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Abstract 

Membrane permeability is an in vitro parameter that represents the apparent permeability (Papp) of a com-
pound, and is a key absorption, distribution, metabolism, and excretion parameter in drug development. Although 
the Caco-2 cell lines are the most used cell lines to measure Papp, other cell lines, such as the Madin-Darby Canine 
Kidney (MDCK), LLC-Pig Kidney 1 (LLC-PK1), and Ralph Russ Canine Kidney (RRCK) cell lines, can also be used to esti-
mate Papp. Therefore, constructing in silico models for Papp estimation using the MDCK, LLC-PK1, and RRCK cell lines 
requires collecting extensive amounts of in vitro Papp data. An open database offers extensive measurements of vari-
ous compounds covering a vast chemical space; however, concerns were reported on the use of data published 
in open databases without the appropriate accuracy and quality checks. Ensuring the quality of datasets for training 
in silico models is critical because artificial intelligence (AI, including deep learning) was used to develop models 
to predict various pharmacokinetic properties, and data quality affects the performance of these models. Hence, 
careful curation of the collected data is imperative. Herein, we developed a new workflow that supports automatic 
curation of Papp data measured in the MDCK, LLC-PK1, and RRCK cell lines collected from ChEMBL using KNIME. The 
workflow consisted of four main phases. Data were extracted from ChEMBL and filtered to identify the target proto-
cols. A total of 1661 high-quality entries were retained after checking 436 articles. The workflow is freely available, can 
be updated, and has high reusability. Our study provides a novel approach for data quality analysis and accelerates 
the development of helpful in silico models for effective drug discovery. Scientific Contribution: The cost of building 
highly accurate predictive models can be significantly reduced by automating the collection of reliable measurement 
data. Our tool reduces the time and effort required for data collection and will enable researchers to focus on con-
structing high-performance in silico models for other types of analysis. To the best of our knowledge, no such tool 
is available in the literature.
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Introduction
In the drug-discovery industry, the mean cost of R&D 
investments is 13 billion dollars, and new drug entries 
require 10–15  years to reach the market [1, 2]. Despite 
the tremendous efforts of researchers to discover new 
drugs, several drugs that used to be available in the 
market were dropped owing to their low efficacy or 
side effects. Discontinuation causes enormous losses to 
pharmaceutical companies and patients awaiting effec-
tive medicines. Therefore, effective methods to estimate 
pharmacokinetic parameters such as absorption, distri-
bution, metabolism, and excretion (ADME) are required 
to accelerate drug discovery and reduce losses in the early 
stages of drug development.

Many pharmaceutical laboratories have demonstrated 
high-throughput screening (HTS) in the early stages 
and have collected massive in  vitro experimental data 
on various pharmacokinetic parameters, including water 
solubility, metabolic intrinsic clearance, membrane per-
meability, and unbound fraction in the plasma protein. 
Experiments have enabled researchers to obtain vast 
amounts of data that are necessary to estimate compound 
features and select promising compounds over short time 
spans. Membrane permeability is an in  vitro parameter 
that represents the apparent permeability (Papp) of a 
compound. It is one of the most essential ADME parame-
ters since it strongly affects the absorption ratio of a com-
pound and is necessary to determine dosage schedules.

The ADME parameters measured in vitro significantly 
vary, and Papp is affected by various experimental con-
ditions, such as cell species, transporter overexpression, 
compound concentration, penetration direction, pH, 
and inhibitor usage [3]. Caco-2 cell lines generated from 
human colon cells are mainly used to estimate the intes-
tinal absorption of administered compounds, and are 
the most used cell lines to measure Papp [4–6]. In silico 
models were developed to estimate the Papp measured 
in Caco-2 cell lines. Other cell lines, such as the Madin-
Darby Canine Kidney (MDCK), LLC-Pig Kidney 1 (LLC-
PK1), and Ralph Russ Canine Kidney (RRCK) cell lines, 
were also used to measure Papp. MDCK is derived from 
the canine kidney and does not express human trans-
porters (such as multi-drug resistance 1 (MDR-1)) [7, 
8]. Therefore, the MDCK cell lines were used to quanti-
tatively estimate the efflux ratio of overexpressed human 
MDR1 transporter cells compared with that of wild-type 
MDCK cells. LLC-PK1 is a cell line developed from pig 
kidney and expresses endogenous transporters of non-
human origin [9]. The RRCK cell lines originated from 
the MDCK cell lines. Canine MDR-1 in MDCK inter-
feres with permeability and transporter studies; thus, 
the data obtained from such studies may have low reli-
ability. The cell line was developed from a subpopulation 

of low-efflux cells from MDCKII-WT; thus, this cell line 
is also called the MDCKII-LE (low efflux) cell line [10]. 
RRCK cells are usually used to estimate penetration 
through the blood–brain barrier by using overexpressed 
human MDR-1 transporter cells. One of the merits of 
these cell lines compared with Caco-2 cell lines is their 
short preparation time after seeding. Caco-2 cells require 
approximately 3–4 weeks to prepare; in contrast, MDCK, 
LLC-PK1, and RRCK cells can be prepared within 
4–5  days. The Papp measured in these cell lines can 
effectively estimate membrane permeability. Therefore, 
constructing in silico models to estimate Papp using the 
MDCK, LLC-PK1, and RRCK cell lines is necessary.

Estimating Papp is a critical issue over the last decade 
[3]. In silico methods that enable the application of vari-
ous features from chemical structures alone are required 
to estimate the Papp parameters of new entries. Several 
in silico models to predict Papp measured in the Caco-2 
cell lines were developed [11–20]; however, the models 
constructed to estimate Papp obtained from other cell 
lines are usually referenced to Caco-2 models [11, 16]. 
These models are constructed on artificial intelligence 
(AI) including machine learning using massive datasets, 
and provide new approaches to evaluate the efficacy and 
safety of drug candidates in the early drug discovery stage 
[21].

Collecting large amounts of in vitro Papp experimental 
data to construct in silico models is extremely important. 
Several laboratories such as bio-ventures and academic 
laboratories have difficulty in collecting sufficient meas-
urements for model construction since HTS requires 
actual compounds, experimental instruments, and con-
siderable time and costs. Furthermore, compounds 
measured in one laboratory are likely to have similar 
substructures since these compounds are generally meas-
ured in the same project (the same laboratory). Develop-
ing models to predict drug properties using compounds 
with similar chemical spaces is practical. However, these 
models may encounter difficulties in predicting the prop-
erties of compounds in different chemical spaces. Gener-
ally, in silico models are used in the early stages of drug 
discovery to predict the characteristics of new entries in 
a vast chemical space. Therefore, a collection of various 
compounds is necessary to construct high-precision and 
versatile in silico models.

An open database helps collect massive measurements 
of various compounds covering a vast chemical space. 
The ChEMBL database is a manually curated database 
containing a large amount of bioactivity and pharmacoki-
netic experimental data [22, 23]. The use of this database 
for data collection helps construct in silico models. How-
ever, concerns were reported on the use of data published 
in open databases without checking their accuracy and 



Page 3 of 11Esaki et al. Journal of Cheminformatics           (2024) 16:30  

quality [24]. Furthermore, curation generally incurs con-
siderable cost and time [25]. Tiikkainen et  al. reported 
the error rate of several bioactivity databases, including 
ChEMBL [26], and reported that humans performed data 
checks that occasionally included incorrect data owing to 
human error. Ensuring accuracy when collecting experi-
mental data divided into cell lines is challenging, and the 
presence of miscellaneous data reduces the performance 
of the constructed predictive models [27, 28]. Therefore, 
the data curation of experimental protocols is important 
[29].

Data curation is performed in cheminformatics to 
check compound structures, such as mixtures and tau-
tomers [30, 31]. Manual curation is costly and time 
consuming, and maintaining up-to-date datasets by 
periodically checking the rapidly growing volume of 
publications is difficult. Curation in cheminformatics 
generally focuses on chemical-structure cleaning and 
data standardization; therefore, tools to support their 
procedures were developed to overcome these hurdles 
[31, 32]. The applications of AI have recently progressed 
to data preparation and have contributed to data collec-
tion in materials informatics [33]. However, only curat-
ing chemical structures is insufficient to prepare a dataset 
to predict ADME properties, including Papp. Check-
ing experimental protocols with expert knowledge from 
pharmacokinetics experiments is also necessary because 
such experiments feature various measurement methods 
related to the aim of the study [34]. However, these vari-
ous protocols produce noise during model construction. 
Collecting experimental data measured using unified 
protocols or units is helpful to construct in silico models. 
Careful collection and curation of published data plays 
an essential role in constructing highly accurate in silico 
Papp models divided into cell lines.

Despite the extensive efforts of researchers, manual 
curation may cause inaccurate data collection. Further-
more, informatics and experimental researchers must 
be involved during data curation to check the Papp 
experimental data. We wish to highlight the importance 
of data curation under experimental conditions. This 
study focused on identifying specific issues related to 
data curation and improving their efficiency. We devel-
oped an automatic support tool to curate the Papp data 
measured in the MDCK, LLC-PK1, or RRCK cell lines 
collected from ChEMBL. The entries measured mem-
brane permeability with MDCK, LLC-PK1 or RRCK not 
involving overexpressing cells and apical to basolateral 
direction were retained. The protocols are the most gen-
erally used. The values measured using these protocols 
are useful to estimate the permeability of the compounds. 
KNIME is a workflow platform that visualizes analytical 
processes such as machine learning [35]. It was employed 

to develop a workflow for data curation in this study. 
KNIME was used to curate the chemical structure [32] 
and predict the properties of drugs [36–38], including 
ADME [39, 40] owing to its user-friendly open-source 
platform and customizable module. In our study, experi-
mental ADME data downloaded from ChEMBL were 
imported into KNIME, and descriptions of the experi-
ment were automatically checked at the nodes. The data 
were subsequently exported in the comma-separated val-
ues (CSV) and structure data file (SDF) formats after uni-
fying the experimental units (Additional files 2, 3, 4, 5, 6).

Researchers have pointed out the importance of pro-
viding and sharing reusable protocols to avoid data errors 
and problems experienced by others in the past [41]. The 
main advantages of our tool are as follows: (1) it uses a 
graphical interface that allows all researchers to visualize 
the data curation process; (2) it provides an easy-to-use 
and reproducible protocol for data extraction; (3) it pre-
sents a reusable general pipeline that integrates different 
data curation procedures; and (4) it outlines the steps for 
manual literature curation to confirm the experimental 
findings and can be extended to further refine manual 
curation.

The proposed workflow enabled us to effectively curate 
and collect Papp data measured in the MDCK, LLC-
PK1, and RRCK cell lines. Furthermore, the cell lines in 
KNIME can be modified to obtain Papp data that were 
measured in the Caco-2 cell lines. Researchers can also 
adapt other ADME parameter-modification nodes in the 
workflow. We believe that our workflow can be used to 
collect various Papp data and support the construction of 
highly accurate in silico prediction models to accelerate 
drug discovery.

Results
This section provides general information on the devel-
opment of our workflow (Fig.  1) and the principles 
behind each step. Our workflow consists of four main 
phases: (1) data extraction from ChEMBL, (2) data filtra-
tion, (3) data checking against the original literature, and 
(4) data export. The details of each step are provided in 
the Additional file 1: Figs. S1–S4.

Phase 1. Data extraction from ChEMBL
The ChEMBL SQL dump (ver. 33) was downloaded from 
the ChEMBL website (https:// ftp. ebi. ac. uk/ pub/ datab 
ases/ chembl/ ChEMB Ldb/ relea ses/ chembl_ 33/) [23] and 
imported into KNIME using the SQLite data source con-
nector. Data were collected from seven tables: activities, 
assays, docs, molecule_dictionary, compound_proper-
ties, compound_records, and compound_structure.

Activity data in the activities table were obtained by 
collecting the experimental Papp data and filtering the 

https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/
https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/
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entries using the keyword “standard_type LIKE Papp.” 
Data were filtered using the terms “description LIKE 
%permeability%” to link them outerly to the activities 
table by assay_id (Table  1, Step 1). Information on the 
original articles for each entry (the activity value end-
point) was linked to the docs table in the source infor-
mation. The docs table was extracted to obtain literature 
information in KNIME. The collected entries were linked 
to the connected data (activities and assays) by doc_id 
(Table  1, Step 2). Chembl_id was used to identify the 
compounds collected from the molecule_dictionary 
table. The chembl_id values in molecule_dictionary were 
added to the connected data (activities, assays, and docs) 
using molregno (Table  1, Step 3). Compound proper-
ties, such as molecular weight (MW) and formula, were 
collected to identify compounds with the same experi-
mental values. These properties were obtained from the 
compound_properties table. The obtained properties 
were also inner joined to the connected tables (activities, 
assays, docs, and molecule_dictionary) using molregno 
(Table 1, Step 4). Several molregno entries included mul-
tiple compound names such as synonyms or trade names. 
Therefore, the group-by function was performed for 

molregno in compound_records to obtain a one-to-one 
correspondence between values. The molregno in this 
table and the connected data were used as critical col-
umns to merge the two tables (Table  1, Step 5). Finally, 
the compound_structure table was extracted to obtain 
compound structure information. The molregno values 
in the compound_structure table were used to join the 
columns, and the table was merged into a connected 
table (Table 1, Step 6).

Data extraction from ChEMBL and conversion of the 
table to a usable format were demonstrated using the DB 
Table Selector and DB Reader nodes in KNIME. Each 
step requires a large amount of memory because the DB 
Table Selector accesses the database and collects many 
entries. To avoid high loads, we processed each combina-
tion after completing the previous steps. Following these 
procedures, we collected a total of 16,845 entries. In 
Step 6, one entry whose molecular formula was  Na3O4V 
(activity_id = 19364594) was rejected since it was not 
included in the molecular_structures table.

The workflow is shown in Additional file 1: Fig. S1, and 
details of the collected items and number of entries in 
each table are listed in Additional file 1: Table S1.

Fig. 1 Scheme of the data curation workflow: Each box represents the procedure phase in the Results

Table 1 Summary of entry numbers in a data extraction session.

Table 1 shows the table obtained by combining the previous steps, and Table 2 shows the new table. The join mode in join columns is used in KNIME

Step Table 1 Table 2 Joining columns
(Join mode)

Retained entries

1 Activities Assays assay_id
(Full outer join)

22,689

2 Combined activities and assays Docs doc_id
(Inner join)

22,614

3 Combined activities, assays, and docs Molecule_dictionary molregno
(Inner join)

16,847

4 Combined activities, assays, docs, and molecule_dictionary Compound_property molregno
(Inner join)

16,847

5 Combined activities, assays, docs, molecule_dictionary, and compound_prop-
erties

Compound_records molregno
(Inner join)

16,847

6 Combined activities, assays, docs, molecule_dictionary, compound_properties, 
and compound_records

Compound_structures molregno
(Inner join)

16,845
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Phase 2. Data filtration
The extracted entries were filtered based on the experi-
mental information. The columns used in the table merge 
(doc_id and assay_type) were removed since they were 
not used after the previous procedures.

This phase consists of two steps. First, the entries 
were filtered using the experimental data and protocols. 
The experimental results were necessary to analyze data 
including QSAR. Since, several data points had no exper-
imental values, relations, or units, these entries could 
not be used for the data analysis. Therefore, these entries 
were removed in this first step (the number of retained 
entries is shown in Table 2, Step 1). The Papp measure-
ment data were collected using this workflow. Entries 
unrelated to the Papp measurements (entries with “%” in 
standard_units) were removed (Table 2, Step 2).

The process was separated into the next node and the 
Data Check Phase (Phase 3). Subsequently, the filtered 
and checked entries were merged by reading the original 
articles. Entries in the data check phase were confirmed 
or fixed to obtain the correct information (details of the 
data checks are explained in Phase 3).

The merged table contained three new columns: 
curated_value, curated_unit, and frag (Table  2, Step 3). 
The columns collected in this phase were confirmed, and 
unnecessary columns that were not used for data analysis 
were removed (Table 2, Step 4).

The changes in the entries are summarized in Table 2, 
and the details of this step are shown in Additional file 1: 
Fig. S2.

Phase 3. Data check from original literature
Occasionally, several anomalies were observed in the 
filtered data. For example, unusually large Papp values, 
such as 119,000,000, 96,000,000, and 91,000,000, were 
obtained in some instances. These extremely high val-
ues are potentially incorrect, and the workflow should 
be modified to collect values with units referring to 
the units, and the original literature depending on the 

case. The units of Papp in the entries collected from 
the database also varied as follows: cm  s−1, nm  s−1, cm 
 min−1,  10e−6 cm  s−1, nm/s, and ucm/s (Additional file 1: 
Table  S2). Therefore, unification of these units is essen-
tial for data curation. The unit representing Papp meas-
ured in terms of membrane permeability is generally 
 10−6 cm/sec. A description is also necessary to verify the 
experimental protocol (such as the cell line and penetra-
tion direction) to confirm the correctness of the meas-
urements. Almost all entries contained information on 
the cell line, direction, and transporter overexpression. 
However, ambiguous descriptions of the experimental 
protocols were sometimes included in the results (such 
as “apparent permeability of the compound,” “apparent 
permeability by cell based assay,” and “permeability was 
determined”).

Furthermore, the permeability assays reported two 
protocols for the flow direction of compounds: from 
apical to basolateral and from basolateral to apical. The 
former (from apical to basolateral) is generally used 
for Papp assays and the latter (from basolateral to api-
cal) is used to study the influence of transporters. Many 
entries contained this information in their description, 
but some did not. These data appear to have been gener-
ated from indistinct descriptions in the articles or a lack 
of expert knowledge. The columns assay_organism and 
assay_cell_type helped to determine the experimental 
protocols. Homo sapiens in the assay_organism column 
represents the use of the Caco-2 cell lines in assay_cell_
type. Similarly, Canis lupus indicates the use of MDCK 
cells. However, several entries showed different infor-
mation. For example, some entries with Homo sapiens 
in assay_organism had MDCK in assay_cell_type. These 
data indicate the permeability of MDCK cells overex-
pressing human p-glycoprotein. In this case, the assay_
organism column shows the organism in the assay cell or 
overexpressing transporters. Ambiguous entries are often 
problematic when determining whether they should 
be removed using only the information imported from 
ChEMBL. Therefore, reading the original articles and 
confirming the experimental values, units, and protocols 
is necessary to collect faithful experimental data on Papp 
across the apical to basolateral direction in MDCK, LLC-
PK1, and RRCK cells.

The original articles in the entries obtained during this 
phase were checked. Entries including Papp data meas-
ured in the MDCK, LLC-PK1, and RRCK cell lines were 
identified. Most of the entries included articles with 
only one measurement (Additional file  1: Table  S3). A 
total of 436 articles (the majority of which were from 
ACS. Med. Chem. Lett., J. Med. Chem., and Bioorg. Med. 
Chem. Lett.) were checked, and the experimental meas-
urements, units, and protocols were reviewed. Data 

Table 2 Summary of the results of each process

Step Procedure Retained entries Number 
of 
columns

1 Remove no-value, relation, 
and unit

15,470 28

2 Remove different units 15,433 28

Through Phase (3)

3 Merge curated entries 2486 29

4 Remove columns not used 
for analysis

2486 13
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obtained through ambiguous protocols, data collected 
from basolateral to apical, data using transporter-over-
expressing cells, data measured in the presence of inhibi-
tors, and average data of different directions (average 
of apical to basolateral and basolateral to apical) were 
rejected. The number of entries decreased from 15,433 
to 2486 because most entries that reached Phase 3 were 
Papp data measured in Caco-2 cells (7713 entries in 
15,433) from the assay_cell_type column. Other reasons 
for rejection included measurements using different pro-
tocols (such as permutation measurements from baso-
lateral to apical, different pH values, or overexpressed 
MDR-1) (Table 3, original data is Additional file shared as 
a curated output table). The collected entries were exam-
ined and curated using these procedures. The original 
articles were checked to determine whether the cell lines 
overexpressed MDR1. However, we construct nodes to 
filter whether the entries were measured using required 
protocols and cell lines by description ("not including 
MDR, Pgp or express" and "including like from apical ") 
and assay_cell_type ("MDCK", "LLC-PK1" or "RRCK  or 
MDCKII-LE") for more usability. A new column was 
made (manually_curated for output data) to distinguish 
the manually curated data and filtered data using these 
new nodes.

The retained entries were returned to the node in 
Phase 2 and merged with the original tables. The details 
of Phase 3 are shown in Additional file 1: Fig. S3, and the 
curated article information is also provided in the Sup-
porting Information.

ChEMBL data are updated multiple times each year; 
however, maintaining updated datasets by periodically 
checking them is difficult. Therefore, nodes were pre-
pared to store the checked information from the original 

articles, and a curated memo was generated during this 
phase. Initially, entries that were unchecked were col-
lected and compared with previously checked entries. 
Subsequently, entries requiring checking were outputted 
from the KNIME workflow to check against the original 
data. Finally, the articles in these entries were reviewed 
and the checked results were imported into KNIME and 
merged with the previously checked entries.

Phase 4. Data export
The entries retained through the protocol check and fil-
ters in Phase 3 are helpful for various analyses, including 
similarity analysis and machine learning. Therefore, they 
were exported to formats that could be used by research-
ers. Given the variety of tools available, the CSV and SDF 
formats are convenient. In total, 13 sets of information for 
SDF and 12 sets of information for CSV were considered 
useful: activity_id, pubmed_id, molregno, chembl_id, 
canonical_smiles, molfile (for SDF), full_mw, full_molfor-
mula, standard_relation, curated_value, curated_units, 
curated_cell_line (information on cell lines), and manu-
ally_curated. The output date were attached to the file 
names to confirm the update of these files. The output 
data are available in the Supporting Information, and 
details of this step are shown in Additional file 1: Fig. S4.

Discussion
Distribution of the curated datasets
The numbers of output entries for MDCK, LLC-PK1, 
and RRCK (including LE-MDCKII) were 1,324 (875 
compounds), 422 (341 compounds), and 739 (517 com-
pounds), respectively. Furthermore, manually curated 
output entries for MDCK, LLC-PK1, and RRCK (includ-
ing LE-MDCKII) were 795 (738 compounds), 336 (322 

Table 3 Summary of the reasons for rejecting entries obtained through data curation using the original articles

Several duplicates were obtained

Rejection reason Number 
of unique 
entries

Number of unique 
chembl_id values

Number of 
unique doc_id 
values

Number of unique 
assay_id values

Number of entries of 
autocuration in curated_by 
columns in the assay table

Ambiguous cell lines from the origi-
nal article

350 323 86 97 343

Average of apical to basolateral 
and basolateral to apical velocities

91 91 8 8 91

Different cell lines (such as Caco-2, 
2/4/A1, PAMPA, and Lucifer Yellow 
Permeability)

152 108 24 36 129

From basolateral to apical (in 
description)

372 310 67 88 317

Expressing MDR1 (p-glycoprotein) 
and BCRP

731 667 119 133 596

Different pH (pH 5.5 or 6.5) 4 2 1 2 4

Measurements of efflux ratio 3 3 1 1 0
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compounds), and 530 (515 compounds), respectively. 
The distributions of the MW and ClogP of the unique 
compounds in the manually curated datasets are shown 
in Fig. 2. The plots show few differences in the distribu-
tion of these datasets. The MW and ClogP of the LLC-
PK1 dataset were slightly higher than those of the other 
datasets. The average MW and ClogP of the RRCK data-
set were lower than those of the other datasets (Table 4). 
However, only a few differences were observed between 
the datasets. This finding implies that these measure-
ments may have different projects and targets in these 
datasets. The data contain valuable entries for correlation 
analysis and the construction of predictive models using 
machine learning.

However, the relationships between the compound 
features and Papp values were not clarified (Additional 
file 1: Fig. S5). In the manually curated data, the number 
of unique compounds included in the MDCK and LLC-
PK1 measurements was 1131. The number of unique 
compounds in the LLC-PK1 and RRCK datasets was 709, 
while that in the MDCK and RRCK datasets was 1168. 
The number of compounds included in all curated data-
sets was 1504. Few compounds were included in multiple 
datasets.

Differences between data filtered according to the ChEMBL 
entries and data curated in the original literature
The Papp data were collected using the ChEMBL infor-
mation filter alone, without a literature check, and com-
pared with curated datasets to check the effect of data 
curation.

Initially, the Papp data measured from MDCK cells was 
filtered from the output table by applying the curated_
cell_line = “MDCK” and manually_curated = blank. A 

total of 529 entries were collected using these keywords 
(“filtered MDCK dataset”). Meanwhile, the number 
of manually curated MDCK entries that was collected 
through literature review were 795 (select curated_
cell_line = “MDCK” and manually_curated = “Manually 
Curated” in the output csv file). In the filtered MDCK 
dataset, several incorrect entries of MDCK measure-
ments were observed as follows: “collected using over-
expressed MDR1” and “average of the two different 
direction data” referred to original articles. Entries that 
were not abnormal in the ChEMBL information but con-
tained no information in the original articles were identi-
fied and removed as ambiguous entries. The entries were 
included in the filtered MDCK dataset but were removed 
from the manually curated MDCK dataset (Table  5). 
The entries in Table  5 provide examples of the data. 
In ChEMBL2, the Papp value of activity_id 18947687 
was over five times higher than that that of activity_id 
15456529. The detailed protocols of activity_id 18947687 
(including the cell lines) were not found in the original lit-
erature. The data seemed to be measured using different 

Fig. 2 Distribution of compounds in the curated datasets: The left (a) and right (b) figures show the molecular weight and ClogP of each 
compound measured using three cell lines, respectively. The blue, orange, green bars represent the data of MDCK, LLC-PK1 and RRCK, respectively. 
It is necessary to compare the properties of compounds (especially molecular weight and ClogP) to consider the drug-likeness of compounds

Table 4 Summary of the average compound features in each 
manually curated dataset

MW and logP calculated by RDKit (ClogP) were calculated using unique 
compounds in each dataset

The values in parentheses represent the minimum and maximum values

Feature MDCK LLC-PK1 RRCK

Papp 12.19
(0.00–105.00)

15.43
(0.50–75.20)

11.64
(0.10–53.00)

MW 426.31
(208.26–1001.15)

448.86
(259.35–612.88)

418.88
(216.22–1202.64)

ClogP 3.39
(− 0.49 to 8.50)

3.86
(− 0.54 to 7.35)

2.87
(− 3.61 to 5.56)
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protocols, although we stress that this finding is simply 
our speculation because we found no solid evidence of 
this practice. Thus, merging these two entries for the 
development of predictive models is inappropriate.

Subsequently, the number of filtered LLC-PK1 
entries (curated_cell_line = “LLC-PK1” and manually_
curated = blank in the output csv file) was 86 (“filtered 
LLC-PK1 dataset”). The number of manually curated 
LLC-PK1 entries that was collected through literature 
review was 336 (select curated_cell_line = “LLC-PK1” 
and manually_curated = “Manually Curated” in the out-
put csv file).

Finally, the number of filtered RRCK entries (curated_
cell_line = “RRCK” and manually_curated = blank in 
the output csv file) was 210 (“filtered RRCK dataset”). 
The number of manually curated RRCK entries that 
was collected through literature review was 530 (select 
curated_cell_line = “RRCK” and “LE-MDCK2” and man-
ually_curated = “Manually Curated” in the output csv 
file). The entries in Table 5 provide examples of the data. 
The Papp value of activity_id 18761142 was lower than 

that of activity_id 13941269, and the entry with the lower 
value was removed because of the following reasons. The 
removed entry (activity_id 18,761,142) was measured 
using MDR AB, the details of which were not mentioned 
in the original article. The data show the ratio of MDR 
AB to BA; here, the values appeared to be measured to 
study the efflux effects of the MDR transporter. However, 
the efflux ability value was not collected in our case; thus, 
this entry can reasonably be removed to avoid noise dur-
ing data analysis.

Our workflow enabled us to collect data that were 
similar to those we desired. However, ambiguous and 
improper entries were present in the dataset. Thus, the 
relevant articles must be carefully read, and a work-
flow must be developed to more simplify data curation 
to improve the quality of the dataset. Currently, large 
amounts of time spent reading articles and expert knowl-
edge are required to make sound experimental deci-
sions. Our workflow was helpful to find ambiguous and 
improper data; thus, it can be potentially used to curate 
experimental protocols and collect high-quality datasets.

Table 5 Examples of compounds with retained and removed entries in MDCK and RRCK

The chemical structures were drawn using ChemDraw (ver. 22.2.0: PerkinElmer. Informatics)

Cell line chembl_id Compound activity_id Papp
(10–6 cm/s)

Curation

MDCK CHEMBL2 15,456,529 4.32 Retained

18,947,687 27.62 Removed 
in manually 
check
(not found)

RRCK CHEMBL601719 13,941,269 0.8 Retained

18,761,142 0.28 Removed
(MDR AB)
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Conclusions
We present a new tool to support the collection of 
experimental Papp data from the ChEMBL database for 
drug discovery. The collection of data that satisfies qual-
ity and quantity requirements is essential to construct 
in silico models with high predictive ability. Moreover, 
the collection of large amounts of data from open data-
bases requires considerable research effort and time. 
Although the workflow used ChEMBL data as inputs, it 
is also applicable to open ADME data from any litera-
ture by using document-specific IDs (such as PMID and 
DOI) linked to experimental data points. Data collec-
tion requires careful curation because pharmaceutical 
data (including Papp) may include ambiguous entries 
measured using different cell lines or cells overexpressing 
transporters. Thus, checking and collecting the measured 
data using a single protocol is necessary. Furthermore, 
there were several entries with the unit "nM/s" despite 
"nm/s” in the original articles. The "M" is generally used 
as molar, and using the unit as meter may cause confu-
sion. Checking this unit is critical in this study. Reduc-
ing the effort required for data collection is essential to 
accelerate data collection. Accelerated data collection 
with high-quality measurements enables the construc-
tion of high-performance predictive models. Therefore, 
we constructed a tool that supports data collection and 
curation using the KNIME workflow. The advantage of 
using KNIME is that it is a freely available tool. It can be 
easily used by researchers, such as informatics and non-
informatics scientists. Therefore, our workflow offers 
the possibility of user customization. The modification 
of several nodes allowed our workflow to collect Papp 
measurements from other cell lines (such as Caco-2 and 
PAMPA). It is also helpful for collecting various data to 
support ADME predictions.

The quality of datasets for training in silico models is 
critical because AI (including deep learning) was used 
to develop models to predict various pharmacokinetic 
properties since quality effects the model’s performance 
owing to overfitting and limitations in its range of appli-
cations. Thus, the careful curation of collected data has 
become increasingly important.

The applications of AI have recently progressed to 
include property prediction and dataset preparation. 
The usage of AI may enable easy data curation and could 
advance data collection in the future. However, filtering 
experimental protocols using AI is difficult since the pat-
tern of experimental descriptions varies. Data curation 
requires human resources and an effective combination 
of human efforts and AI. Checking the data quality of 
ChEMBL using a visualizable tool such as the KNIME 
workflow constructed in this study is necessary to maxi-
mize these combined effects.

The workflow developed in this study is available in the 
Supporting Information. Our study provides an opportu-
nity for researchers to analyze data quality and accelerate 
the development of helpful in silico models. Our future 
research will continue to develop curation workflows 
to collect large high-quality ADME datasets and con-
struct high-accuracy models to accelerate effective drug 
discovery.

Methods
Data collection
The Papp experimental data were collected from the 
ChEMBL database (ver. 33) [23], which manually curates 
and stores enormous amounts of experimental data 
related to physicochemistry and pharmacology. The data-
base was downloaded from the website https:// chembl. dl 
[42].

KNIME workflow
KNIME (ver. 5.2) [35] is an open-source data analysis 
software (https:// www. knime. com/) used to develop 
the workflow for Papp data curation. The nodes were 
exploited using the KNIME Analysis Platform and Schro-
dinger Extensions for KNIME.

Feature calculation
The Molecular Weight (MW) and logP (ClogP) of the 
obtained compounds were calculated using RDKit (ver. 
2022.09.5) to compare the distribution of compounds in 
the datasets [43]. RDKit is a cheminformatics tool that 
was used in Python (ver. 3.9.13) with a Jupyter Notebook.
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