non-chemical 
parts, or the chemical structures overlay the non-chem-
ical parts. The failures can be attributed to the absence 
of similar data in our synthetic training dataset. Cur-
rently, preparing this training data presents challenges. 
We developed an in-house filter model, also a ViT-based 
encoder-decoder, that takes the segmented results as 
input to determine whether an image represents a chemi-
cal structure. If the input does not represent a molecular 

structure, the image is skipped and labeled as non-mole-
cule. Otherwise, the image is converted into an RDkit 2D 
molecular graph [33] and saved as an SDF file or in other 
specified formats.

Result and discussion
In evaluating the segmentation capabilities of MolM-
iner-ImgDet [20], DECIMER [18], and ChemSAM, we 
reference several considerations due to the varied avail-
ability of model implementations and the specific chal-
lenges presented by chemical structure segmentation. 
These considerations include the completeness of seg-
mentation, the proportion of structures accurately seg-
mented from the document layout, the recognition rate 
of colored structures, and the proportion of non-struc-
tural elements. We aimed to compare the segmentation 
capabilities of and ChemSAM. However, given MolM-
iner-ImgDet’s model has not been officially released, 
our evaluation primarily focuses on segmentation com-
pleteness for this model, using cases from its published 
article. For DECIMER and ChemSAM, we extend our 
assessment to include additional aspects such as the 
rate of correctly identified structures, the proportion of 
non-structural elements, and the accuracy in recogniz-
ing colored structures where applicable. These references 
serve not as strict standards but as guidelines to gauge 
the performance of each model in handling the intricate 
task of chemical structure segmentation.

Fig. 5 The mask update process. The update process consists of two steps: masks addition and deletion. Search to add black pixels from neighbor 
neighbors and delete mask pixels that are further away
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Fig. 6 Case of one scanned journal page from Wang [35]. A is the original page, B is output of ChemSAM model; C is output of MolMiner model; D 
is output of DECIMER model
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As illustrated in Fig. 5, MolMiner exhibits inadequacies 
in accurately segmenting individual molecules, leading to 
instances where two or more molecules are erroneously 
grouped within a single image fragment. These inaccura-
cies can potentially introduce undesired complications 
in subsequent recognition steps, necessitating additional 
efforts to re-segment images containing multiple mol-
ecules into individual patterns. This challenge was aptly 
characterized in the original text as MolMiner’s weakness 
in handling crowded layout segmentation.

In contrast, the DECIMER model’s segmentation capa-
bility is relatively robust. However, it failed to accurately 
recognize and segment the 86 compounds depicted in 
the image. Unexpectedly, four instances of segmentation 
errors were noted (highlighted in red boxes), with chiral 
hydrogens misidentified as methyl groups and charge 
symbols being overlooked. Notably, DECIMER’s out-
put omitted all compound index labels. Thus, the model 

overlooked the chiral hydrogens and charge symbols for 
compounds 82, 83, and 96, possibly due to their struc-
tural spacing in the image.

In this instance, ChemSAM demonstrated flawless seg-
mentation. During the recognition process, the Chem-
SAM model meticulously explores the pixels surrounding 
the structures. Consequently, labels for compounds 80 
and 90, located in close proximity to their respec-
tive structures, were accurately retained. Furthermore, 
ChemSAM accurately identified chiral hydrogens and 
positive charge symbols.

To systematically evaluate the ability to segment from 
patents and papers, we constructed a chemical structure 
dataset as a testing benchmark, gathering 25 recent jour-
nal articles and patents from the past 2 years. DECIMER 
and ChemSAM were evaluated using this benchmark, 
with the results presented in Fig.  6. Detailed perfor-
mance metrics are available in Additional file 1: Table S1. 

Fig. 7 The histogram statistical results of the benchmark data set
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Regarding completeness, ChemSAM achieved an 
astounding accuracy rate of 98.43%, whereas DECIMER’s 
performance, aligning with its published results, reached 
a rate of 90.15% on the testing benchmark. However, it is 

notable that DECIMER exhibited a 2.54% redundancy in 
its recognition process, which could lead to misalignment 
between identified structures and their annotated posi-
tions, presenting challenges in biochemical data entry.

Fig. 8 Colorful molecular structure images detection and segments

Fig. 9 3D molecular structure image detection and segment
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Additionally, in recognizing color structures or chemi-
cal structures against colored backgrounds, ChemSAM’s 
success rate exceedsDECIMER’s by nearly 10 percent-
age points, as shown in Fig.  7. Specifically, ChemSAM 
can directly recognize color images and uses an adjusted 
mask to crop the original image, ensuring consistency 
between the output and the source. In contrast, DECI-
MER inverts image colors during the recognition process, 
leading to noticeable changes in some color nuances, as 
illustrated in Fig. 8.

Furthermore, ChemSAM exhibits a notable advantage 
in processing grayscale patent documents, particularly 
in recognizing Markush structures within patents, as 
detailed in the supporting information. This advantage 
may stem from the unique nature of Markush structures, 
which differ from complete chemical structures, leading 
to a decrease in DECIMER’s recognition performance. It 
is important to note that although Markush structures 
are not complete chemical structures, they are com-
monly employed in patents and journal articles to denote 
a range of compounds. Therefore, the capability to seg-
ment and identify Markush structures is essential for 
extracting chemical information from documents, and 
addressing Markush structures poses a significant chal-
lenge in “figure to mol” translation.

Unlike DECIMER segmentation, which tends to 
include non-molecular structure parts in its generated 
mask areas due to its reliance on so-called region pro-
posal networks for generating regions of interest, Chem-
SAM predicts the chemical structure mask directly at the 
pixel level, aiming to identify an equal quantity of pixels 
that belong to chemical structures. Furthermore, Chem-
SAM can segment 3D molecular images, as displayed in 
Fig. 9, despite the absence of 3D molecular structures in 
its training data.

ChemSAM outperforms the open-source solution, 
DECIMER. It can detect and separate many molecules 
that DECIMER cannot, with examples displayed in Addi-
tional file  1: Fig. S3. When the volume of segmentation 
work is manageable, missing molecular structures may 
be segmented by hand. Otherwise, completing the task 
quickly becomes impractical, given the need to segment 
hundreds of patents or papers and convert them into 
chemical datasets. This is especially true for patents con-
taining up to one thousand pages. ChemSAM accepts 
various file formats as inputs, including PNG, JPG, SVG, 
and PDF.

In summary, our proposed method achieves state-of-
the-art results, demonstrating its effectiveness in accu-
rately segmenting chemical structures from text-based 
sources. Particularly in terms of completeness and accu-
racy, it significantly outperforms DECIMER. Although it 
slightly lags behind DECIMER in segmenting chemical 

structures with additional elements, this gap is negligi-
ble compared to other performance indicators. However, 
these additional elements may not pose a problem in the 
subsequent process of translating segmented figures into 
molecules. For instance, the published tool Molscribe 
[16] can readily translate chemical figures containing 
additional elements into target molecules (Fig. 9).

Conclusion
Chemical structure segmentation is a crucial step in 
chemical structure recognition. Most research works 
have focused on the step of translating molecular fig-
ures into molecular structures, assuming the inputs 
are suitably prepared containing a single chemical 
structure. However, in practice, developing an auto-
matic method to segment each molecular structure 
as an independent image is challenging due to varied 
drawing styles and dense arrangements. We propose 
a deep learning approach to chemical structure seg-
mentation, utilizing a vision transformer model to dis-
cern the structural patterns of chemical compounds 
from their graphical representations. Our method 
achieves state-of-the-art results on publicly available 
benchmark datasets, demonstrating its effectiveness in 
accurately segmenting chemical structures from text-
based sources. Furthermore, our findings indicate that 
this method is highly effective in extracting chemi-
cal structures from text-based sources, with potential 
applications across various domains in cheminformat-
ics. Overall, this study contributes to advancing more 
accurate and efficient chemical structure segmentation 
methods, with significant implications for drug discov-
ery, chemical synthesis, and broader chemical research 
areas.
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