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Abstract 

Kinetic process models are widely applied in science and engineering, including atmospheric, physiological and tech-
nical chemistry, reactor design, or process optimization. These models rely on numerous kinetic parameters such 
as reaction rate, diffusion or partitioning coefficients. Determining these properties by experiments can be chal-
lenging, especially for multiphase systems, and researchers often face the task of intuitively selecting experimental 
conditions to obtain insightful results. We developed a numerical compass (NC) method that integrates computa-
tional models, global optimization, ensemble methods, and machine learning to identify experimental conditions 
with the greatest potential to constrain model parameters. The approach is based on the quantification of model 
output variance in an ensemble of solutions that agree with experimental data. The utility of the NC method is dem-
onstrated for the parameters of a multi-layer model describing the heterogeneous ozonolysis of oleic acid aerosols. 
We show how neural network surrogate models of the multiphase chemical reaction system can be used to accel-
erate the application of the NC for a comprehensive mapping and analysis of experimental conditions. The NC can 
also be applied for uncertainty quantification of quantitative structure–activity relationship (QSAR) models. We show 
that the uncertainty calculated for molecules that are used to extend training data correlates with the reduction 
of QSAR model error. The code is openly available as the Julia package KineticCompass.

Keywords Chemical kinetics, QSAR, Design of experiments (DOE), Global optimization, Inverse problem, Ensemble 
methods, Multiphase chemistry, Machine learning

Introduction
In multiphase chemical kinetics, the rate of change in 
complex systems can be described by resolving mass 
transport and chemical reactions at the molecular pro-
cess level [1, 2]. While the underlying physical and 
chemical principles are well understood, the individual 

processes are inherently coupled and the chemical and 
physical parameters, such as reaction, diffusion, or par-
titioning coefficients, are often unknown or poorly 
constrained [3, 4]. The integration of these processes 
occurring in parallel or in sequence often requires com-
putational kinetic models (KM). KM return the con-
centration time profiles of reactants or products under 
specified environmental or experimental conditions 
[5–10]. However, the input parameters for KM may not 
be known a priori, and their determination can be chal-
lenging [11–14]. The deduction or constraint of model 
input parameters using model output is known as solv-
ing the inverse problem. In practice, researchers often 
utilize statistical approaches to solve the inverse problem 
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with global optimization techniques [15–18]. Such tech-
niques determine sets of parameter values, so-called 
fits, that lead to model outputs in agreement with previ-
ously acquired experimental data. In ill-posed problems, 
Berkemeier et  al. 2021 [19] proposed the consideration 
of ensembles of sufficiently well-fitting parameter sets 
to extract information from the corresponding range of 
kinetic model solutions in underdetermined optimiza-
tion problems. This approach is related to approximate 
Bayesian computation, a method for statistical infer-
ence that can be applied if the likelihood function is not 
known and the posterior distribution cannot be obtained 
directly [20]. This is often the case for computational 
or simulation-based models that are evaluated through 
calculation of a mechanism, like (bio-)chemical kinetic 
models [21, 22]. In approximate Bayesian computation, 
a probability density function is replaced by an artificial 
data set obtained through sampling of an approximate 
posterior distribution using a distance metric [23]. In 
this work, the approximate posterior distribution cor-
responds to the fit ensemble, i.e., kinetic parameter sets 
that lead to valid solutions matching experimental data 
within a specified error margin.

Quantitative structure–activity relationship (QSAR) 
models utilize the concept of molecular similarity to 
derive properties (e.g., chemical or biological) of new 
molecules from existing data, often through machine 
learning [24]. The models are generally trained on data 
derived from experimental measurements [25] or density 
functional theory (DFT) calculations [26–28]. Similarly 
to the acquisition of fit ensembles in global optimiza-
tion, ensemble learning techniques allow the acquisition 
and utilization of multitudes of QSAR model predictions 
[29–31]. Such ensemble predictions have recently been 
utilized for uncertainty quantification, based on variance 
in predictions of Siamese neural networks [32].

Surrogate models (SM) are machine learning mod-
els that are trained on inputs and outputs of a template 
model. A SM can be used to substitute the template 
model in applications that benefit from low compu-
tational cost in exchange for slightly increased model 
uncertainty. Satisfactory model accuracy can be ensured 
by a sufficient size of the training data set, and there-
fore depends on the initial investment of computational 
resources [33]. SM have helped solving the issue of com-
putational cost in many fields of research, such as in 
geoscientific and atmospheric modelling [34–40], chemi-
cal process engineering [41], water resources modelling 
[42, 43], or optimization in supply chain management 
[44]. SM can also aid inverse modelling approaches. 
Berkemeier et  al. 2023 [33] showed that SM-supported 
fit ensemble acquisition greatly outperforms regular 
sampling with the kinetic multi-layer model of aerosol 

surface and bulk chemistry (KM-SUB) [5] in terms of 
acquired fits for a given computational effort. However, it 
remains unclear how SM uncertainty affects the reliabil-
ity of inverse modelling techniques.

A kinetic model’s uncertainty can be based on model 
form uncertainty, i.e., concerning the underlying physics 
or chemistry, or model parametric uncertainty, i.e., con-
cerning the knowledge of its input parameters [45]. Para-
metric uncertainty is often caused by the coupled nature 
of parameters or by underdetermination of the modelled 
system. Among model input parameters, we differentiate 
between kinetic parameters that define the physical and 
chemical properties of the modelled system (e.g., reac-
tion rate coefficients), and parameters that define the 
environmental or experimental conditions (e.g., initial 
concentrations or temperature). When a model is evalu-
ated for experimental conditions that differ from those 
for which its kinetic parameters were derived, model 
uncertainty may strongly increase [2]. This situation may 
arise in particular when the data underlying the model is 
limited, or when conditions in the laboratory experiment 
(e.g., a test reactor) deviate from the real-world applica-
tion of interest (e.g., the atmosphere, an industrial plant, 
or an engine). Furthermore, when extrapolating a model 
to conditions outside its calibration range, not all fits in 
a fit ensemble may behave in the same way. This ensem-
ble variance associated with a fit ensemble can be used to 
assess the model’s parametric uncertainty over a range of 
experimental conditions [19]. The ensemble variance at 
a specific set of experimental conditions may also be an 
indicator for parameter sensitivity, and of the potential 
to constrain the model if experimental data was available 
for these conditions. Thus, while data from any additional 
experiment may decrease the parametric uncertainty 
of a model, this process can be optimized by selecting 
experimental conditions associated with high ensemble 
variance. These conditions are most likely to constrain 
the underlying model and its physical and chemical 
parameters.

For experimenters, it is difficult to guess such opti-
mal conditions a priori. As quantitative approaches to 
this problem, a number of methods and frameworks for 
targeted design of experiments (DOE) for uncertainty 
minimization have emerged over the past years, mostly 
in the fields of fuel combustion and computational fluid 
dynamics [46]. For this purpose, Bayesian experimental 
design methods have been proposed to maximize a util-
ity function, e.g., through minimization of information 
entropy, a measure for the degree of disorder, diversity 
and dispersion [47]. DOE techniques have since then 
been continuously extended and improved, e.g., through 
the utilization of polynomial surrogate models [48], sen-
sitivity entropy as a measure of the degree of dispersion 
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of uncertainty sources of a model output [49], trun-
cated Gaussian probability density functions [50] or 
surrogate model similarity methods [51]. For example, 
Lehn et al. successfully applied an iterative model-based 
experimental design framework based on the criterion 
of D-optimality [52] as well as polynomial chaos expan-
sion [53] to identify optimal conditions for experimental 
measurements related to the auto-ignition of dimethyl 
ether [54]. Through integration of functions for dimen-
sion reduction, global sensitivity analysis, forward uncer-
tainty quantification, model-analysis-based experimental 
design and model optimization, Zhou et al. developed a 
versatile computational framework (OptEx) to automati-
cally find informative while independent experiments, 
and refine computational models [55]. Similar methods 
for so-called calibration experiment design optimiza-
tion techniques have been developed and are applied in 
the fields of engineering and materials science [56, 57]. 
To our knowledge, however, such techniques had not yet 
been developed and applied to guide laboratory experi-
ments in the fields of atmospheric and environmental 
multiphase chemistry.

Existing DOE methods are often based on optimal-
ity criteria to minimize the trace (A-Optimality), deter-
minant (D-Optimality) or eigenvalue (E-Optimality) of 
the Fisher information matrix, and require knowledge 
of a likelihood function, given experimental data and 
uncertainty [52, 58]. To calculate the Fisher informa-
tion matrix, derivatives of the likelihood function with 
respect to the model parameters must be obtained [59]. 
If automatic differentiation is not applicable to the model 
[60], the calculation of gradients through, e.g., finite dif-
ferences [61], requires multiple model evaluations per 
maximum likelihood estimate and tested experimental 
condition [62]. In this work, we propose a new approach 
to the selection of optimal experiments. The numerical 
compass (NC) method treats experimental uncertainty 
implicitly through choice of acceptance conditions (e.g., 
thresholds) to derive a fit ensemble as representation 
of the underlying solution space. The approach repre-
sents a least-squares method for parameter estimation, 
in contrast to the more common maximum likelihood 
estimation methods [63]. The optimality criteria for the 
selection of experiments in our proposed method are 
formulated as statistical criteria, which we will refer to as 
constraint potentials. These are computationally inexpen-
sive operations that only require one model evaluation 
per fit and tested experimental condition. The criteria can 
be specifically tailored to consider additional information 
associated with the fit ensemble, or specific properties of 
the model. In the proposed framework, we introduce two 
constraint potential metrics: one approximates the het-
erogeneity of models (i.e., posterior distribution samples) 

at different experimental conditions, and one that further 
explores the nature of constraint potentials with regards 
to individual kinetic parameters. The NC is used along-
side the kinetic multi-layer model of aerosol surface and 
bulk chemistry (KM-SUB), and a neural network SM for 
it, to demonstrate its functionality in experiment design 
and inverse modelling. In addition to experiment design, 
we apply the NC to uncertainty quantification of machine 
learning quantitative structure–activity relationship 
(QSAR) models. The NC is used to explore molecular 
structures for which QSAR models exhibit a particularly 
high uncertainty and test whether this information can 
be used to suggest new training data that will increase 
model accuracy.

Method
We present the numerical compass (NC), a method for 
experiment prioritization and reduction of a model’s 
parametric uncertainty. The method requires a process 
model, data from previous laboratory experiments, and 
a set of variable experimental parameters that describe 
future experiments of interest. The individual steps of the 
proposed workflow are displayed in Fig. 1.

Inverse modelling solutions and uncertainty
To estimate parametric uncertainty, inverse modelling 
can be extended to an ensemble of kinetic parameter 
sets that return sufficient agreement with experimental 
data [15, 19]. All possible sets of chemical and physical 
parameter values that lead to a sufficiently low residual 
between model output and experimental data, so-called 
fits, form the solution space of a kinetic model. In prac-
tice, we use a finite collection of fits, referred to as fit 
ensemble, as representation of the model solution space. 
Additional experimental data can help to narrow down 
the fit ensemble and thus decrease model parametric 
uncertainty.

Operating principle
The NC is a framework to optimize the deduction or 
constraint of kinetic parameters with experiments. In 
general, the information gained from new experimental 
data can be used to reject fits from a fit ensemble. The 
NC finds experimental conditions with the highest con-
straint potential, optimizing the reduction of model solu-
tion space and hence model parametric uncertainty. For 
this purpose, the method computes ensemble solutions 
under experimental conditions that have not been con-
sidered previously, and determines the ensemble variance 
under these conditions. We present two metrics evaluat-
ing the ensemble variance, the ensemble spread of model 
solutions (section  Ensemble spread) and the param-
eter (boundary) constraint potential (section  Parameter 
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boundary constraint potential). By sampling the space 
of feasible experiments, constraint potential maps (sec-
tion  Constraint potential maps) of these metrics are 
obtained. Maxima on these maps represent prospec-
tive experiments that are most likely to achieve large 

constraints of the model. After fit ensemble filtering 
based on the new experimental data, the NC method can 
be repeated to suggest the next experiment. In this study, 
we simulate the suggested laboratory experiments with 
the model KM-SUB to showcase the alternating applica-
tion of the NC with laboratory experiments. For more 
detailed and mathematical definitions of process models, 
their solution space, as well as fit ensembles and ensem-
ble solutions, see Additional file 1: Note S1.

Ensemble spread
The ensemble spread is a measure for the variance 
between a multitude of model predictions. Resembling 
similar concepts in weather and climate forecasting [64], 
we calculate the ensemble spread (ES) as:

where (xm)m=1,...,nz is the sequence of independent vari-
ables associated with the output sequence (zm)m=1,...,nz , 
and 

∫
Z , 

∫
Z + σ and 

∫
Z − σ are integrals of the inter-

polated sequences (Zm)m=1,...,nz , (Zm + σm)m=1,...,nz and 
(Zm − σm)m=1,...,nz for nz model outputs with an ensem-
ble mean Zm and ensemble standard deviation σm (Addi-
tional file 1: Note S2).

In short, the ensemble spread describes the area 
enclosed by the curves of the ensemble mean ± its stand-
ard deviation, normalized by the area under the ensem-
ble mean curve. Visualizations of the ensemble spread 
as constraint potential metric are provided in Fig.  2D, 
E. A large ensemble spread is generally associated with 
a larger fraction of rejected fits during fit ensemble 
filtering.

Parameter boundary constraint potential
The parameter (boundary) constraint potential allows 
an extension of the method to constraint potentials of 
individual kinetic parameters. The metric quantifies the 
potential narrowing of an individual parameter’s bounda-
ries in the constrained fit ensemble.

In brief, the parameter constraint potential is calculated 
by iterating over predictions in an ensemble solution. In 
each iteration, one prediction is considered as the hypo-
thetical result of an experiment. Based on this prediction, 
we calculate a hypothetical constrained fit ensemble and 
derive the distribution of the kinetic parameter in the 
remaining fits. The kinetic parameter’s boundaries in this 
distribution are normalized by its boundaries in the orig-
inal fit ensemble to compute a numerical value for the 
parameter’s constraint potential.

More specifically, we determine the subset C of the 
fit ensemble FE. C contains all fits that lead to model 

(1)ES =

∫
(Z(x)+ σZ(x))dx −

∫
(Z(x)− σZ(x))dx∫

Z(x)dx

Experimental 
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ensemble variance

Ensemble 
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Fig. 1 Workflow of the numerical compass (NC) method presented 
in this study. The method relies on exchange between laboratory 
experiments (left) and model calculations (right) to eliminate 
variance in model output. Data from laboratory experiments are used 
for the acquisition of a fit ensemble, which are kinetic parameter 
sets that lead to model outputs in agreement with the experimental 
measurements. Evaluating the model for the entire fit ensemble 
and over a defined range of experimental parameters yields sets 
of ensemble solutions that serve as the basis for all calculations 
with the NC. The NC offers two metrics for constraint potential 
evaluation: ensemble spread, and parameter (boundary) constraint 
potential (section Parameter boundary constraint potential). The 
metrics are used to build constraint potential maps, which highlight 
areas with large model output variance in the experimental 
parameter range. These experimental parameters are suggested 
as next experiment as they are likely to lead to rejection of a large 
number of fits during fit ensemble filtering. The NC can be 
used iteratively (dotted arrow), using the ensemble solutions 
of the constrained fit ensembles
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solutions within acceptance threshold θ in comparison to 
the model solution of fit FEl that is selected as hypotheti-
cal measurement in the iteration l over all predictions in 
the ensemble solution:

where ENSl and ENSr  are the model solutions using fits 
FEl and FEr  in the evaluated ensemble solution (ENS). 
Hence, we obtain one subset C l in each iteration. If every 
solution in the ensemble is evaluated as hypothetical 
experimental result in turn, nFE subsets are generated 
for every ensemble solution, where nFE is the number of 
elements  in  the fit ensemble . The parameter constraint 
potential (PCP) for a specific parameter �p and ensemble 
solution is then defined as:

where Q 5�p ,l and Q95�p ,l are the 5- and 95-percentiles of 
the distribution of �p in subset C l , respectively. min(�p) 
and max(�p) are the global minimum and maximum of 
the selected kinetic parameter in the entire fit ensemble.

Note that the computational effort associated with this 
method is large due to the pairwise comparison of all pre-
dictions in an ensemble solution. Therefore, we suggest 
an approximation based on a reduced sample density. A 
detailed definition of the parameter constraint potential 
with reduced sample density is presented in Additional 
file 1: Note S3 and visualized in Additional file 1: Fig. S1.

Note that we can apply the same principle of forming 
subsets of the fit ensemble based on their behavior under 
test conditions, to constrain model uncertainty at a spe-
cific target condition (Additional file 1: Fig. S2). This can 
be of high practical relevance for situations where labora-
tory experiments must be performed outside the typical 
conditions of the target application, a common prob-
lem in the fields of atmospheric chemistry and chemical 
technology.

Constraint potential maps
The application of a metric for model constraint poten-
tial on a range of ensemble solutions (one for each tested 
experimental condition) can be visualized in a constraint 
potential map. This map is a n-dimensional hypersurface, 
where n is the number of varied experimental param-
eters, and whose maxima represent experimental condi-
tions favorable for constraint of the underlying model. 
An example for a constraint potential map is presented 
for two varied experimental parameters and the ensem-
ble spread metric in Fig. 2. For further information on the 
chemical system (oleic acid ozonolysis) and the variable 

(2)Cl = {FEr : �(ENSl , ENSr) < θ}

(3)

PCPp =

nFE∑

l=1

(Q5�p ,l −min(�p))+ (max(�p)−Q95�p ,l)

experimental parameters (particle radius, ozone con-
centration), as well as a description of the restrictions 
regarding experimental accessibility applied in this work, 
see section Kinetic multi-layer model and neural network 
surrogate model, Additional file  1:  Note S4, and Addi-
tional file 1: Fig. S3. Note that while we evaluate a full grid 
of combinations of experimental parameters for the pur-
pose of testing and visualization, the constraint potential 
metrics can similarly be used as an objective function of 
an optimization algorithm to reduce the required com-
putational effort.

Kinetic multi‑layer model and neural network surrogate 
model
In this study, we use the kinetic multi-layer model of 
aerosol surface and bulk chemistry (KM-SUB) [5] along 
with experimental data of the heterogeneous ozonoly-
sis of oleic acid from the literature. However, the NC 
method can be used with any process model and under-
lying chemical or physical system. Detailed information 
about KM-SUB can be found in previous publications 
[5, 12]. In brief, KM-SUB is a chemical flux model that 
explicitly describes gas diffusion, accommodation of gas 
molecules to surfaces, surface-bulk exchange, bulk diffu-
sion, as well as chemical reaction at the surface and in the 
bulk of a condensed phase. The resulting set of ordinary 
differential equations is solved numerically. KM-SUB 
input parameters include initial concentrations, chemi-
cal reaction rate coefficients, and mass transport coef-
ficients, and are presented in Table  1. KM-SUB outputs 
are the concentration profiles over space and time for all 
chemical species.

For the training of neural network surrogate models, 
KM-SUB output is simplified to nine points of reaction 
progress, i.e., the time required to reach 90 %, 80 %, 70 %, 
60 %, 50 %, 40 %, 30 %, 20 % and 10 % of the total num-
ber of oleic acid (OL) in a single aerosol particle, NOL,0 . 
For comparability, we represent the output of the full 
KM-SUB model in this study in the same way. We train a 
fully-connected, feed-forward neural network on 1× 106 
KM-SUB outputs as training data. For further informa-
tion on training of the surrogate model see Berkemeier 
et al. 2023 [33] and Additional file 1: Note S5.

The NC method requires evaluation of the underlying 
process model during fit ensemble acquisition and during 
calculation of ensemble solutions (Fig. 1). In this study, we 
test and compare three different approaches: using KM-
SUB for both steps (KM-only), using an SM of KM-SUB for 
both steps (SM-only), and a KM/SM-hybrid approach, in 
which KM-SUB is used for fit ensemble acquisition and the 
SM to obtain ensemble solutions. Fit ensemble acquisition 
is achieved by random sampling of kinetic input param-
eters with the KM or SM within the parameter boundaries 
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in Table 1, using a mean square logarithmic error (MSLE) 
and an acceptance threshold θ = 0.0105 to determine suf-
ficient agreement with experimental data. For the specifi-
cations of fit ensemble acquisition and error calculation in 
this study, see Additional file 1: Note S6.

Quantitative activity structure relationship models 
and ensemble learning
In addition to experiment design, the NC can be utilized 
for uncertainty quantification of QSAR models. We use 
a re-trained version of the CNN_Tabor_nosulf model 

from Krüger et  al. [28], a convolutional neural network 
model predicting reduction potentials based on SMILES 
molecular representations of 69,599 quinones from the 
Tabor et  al. [65] data set, excluding quinone structures 
that contain sulfate functional groups. The models are 
trained on identical hyper-parameters as in the original 
study, but using 10-fold instead of 5-fold cross-valida-
tion. In this application, the ensemble solution utilized 
by the NC refers to multiple cross-validation models that 
are trained on different subsets of the training data. We 
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Fig. 2 Constraint potential map obtained with the numerical compass (NC) method. The contour map in A shows an exemplary constraint 
potential map using the ensemble spread metric. Model calculations are obtained with KM-SUB on a 100×100 grid of two experimental parameters, 
ozone concentration and particle radius, and for a fit ensemble of 500 fits. The teal box frames the area of experimentally accessible conditions 
with regards to particle radius, ozone concentration and predicted experiment duration (Additional file 1: Note S4). Black crosses in A mark 
the experimental conditions of available experimental data that were used to obtain the fit ensemble (cf. Fig. 3) and B shows the ensemble solution 
(gray lines) in comparison to one of these experimental data sets (blue markers). The purple cross in A represents the ensemble spread maximum 
within experimental accessibility and thus the recommended experiment. C Illustrates the ensemble solution at this ensemble spread maximum. 
New experimental data from the recommended experiment (purple markers) are used to obtain the constrained fit ensemble (green lines) 
through rejection of fits. D, E Showcase ensemble solutions with a high ensemble spread of 1.446 and a low ensemble spread of 0.234, respectively. 
Here, colored lines visualize the mean of the ensemble solution (blue line) and the mean ± 1 standard deviation (red lines)
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Table 1 KM-SUB kinetic and experimental input parameters

The respective lower and upper boundaries indicate the initial constraints of the fit ensemble and an estimate of experimentally accessible conditions in a laboratory 
for atmospheric aerosol chemistry

Parameter Lower boundary Upper boundary Description

kSLR 1.0 × 10−15 1.0 × 10−8 Rate coefficient of OL+O3 surface reaction (cm3 s −1)

kBR 1.0 × 10−20 1.0 × 10−11 Rate coefficient of OL+O3 bulk reaction (cm3 s −1)

Db,O3 1.0 × 10−11 1.0 × 10−5 Bulk diffusion coefficient of ozone (cm2 s −1)

Db,OL 1.0 × 10−12 1.0 × 10−6 Bulk diffusion coefficient of oleic acid (cm2 s −1)

Hcp,O3 5.0 × 10−6 5.0 × 10−3 Henry’s law solubility coefficient of ozone (mol cm−3 atm−1)

τd,O3 1.0 × 10−9 1.0 × 10−2 Desorption lifetime of O 3 (s)

αs,0,O3 1.0 × 10−4 1 Surface accommodation coefficient of ozone on an adsorb-
ate-free surface ( )

rp 2.5 × 10−6 1.0 × 10−3 Particle radius (cm)

[O3]g,0 1.0 × 1011 1.0 × 1015 Initial gas phase number concentration of ozone (cm−3)

[OL]b,0 1.0 × 1019 2.0 × 1021 Initial bulk number concentration of oleic acid (cm−3)

calculate a non-normalized ensemble spread of predicted 
reduction potentials for a set of autogenerated quinone 
structures.

Results and discussion
Acquisition of fit ensembles
We demonstrate the applicability of the numerical com-
pass (NC) method for the heterogeneous ozonolysis of 
oleic acid aerosols using the kinetic multi-layer model 
of aerosol surface and bulk chemistry (KM-SUB), and a 
neural network surrogate model (SM) for it. Both models 
map seven kinetic and three experimental input param-
eters (Table  1) onto the concentration-time profile of 
oleic acid. For each model, we obtained fit ensembles 
(nFE=500) in compliance with seven experimental data 
sets [8, 66–68] as shown in Fig.  3. Each kinetic param-
eter set in the fit ensemble is associated with one model 
output (gray lines) for each experimental condition. Both 
fit ensembles (of KM-SUB and the SM) have a minimal 
mean-squared logarithmic error (MSLE) of 0.0085; the 
median MSLE are 0.0102 for KM-SUB and 0.0099 for the 
SM.

Ensemble spread
The ensemble spread aims for general minimization of 
the solution space of a model. Figure 4 displays constraint 
potential maps for the ensemble spread metric and the 
variable experimental parameters of particle radius (rp ) 
and ozone concentration ( [O3]g,0 ). The conditions asso-
ciated with the experimental data used to obtain the fit 
ensemble (black crosses) are, naturally, located in areas 
of low ensemble spread. Maxima of the ensemble spread, 
i.e., regions associated with large model variance, occur at 
very low particle radii (< 50 nm), and for the combination 
of large radii (> 10 µ m) with high ozone concentrations 

(> 100 ppm). The constraint potential maps obtained with 
the KM-only approach (panel A) and the KM/SM-hybrid 
approach (panel B) appear similar overall. The absolute 
ensemble spread maxima are both located at maximal 
particle radii and ozone concentrations (purple crosses). 
As main difference, isopleths appear less smooth for the 
SM. A constraint potential map of the SM-only approach 
is displayed in Additional file  1: Fig. S7. The computa-
tionally less expensive SM-only method leads to slightly 
larger differences to the KM-SUB constraint potential 
map. In particular, the ensemble spread maximum at low 
particle radii is less pronounced.

Parameter boundary constraint potential
In addition to the ensemble spread, we apply the NC 
using both models with the parameter constraint poten-
tial (section  Parameter boundary constraint potential). 
This method aims for a minimization of a chosen kinetic 
parameter’s uncertainty range in the solution space, 
approximated through its 5-95 percentile range in the fit 
ensemble. Figure 5A and C display parameter constraint 
potential maps for the kinetic parameters kSLR and Db,OL , 
respectively. The maximum of the kSLR constraint poten-
tial matches the maximum of the ensemble spread at low 
particle radii in Fig. 4, whereas the maximum of the Db,OL 
constraint potential matches the maximum of the ensem-
ble spread at large radii and high ozone concentrations. 
Hence, high ensemble spreads appear to be necessary but 
not sufficient conditions for high parameter constraint 
potentials.

We simulate the suggested experiments with KM-SUB, 
using the best fit in the KM-SUB fit ensemble as simu-
lated truth. Under consideration of the original data and 
the new synthetic experiment, we filter the fit ensembles 
using the MSLE threshold of θ = 0.0105. Figure 5B and 
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D show frequency distributions of five kinetic param-
eters in the fit ensemble before (blue) and after (red) fit 
filtering. The experiments suggested by the constraint 
potential metrics achieve a significant reduction in the 
5-95 percentile range for their associated parameters, 
kSLR and Db,OL , respectively. Simultaneously, constraints 
are achieved for other parameters, e.g., kBR (Fig. 5B), fol-
lowing the similarity between the parameter constraint 
potential maps (Additional file  1: Fig. S8A, D, G, J). 
Parameter constraint potential maps and simulated con-
straints for the SM-only approach (Additional file 1: Fig. 
S9) are very similar to those using the KM-only approach.

Empirical testing
The NC can be applied repeatedly to narrow down model 
solutions in iterative fashion. Here, we simulate this 
procedure using synthetic experimental data, which is 
obtained by assuming that a single fit from the fit ensem-
ble is the true solution of the modelled system (the sim-
ulated truth). The simulation is repeated for each fit in 
the ensemble as simulated truth. Detailed information on 
the simulation of experimental data is presented in Addi-
tional file 1: Note S7.

Figure 6 shows the statistics of a total of 500 of these 
simulations with three iterations of the NC, and com-
pares the performance of four numerical experiment 
selection methods: ensemble spread using KM-SUB 
(blue), ensemble spread using the KM/SM-hybrid 
approach (orange), random selection (green), and total 
sensitivities with respect to KM-SUB parameters (red, 
Additional file 1: Note S8). Figure 6A shows the decreas-
ing number of accepted fits in the fit ensemble. The 
median numbers of remaining fits after each of the three 
iterations are (82.5, 43, 38) for the KM-SUB ensemble 
spread, (82.5, 45.5, 40) for the KM/SM-hybrid ensemble 
spread, (435, 373, 320.5) for the random selection, and 
(182, 172.5, 173.5) for the sensitivity-based experiment 
selection.

Hence, empirically, the NC leads to a signifi-
cantly larger constraint of the fit ensemble compared 
to parameter sensitivity maximization or random 
selection, irrespective of using the full KM or the 
SM-assisted hybrid approach. Additional file  1: Fig-
ures S11–S14 show examples of individual trajectories 
of the NC, i.e., simulations including numerical experi-
ment selection, synthetic experimental data generation, 
and fit filtering. We find that in contrast to constraint 
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potentials maps, sensitivity maps barely change 
throughout the iterations of a simulation, and sug-
gested experiments are usually the grid points closest 
to a persistent sensitivity maximum (Additional file  1: 
Fig. S15). Consequently, only the first sensitivity-guided 
experiment leads to a significant constraint of the fit 
ensemble and, while the performance of the sensitivity-
guided method is better than random selection, it per-
forms worse than the ES-guided method of the NC.

Spinning the idea of Fig. 6 further, we can ask: what are 
the ideal experimental conditions in such a simulation of 
synthetic experiments? We thus perform a “brute-force” 
simulation: we repeat the workflow of simulating labo-
ratory experiments for each simulated truth (cf. Fig.  6), 
but do so for every experimental condition. Instead of 
the full distribution, we report the median number of 
rejected fits and plot the results in similar fashion to the 
constraint potentials into a 2D map (Additional file 1: Fig. 
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S16B). We find that this map is strongly congruent with 
the ES map, showing empirically that the experimental 
conditions associated with the ES maximum are optimal 
to constrain a fit ensemble. We conducted the same anal-
ysis using the PCP metric with similar outcomes, finding 
major similarities between PCP maps and the maps of 
reduction of 5-95-percentile ranges for individual param-
eters in the brute-force simulation, but not to all partial 
sensitivity maps of individual kinetic parameters (Addi-
tional file 1: Fig. S8). Of course, this analysis assumes that 
there are fits in the fit ensemble that resemble the true 
solution, which must be ensured when using the compass 
method by sufficient sampling of the solution space.

Accurate representation of the solution space, espe-
cially in the light of experimental error, is contingent on 
the choice of the acceptance threshold θ . If θ is set too 
low, a correct solution may be discarded due to incom-
patibility with a faulty experimental data set. We select 
a θ in this study so that visual agreement between the 
scatter in experimental data with the spread of the fit 
ensemble is achieved. The selection of an appropriate fil-
ter threshold is important when quantitative statistical 
conclusions ought to be drawn for general uncertainty 
quantification. However, in this context of model opti-
mization or uncertainty minimization through experi-
ments, information is derived by relative comparison of 
different experimental conditions. This makes the choice 
of acceptance thresholds for the initial fit acquisition one 
of practical nature, for example with regards to compu-
tational cost [69]. In approximate Bayesian computation, 
crucial steps like the selection of an acceptance thresh-
old can not be based on general rules, but require testing 
and evaluation of the performances in the investigated 
system [70]. Repeating the calculations based on a fit 
ensemble with an acceptance threshold of θ = 0.021, we 
found no significant changes in the appearance of con-
straint potential maps and in the conditions of suggested 
experiments (Additional file 1: Fig. S17). While absolute 
values of constraint potential metrics naturally increase 
with a wider scatter of the ensemble solutions, we find 
that relative differences between experimental conditions 
and the locations of constraint potential maxima, denot-
ing suggested experiments, persist across a wide range of 
acceptance thresholds.

Application to quantitative structure activity relationship 
(QSAR) model training
Figure  7 shows an exemplary result for quinone struc-
tures based on the template 1,2-naphthoquinone which 
is relevant for atmospheric chemistry and health due to 
its large reduction potential and ability to undergo redox-
cycling. A variety of structures with one or multiple 
hydroxyl groups is present in the QSAR model’s training 

data, visualized through asterisks in the fields of the heat 
map. These structures are naturally associated with low 
ensemble spread values, an indicator for accurate predic-
tions of the QSAR model. Among the newly-generated 
structures, significant differences in the ensemble spread 
are observed. In the presented example, structures with 
a methyl group at position 8, or hydroxyl groups at posi-
tions 3 and 4, lead to overall large ensemble spread values 
of the ensemble predictions. Structures associated with 
a large ensemble spread may have a larger potential to 
improve the accuracy of the QSAR models when added 
to the training data. In basic testing, we find that add-
ing batches of molecules with a high ensemble spread to 
the model training data generally leads to a much larger 
improvement of the model compared to adding mol-
ecules with a low ensemble spread (Additional file  1: 
Fig. S18). However, randomly-chosen batches of mol-
ecules perform nearly as well, which indicates that more 
research is needed to optimize the usage of the NC in 
QSAR applications.

Conclusion
This study demonstrates the application of computational 
models to guide experiment design and prioritization 
based on the anticipated reduction of a model’s solution 
space. The method extrapolates current ensemble solu-
tions to conditions of potential future experiments and 
identifies conditions under which ensemble variance, and 
thus model parametric uncertainty is largest. In compari-
son with random selection and selection of experiments 
associated with maximum sensitivities of kinetic param-
eters, the reduction of fits in the fit ensemble is much 
larger for the numerical compass (NC) guided selection 
of experiments. A disadvantage we find for parameter 
sensitivities is their lack of variation across the fit ensem-
ble, which makes the sensitivity-guided method mostly 
agnostic of prior information from experiments.

In contrast to common DOE methods, our proposed 
statistical approach to experiment design does not 
require the calculation of Fisher information matri-
ces. This can be advantageous when the model does 
not permit automatic differentiation or when the com-
putation of numerical gradients is prohibited by com-
putational cost. Furthermore, the novel method is 
transparent and intuitive: constraints are defined as 
simple statistical criteria and applied to a tangible fit 
ensemble, which approximates the solution space. After 
optimization, the fit ensemble can be used as estimate 
for the remaining uncertainty of the model solution 
[19]. The approach can be easily integrated into exist-
ing modelling workflows using least-squares parameter 
estimation and thus offers a low-level entry to experi-
ment design for researchers from various fields.
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We find that our method returns near-identical 
results irrespective of choice of model (KM and SM), 
fit ensemble (KM and SM fit ensemble) and acceptance 
threshold for fit ensemble acquisition. This shows the 
robustness of the method and gives evidence that the 
properties of the solution space are well-represented by 
fit ensembles in this study.

Furthermore, the method allows for incorporation of 
additional information or can be tailored to objectives 
respective to a specific system, such as chemical kinetic 
regimes, constraints of specific parameters, or con-
straints on a specified target condition. We demonstrate 
this approach by evaluating constraint potentials for indi-
vidual kinetic parameters (parameter constraint poten-
tial; Fig. 5) and by determining optimal experiments for 
the minimization of model uncertainty under the specific 
conditions relevant for atmospheric chemistry (target 
constraint potential; Additional file 1: Fig. S2).

The versatility of the NC is demonstrated through its 
application on uncertainty quantification of a QSAR 
model for the prediction of quinone reduction poten-
tials. In analogy to the conditions of kinetic experi-
ments, molecular structures that are associated with high 
model uncertainty represent potential candidates for 
future model training. This optimization of training data 
through uncertainty quantification may be especially use-
ful in organic chemistry, where large quantities of mole-
cules can be generated for computationally-costly density 
functional theory calculations. In basic tests, we find a 
correlation of the uncertainty of molecules that are added 
to the training data and the resulting QSAR model accu-
racy. However, compared with random selection, only a 
slight improvement in model accuracy is achieved. Thus, 
application of the NC for the optimization of QSAR 
models requires further research and will be the subject 
of future studies.
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The computational effort of the NC can be strongly 
reduced by training a neural network surrogate model 
(SM), with nearly identical results. After consideration 
of the computational effort of SM training, and for the 
system at hand, we observe an acceleration of the evalu-
ation of the NC by a factor of ∼ 5 using a KM/SM-hybrid 
approach, and an acceleration by a factor of ∼7.5 using 
only the SM (Additional file  1: Note S9). While SM for 
multiphase kinetic models have already proven use-
ful in forward modelling applications [33], we here fur-
ther demonstrate their utility in an inverse modelling 
approach.

For the kinetic multi-layer model of aerosol surface and 
bulk chemistry (KM-SUB) and the heterogeneous ozo-
nolysis of oleic acid, the NC suggests experiments with 
either very small particles (< 50 nm) or with exception-
ally large particles ( ≈ 100 µ m) and high ozone concen-
trations ( ≈ 1000 ppm) (section  Ensemble spread). The 
first suggestion seems logical: experiments with nano-
sized particles of oleic acid have not been conducted and 
extrapolation to these conditions will be associated with 
model uncertainty. The method predicts that measure-
ments using nano-sized particles would help especially 
to constrain the surface reaction rate coefficient kSLR . The 
second suggestion of the NC may seem counter-intuitive, 
as these large particle—high ozone conditions are far 
away from atmospheric relevance. In fact, these experi-
ments likely offer a constraint on the diffusion coefficient 
of oleic acid, Db,OL , a parameter that is rather unimpor-
tant under typical atmospheric conditions. Note, how-
ever, that the simple model used in this analysis does not 
consider changes in Db,OL upon formation of oxidation 
products.

Overall, this analysis of the oleic acid—ozone reac-
tion system shows that additional experiments meas-
uring the loss of oleic acid under conditions typical for 
the atmosphere will not improve our knowledge of this 
well-studied system any further. More extreme condi-
tions are needed to narrow down the model solution 
space, however, this will not come with an improvement 
of the predictive power of our models for atmospheric 
conditions (other than small nano-particles). Conversely, 
any solution in the fit ensemble obtained in this study 
and in Berkemeier et  al. 2021 [19] should perform well 
under atmospherically-relevant conditions. More knowl-
edge about the system can also be derived by changing 
the experimental observable. For the heterogeneous ozo-
nolysis of alkenes, for example, product analyses have 
recently provided additional constraints for kinetic mod-
els [68, 71]. Extending the NC from experimental con-
ditions to experimental observables will be a subject of 
future studies.
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