
Qian et al. Journal of Cheminformatics           (2024) 16:38  
https://doi.org/10.1186/s13321-024-00827-y

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

A general model for predicting enzyme 
functions based on enzymatic reactions
Wenjia Qian1†, Xiaorui Wang2,3†, Yu Kang1, Peichen Pan1, Tingjun Hou1* and Chang‑Yu Hsieh1* 

Abstract 

Accurate prediction of the enzyme comission (EC) numbers for chemical reactions is essential for the understanding 
and manipulation of enzyme functions, biocatalytic processes and biosynthetic planning. A number of machine lean‑
ring (ML)‑based models have been developed to classify enzymatic reactions, showing great advantages over costly 
and long‑winded experimental verifications. However, the prediction accuracy for most available models trained 
on the records of chemical reactions without specifying the enzymatic catalysts is rather limited. In this study, we 
introduced BEC‑Pred, a BERT‑based multiclassification model, for predicting EC numbers associated with reactions. 
Leveraging transfer learning, our approach achieves precise forecasting across a wide variety of Enzyme Commis‑
sion (EC) numbers solely through analysis of the SMILES sequences of substrates and products. BEC‑Pred model 
outperformed other sequence and graph‑based ML methods, attaining a higher accuracy of 91.6%, surpassing them 
by 5.5%, and exhibiting superior F1 scores with improvements of 6.6% and 6.0%, respectively. The enhanced perfor‑
mance highlights the potential of BEC‑Pred to serve as a reliable foundational tool to accelerate the cutting‑edge 
research in synthetic biology and drug metabolism. Moreover, we discussed a few examples on how BEC‑Pred could 
accurately predict the enzymatic classification for the Novozym 435‑induced hydrolysis and lipase efficient catalytic 
synthesis. We anticipate that BEC‑Pred will have a positive impact on the progression of enzymatic research.

Introduction
Enzymes are macromolecules that are responsible for 
essential chemical reactions in living organisms and 
beyond. In fact, they participate in nearly all metabolic 
activities in a living organism in order to produce energy 

and carry out other life-critical tasks [1, 2], even includ-
ing the regulation of exogenous substances, such as drug 
metabolism [3]. In addition to their indispensable roles in 
sustaining life, with the rapid development of synthetic 
biology, enzymes-catalyzed reactions have also been 
engineered and exploited towards the synthesis of com-
plex molecules that could be highly valuable in biomedi-
cal field and other industries. More specifically, existing 
enzymes can react with newly identified substrates to 
synthesize new products or newly developed enzymes 
can be used to catalyze entirely novel chemical reactions 
to greatly expand the synthesizable regions in the vast 
chemical space. All these impressive developments are 
made possible due to the advancement of biocatalytics, 
cheminformatics, artificial intelligence and other compu-
tational approaches, which have become instrumental in 
desgining novel enzyme-based catalysts and reactions. In 
short, enzyme engineering has profoundly transformed 
many aspects of chemistry, biotechnology and medicine.
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Although the UniProt database encompasses entries 
over 36 million distinct enzymes, more than 99% of them 
lack high-quality annotations for catalytic reactions. 
Despite the existence of numerous methods and plat-
forms for the exploration of enzyme components, iden-
tifying enzymes specific to catalyzing particular reactions 
remains a formidable challenge. To know what kind of 
enzymes can catalyze a particular chemical reaction, it is 
important to accurately identify the enzyme commission 
(EC) number associated with a reaction. In fact, EC num-
bers represent not only a hierarchical classification of 
enzyme-catalyzed chemical reactions but also the identi-
fiers for enzymes or enzyme genes in complete genome 
analyses. This duality of EC numbers makes it possible to 
relate biological information (such as enzymatic genes) to 
chemical reactions in metabolic pathways [4]. EC num-
ber is a four-level hierarchy; for instance, 3.1.1.1. The 
first digit indicates the kind of chemical reactions that 
an enzyme can catalyze, identified as EC 1 through EC 
7. The second and third digits delineate further micro-
scopic details, including the type of chemical bonds, the 
functional groups, and the cofactors involved in a cata-
lytic reaction. The fourth digit encodes the specificity of 
substrates, which provide matching criteria to specific 
enzyme. Therefore, determining the EC number of a 
particular enzyme has enormous implications for under-
standing its function. Regrettably, the EC system lacks 
specified EC numbers for numerous known metabolic 
reactions, as the publication of complete enzyme proper-
ties is a prerequisite for their assignment. In fact, the EC 
numbers for the majority of enzymes in the secondary 
metabolism are unlikely to be obtained, since many reac-
tion steps cannot be fully characterized by conventional 
methods [4]. Given the condition above, it is desirable 
to develop an automatic EC number assignment system 
for enzymatic reactions to quickly and accurately identify 
metabolic reactions and metabolites. Furthermore, this 
system could also provide insights on annotating pro-
tein function, identifying possible catalytic methods for 
unlabeled reactions and thereby connecting the genomic 
library for enzymatic genes with the chemical library of 
metabolic pathways.

Since it is time-consuming, laborious and costly to 
obtain EC numbers required for enzymatic reactions 
by conventional experiments, many machine learning 
(ML) and data-driven approaches have been developed. 
In numerous current models, enzymes are typically 
predicted to correspond to their Enzyme Commission 
(EC) numbers based on various characteristics, includ-
ing amino acid composition, the presence of functional 
domains, pseudo-amino acid composition, and similari-
ties in protein sequences [5–12]. In a recent publication, 
Zhao et  al. introduced a machine learning algorithm 

named CLEAN (Comparative Learning-enabled Enzyme 
Annotation), designed to predict enzyme functions 
from amino acid sequence characterizations. This inno-
vative approach is applicable even for enzymes that 
have hitherto been unexplored or poorly understood 
[13]. Although some of these models based on protein 
sequence representation have achieved extremely high 
prediction accuracy [10], only few ML algorithms tried 
to study enzymatic function from the perspective of 
chemical reactions waiting to be catalyzed. The assign-
ment of Enzyme Commission (EC) numbers to enzy-
matic reactions is an arduous and continual task that 
necessitates the perpetual generation and refinement of 
rules by domain experts. Automating the annotation pro-
cess presents a viable avenue to alleviate the dependence 
on expert curation. Currently, the datasets available for 
annotating enzyme-catalyzed reactions are notably lim-
ited in size, and exhibit a skewed distribution of enzyme 
classes. This paucity and disparity present considerable 
challenges to the effective deployment of data-intensive 
deep learning techniques, which in turn compromises 
the predictive accuracy, particularly for less represented 
enzyme classes. By leveraging the capabilities of deep 
learning, we can address these issues of data insufficiency 
and imbalance, enabling the processing of constrained 
datasets more effectively. Furthermore, the majority of 
current prediction methodologies remain constrained to 
models that are trained exclusively on individual molecu-
lar entities. These models do not extend to the complexi-
ties inherent in reactions, which encompass interactions 
and transformations between molecules.

In 2018, Cai et  al. [3] used ML methods along with 
reaction fingerprints (as the choice of data featuriza-
tion) to construct a multi-classification model to predict 
enzyme reactions catalyzed by hydrolases (EC 3.x.x.x) 
and redox enzymes (EC 1.x.x.x), which achieved excel-
lent predictive performances. However, the model could 
only make EC-level 3 predictions for two (out of seven) 
EC classes, and therefore the application scope of this 
model is rather restricted. In 2022, Watanabe et al. estab-
lished 16 extended enzymatic reaction prediction mod-
els by employing various ML algorithms, including deep 
neural networks (DNN) [14]. However, when employ-
ing solely substrate and product (SP) information for 
predictions, their method exhibited reduced accuracy 
(F1 score = 0.654), and no readily available open-source 
model could be directly applied. One technical challenge 
is the prediction or inference of the underlying biologi-
cal information on enzymes based solely on molecular 
representations of substrates and products. Despite these 
challenges, there is a clear and pressing need to develop 
predictive capabilities that focus on a chemical reaction 
and determine which enzyme family could catalyze the 
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given reaction. This study aims to address these gaps by 
leveraging deep learning to process limited datasets more 
effectively and to extend the prediction methodology to 
encompass the full spectrum of enzymatic reactions.

Recently, a very popular deep learning (DL) model 
Transformer and its derivatives have been widely adopted 
for application in chemistry with very impressive results 
(especially, in the field of organic chemistry such as the 
synthesis planning). However, due to data scarcity, Trans-
former has never been adopted for EC classification, as 
it is challenging to directly train such a large and com-
plex model based on the limited enzyme reaction data. 
One way to get around the obstacle of limited data is to 
exploit additional data in a related domain via transfer 
learning. Generally, it could be very beneficial when an 
appropriate dataset is selected for pre-training, as a DL 
model can capture a broad knowledge base that prepares 
the model for the downstream tasks. More precisely, in 
this study, we consider a large dataset comprising generic 
(but mainly organic) reactions for training a Transformer 
model. As to be explained later, the model succssefully 
picks up rules of chemical reactions (highly relevant to 
enzymatic reactions) in an unsupervised manner [15], 
and establishes a new state-of-the-art performances on 
the classification of EC numbers for chemical reactions 
[3, 4, 14].

Our newly proposed protocol for preparing a learnable 
representation from Transformer (BERT)-based EC pre-
diction model named BEC-Pred for predicting enzyme 
classification, holding a noticeable advantage over all 
previous methods [15, 16]. On this basis, the reaction 
fingerprints generated by our model allowed us to map 
enzymatic reactions into chemical space and to visual-
ize (using TMAPs [17]) a complete clustering of these 
embedded reactions, providing additional insight into 
the underlying chemistry of these systems. In the pre-
sent study, we conducted a comparative analysis of our 
proposed model against other widely used classification 
approaches for chemical reactions. To this end, we put 
forth three distinct classification methodologies, namely 
K-Nearest Neighbor (KNN), Random Forest (RF), and 
Multi-Layer Perceptron (MLP), all of which were cen-
tered on the reaction difference fingerprints. In addition, 
we developed dedicated KNN and MLP classifiers that 
were based on drfp fingerprints [18], as well as a Graph 
Neural Network (GNN) classifier [19] that leveraged 
reaction graphs. All classification models were trained 
and assessed on the identical dataset, thus facilitating an 
equitable and thorough comparison of our model against 
its counterparts. Ultimately, our model’s performance 
could be measured against that of other classifiers with 
enhanced precision and validity. Furthermore, to validate 
the accuracy and reliability of the BEC-Pred model, we 

performed extensive computational experiments by chal-
lenging the model to annotate the EC numbers for a data-
set of uncharacterized reactions catalyzed by lipase and 
hydrolase that were additionally collected from literature, 
followed by validation analysis. BEC-Pred performed well 
in each of these tasks and provided accurate prediction 
of both Novozym 435 induced hydrolysis of BuDLa and 
BuLLa substrates and lipase-catalyzed single-step syn-
thesis of 4-OI. These evidences indicated that BEC-Pred 
was able to directly mark the enzymatic reactions verified 
by in vitro experiments with excellent prediction perfor-
mance. In summary, this model integrates multifaceted 
data related to the substrates and products of biocata-
lytic reactions, enabling it to predict enzyme-catalyzed 
reactions of all categories with optimal accuracy among 
various machine learning methods. It also holds potential 
as an enzyme allocation module for enzyme-catalyzed 
biosynthesis planning algorithms [20]. Additionally, we 
have created reaction fingerprints from the learned rep-
resentations, transforming sequences of enzyme-cata-
lyzed reactions into vectors. Notably, BEC-Pred excels 
in predicting completely novel reactions not previously 
encountered in the dataset and shows promise in identi-
fying diverse potential catalytic enzymes for biocatalytic 
organic reactions. This advancement positions our model 
as an invaluable tool for chemists and biologists, facilitat-
ing the systematic exploration of the enzymatic reaction 
landscape.

Methods
Datasets
We used a labelled set of chemical reactions to train the 
Transformer-based deep learning model [16]. Particu-
larly, Probst et  al. curated a data set, named ECREACT 
[21]. By combining the data of BRENDA, PathBank, 
Rhea and MetaNetX [22–25], enzyme-catalyzed reaction 
records were screened and sorted, and the correspond-
ing EC number of each reaction was determined. Further 
processing of this dataset was carried out by eliminating 
products that occur as reactants in the same reaction, the 
removal of known co-enzymes, common by-products, 
the reaction with more than one product or no reactants 
(missing data) and so on [21]. Following this, for further 
preprocessing, the ECREACT dataset was first separated 
into two parts: the ’substrate-product’ reaction parts in 
SMILES (Simplified Molecular Input Line Entry System) 
format and the EC number tags. We then refined the 
dataset by removing reactions that only had EC-level 1 
classification. To better organize the data, we labeled the 
EC numbers associated with the reaction SMILES from 
EC-level 3, resulting in a total of 308 labels. The final 
dataset contains 56,512 enzymatic reactions with 308 EC 
sub-subclass labels. The final dataset was split five times 
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using different random seeds, adhering to an 8:1:1 ratio 
for creating separate training, validation, and test sets. It 
is critical to note that all models developed in this study 
shared the same dataset splits for training, validation, and 
testing, ensuring uniformity and comparability across the 
constructed models.

The chemical reaction dataset USPTO used for pre-
training model was made available by Lowe et  al. [26]. 
The data consisted of 1.1 million reactions derived from 
the US patent reactions. A careful verification of the data 
sets showed that the overlap between the USPTO and 
ECREACT was only 0.00015%, and that the reaction class 
labels between the two datasets had different meanings, 
so concerns about potential data leakage during the sub-
sequent fine-tuning phase of model training were almost 
negligible.

Transfer learning
One approach to conduct transfer learning is to leverage 
a pretrained model that has learned basic representations 
that are relevant for the downstream task. With proper 
pre-training, a model can more easily focus on fine-
grained details pertaining to the downstream task during 
the fine-tuned stage. Transfer learning has been success-
fully applied to a wide range of computer vision tasks, 
such as image classification and multilingual text classi-
fication [27–29]. This popular deep-learning technique 
has also been attempted in the field of organic chemistry, 
particularly in the field of synthesis planning and reaction 
classification [15, 30]. In this project, since the amount 
of experimental data on enzymatic reactions is not suf-
ficient to train a sophisticated BERT model from scratch, 
we adopted the USPTO dataset, which comprises over 
1.1 million organic chemical reactions, for pre-training 
the model weights. The USPTO dataset, rich in diverse 
organic reactions, serves as an ideal foundation for the 
model to learn a broad spectrum of chemical knowledge 
and SMILES syntax. This pre-training process enables 
the model to establish a robust baseline understanding of 
chemical reactions, which is essential for interpreting the 
more specialized data of enzyme-catalyzed reactions.

Subsequently, the model undergoes fine-tuning on 
the ECREACT dataset, a curated collection of enzyme-
catalyzed reactions. This fine-tuning phase is critical as 
it adjusts the model’s learned representations from the 
USPTO dataset to the specific nuances and complexi-
ties of enzymatic reactions. By applying the knowledge 
gained from the USPTO dataset to the ECREACT data-
set, the model learns to discern the unique characteris-
tics of enzyme-catalyzed reactions. This transfer learning 
strategy not only compensates for the scarcity of enzy-
matic reaction data but also equips the model with the 
capability to generalize across a wide range of reaction 

types, thus handling the diversity and complexity inher-
ent in enzyme-catalyzed reactions more effectively.

Model architecture and baseline methods
In this paper, we pre-train BERT model based on mask 
language model on 1.1 million USPTO organic chemi-
cal reactions, and the specific structure of the model is 
shown in Fig.  1b. Pretraining the model with organic 
reaction data facilitates the acquisition of chemical reac-
tion rules, which are also applicable to enzymatic reac-
tions. Subsequently, fine-tuning the pre-trained BERT 
model with an enzymatic reaction dataset ECREACT 
enables it to discern the finer nuances inherent in the 
reaction rules specific to enzymes. Our BERT model was 
built on the Huggingface Transformers [16]. The objec-
tive of the model in masked language modelling was to 
predict individual tokens of the input sequences that 
were masked with a probability of 0.15. Similarly to BERT 
training, SMILE sequence was preceded by a specific 
category token [CLS]. In contrast to conventional BERT 
pre-training methodologies, our approach omits the Next 
Sentence Prediction (NSP) task. Additionally, we have 
further refined the pre-trained model by integrating a 
classifier head to facilitate multi-class enzymatic reaction 
classification. The [CLS] token embedding was used as an 
input to the classifier head. The output of the model was a 
probability value indicating the likelihood of each sample 
belonging to a certain category label. For fine-tuning, we 
employed the Adam optimizer for the last output layer 
and preserved the weight of the pre-trained model to 
augment its classification abilities. The fine-tuned model, 
with a classifier header added to the original BERT struc-
ture, was designed to classify non-masked [CLS] tokens. 
Key hyperparameters for our BERT model included a 
hidden size and intermediate size of 512, attention heads 
set to 4, and a learning rate of 1× 10−5 , while the rest of 
the parameters were maintained as suggested in ref. [31]. 
We maintained the maximum sequence length at 512 
tokens and conducted the fine-tuning over 50 epochs.

In order to conduct a thorough and comprehensive 
comparison of the proposed BERT model with other 
established methods, we have referred to the previous 
work by Watanabe et  al. [14]. More specifically, to ena-
ble an equitable comparison, we used the same enzy-
matic reaction dataset as the baseline for all the models. 
We then trained K-Nearest Neighbor (KNN) classifier, 
Random Forest (RF) classifier, and a 4-layer deep neural 
network (DNN) classification model based on chemi-
cal reaction differential fingerprinting. By taking this 
approach, we were able to ensure that our results could 
be fairly and directly compared to other methods.

Additionally, we evaluated KNN and 4-layer DNN 
classifiers on the differential reaction fingerprint DRFP 
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Fig. 1 Overview of model design and BERT‑based classifier architecture. a The figure illustrates the step‑by‑step process of the model design 
pipeline. It involves a two‑phase approach starting with pretraining, followed by fine‑tuning on downstream tasks. b The overall architecture 
of the BERT classifier. The Bert model with multiple stacks of self‑attention layers, each of which comprises several attention heads. The model 
was utilized for a chemical reaction classification task through a classifier head. Additionally, the encoding of the [CLS] token serves as the reaction 
learnable fingerprint
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[18]. The DRFP algorithm operates by taking a reaction 
SMILES as input and generating a binary fingerprint. This 
fingerprint is derived from the symmetric difference of 
two sets, each composed of circular molecular n-grams. 
These n-grams are extracted from the molecules posi-
tioned on the left and right sides of the reaction arrow, 
without the need to differentiate between reactants and 
reagents. Recent studies have demonstrated that DRFP 
provides state-of-the-art reaction representations, exem-
plified by reaction yield predictions. It performs compa-
rably to, if not better than, DFT-derived descriptors or 
transformer-based methods in yield prediction tasks for 
organic reactions [18]. The results indicate that DRFP 
molecular fingerprints outperform other structure-based 
fingerprints in reaction classification. Consequently, we 
employed DRFP to characterize enzyme-catalyzed reac-
tions and utilized various methods for classification 
prediction.

Moreover, we conducted an investigation into a clas-
sification method that utilizes molecular graph rep-
resentations [19]. These reaction graphs, detailed 
representations of molecules, include key structural and 
compositional characteristics. They serve as inputs for 
a graph convolutional network (GCN), which is specifi-
cally designed for the task of reaction classification. This 
method involves converting molecular structures into 
graph formats, where atoms are represented as nodes, 
each encoded with distinct features like atomic symbol, 
formal charge, and hybridization state. Bonds, depicted 
as edges, connect these nodes and are characterized by 
bond types, such as single, double, or aromatic. Subse-
quently, the GCN processes these graphs, using con-
volutional layers to update and aggregate the feature 
representations of atoms to generate a molecular-level 
representation. After obtaining the molecular-level rep-
resentation, the representation of the chemical reac-
tion is derived by calculating the difference between the 
graph representations of the reaction’s products and sub-
strates. This overall reaction representation is then used 
for the reaction classification task. This approach has 
demonstrated significant potential to advance the field of 
chemical reaction prediction research in recent years by 
yielding more accurate models [32–36]. These alternative 
models were selected to provide a broad range of com-
parative approaches against our proposed BERT model. 
This allowed us to achieve a thorough and meaningful 
assessment of our model’s efficacy and to make informed 
conclusions regarding its performance relative to its 
counterparts.

TMAP
TMAP [17] is an efficient way to reduce the size of the 
dataset. Relative to other dimension reducing methods, 

TMAP has the merit of having two-dimensional tree like 
output, which retains the local and global structures at 
the same time. This method includes four steps: (1) LSH 
Forest-based indexing; (2) generating k nearest-neighbor 
maps; (3) applying Kurskal’s algorithm to compute mini-
mal spanning tree; and (4) building a tree. The resulting 
layout is then shown with the Faerun [37] Interactive 
Data Visualization Framework. TMAP [17] and Faerun 
[37] were initially designed for visualization of big mol-
ecules, but they have proven useful for many other types 
of data. In this section, we use a custom edition of Smith 
Drawer, which is expanded to enable the presentation of 
chemistry.

Assessment metrics
In order to compare the results with the CEN, we have 
computed the confusion entropy as shown below.

where TP, TN, FP, and FN denote true positives, true neg-
atives, false positives, and false negatives, respectively. TP 
and TN represent the number of samples that were cor-
rectly classified as positive and negative, respectively.

All of the above indicators are used to evaluate the 
performance of any of the classifiers mentioned in 
this study. Accuracy, Matthews correlation coefficient 
(MCC) and F1-score are the more important indicators 
[38]. Accuracy is used to measure the performance of 
the model, but due to the imbalance in the classification 
of enzymes in the data set used for training, the results 
will be biased in terms of accuracy. The Matthews 

(1)ACC =
TP+ TN

TP+ FN+ TN+ FP

(2)MCC =
TP× TN− FP× FN

√
(TN+ FN)× (TN+ FP)× (TP+ FN)× (TP+ FP)

(3)Precisioni =
TPi

TPi + FPi

(4)Precisionweighted =
∑L

i=1(precisioni × ωi)

|L|

(5)Recalli =
TPi

TPi + FNi

(6)Recallweighted =
∑L

i=1(Recalli × ωi)

|L|

(7)

F1weighted =
2× Precisionweighted × Recallweighted

Precisionweighted + Recallweighted
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correlation coefficient is also known as balanced accu-
racy, and it is also used as a performance measure for 
classification problems when the data set shows class 
imbalance. The F1 Score, as the harmonic mean of 
accuracy rate and recall rate, presents a holistic view 
that accounts for both precision and recall in a clas-
sification model. Acknowledging the dataset’s imbal-
ance, we calculate a weighted F1-score. This nuanced 
approach addresses the limitations of the macro 
F1-score by incorporating considerations for sample 
imbalances. In the computation of Precision and Recall, 
each category’s values are multiplied by the proportion 
of that category in the total sample, providing a more 
nuanced understanding of model performance across 
different classes. Additional metrics such as accuracy 
and recall rate are also presented for readers’ reference, 
offering a comprehensive evaluation framework.

Results and discussion
Dataset description
The distribution of available data reveals a heavy imbal-
ance in the distribution of enzyme-catalyzed reaction 
examples. At the EC-level 1, corresponding to enzyme 
classes, transferases (EC 2.x.x.x) represent 53% of the 
total entries, followed by oxidoreductases (EC 1.x.x.x) 
with 25%, hydrolases (EC 3.x.x.x) with 11%, lyases (EC 
4.x.x.x) with 6%, the combined content of isomerases (EC 
5.x.x.x), ligases (EC 6.x.x.x) and translocases (EC 7.x.x.x) 
with less than 5%. Among transferases, the most com-
mon subclasses at EC-level 2 are transferases transfer-
ring phosphorus-containing groups (EC 2.7.x.x) at 25%, 
and the details of the major subclasses included under 
the remaining EC classes are also shown in Fig. 2. Trans-
ferase-catalyzed reactions encompass few subclasses at 
EC-level 3 with large sample size, whereas oxidoreduc-
tase- and hydrolase-catalyzed reactions are divided into 

Fig. 2 The distribution of samples at EC‑levels 1 (corresponding to enzyme classes) and 2 (corresponding to enzyme sub‑classes) 
for oxidoreductases (class 1), transferases (class 2), hydrolases (class 3), lyases (class 4), isomerases (class 5), ligases (class 6) and translocases (class 7), 
in the ECREACT dataset
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many subclasses with small sample size at EC-level 3. 
Lyases, isomerases, ligases, and translocases are split into 
fewer subclasses at EC-level 3, but most of them contain 
very few samples. Thus, to ensure a proper evaluation of 
data-driven models, the assessment of their performance 
must take into account the different populations of each 
subclass at EC-level 3. Furthermore, considering the 
sparse data in EC-level 4 classification presents a formi-
dable challenge, as this level demands precise categoriza-
tion of enzymatic reactions. The EC-level 4 classification 
necessitates comprehensive information regarding the 
chemical reactions enzymes catalyze, which are often 
highly diverse and complex. Sparse data complicates 
accurate classification of these reactions due to insuf-
ficient examples that encapsulate the entire spectrum 
of variability within each category. Consequently, our 
study focuses on predicting the first three digits of the EC 
number (EC sub-subclass). We organized the EC num-
bers associated with the reaction SMILES from EC-level 
3, labeled them accordingly, and identified a total of 308 
labels.

Reaction classification
In this study, the ground truth data comprises chemi-
cal transformations presented in SMILES text format. 
To explore the expressive capabilities of reaction string 
embedding, we leveraged the BERT-based [31] model, 
initially pretrained on the USPTO dataset of chemical 
reactions [26].

To gauge the reliability of our model and compare it to 
the other baseline models, we used the metrics of accu-
racy, overall Matthews Correlation Coefficient (MCC), 
and Macro F1 Score, all of which are defined in terms 
of true positive (TP), true negative (TN), false negative 
(FN), and false positive (FP).

The results of enzyme catalyzed reactions dataset can 
be seen in Table  1. Experiments show that the method 
proposed in this paper can classify various categories 
with high accuracy.

At the 1st-level, the Bert classifier model for enzymatic 
reactions demonstrated an accuracy of 96.2% on the 
ECREACT test set, with the overall Matthews correla-
tion coefficient (MCC) at 94.5% and a weighted F1-score 
of 96.3%. At the 3rd-level, the classification model 

continued to show robust performance with an accu-
racy of 91.6%, an MCC of 90.7%, and a macro F1-score of 
91.3% on the test set.

Additionally, our model predicted EC-level 3 tokens for 
seven classes of enzymes, as shown in Fig. 3b. The analy-
sis of the model demonstrated an excellent performance 
of transferase-catalyzed reactions (class 2), achieving a 
99% accuracy. However, the accuracy of its predictions 
for oxidative reductases (class 1) is relatively low due to 
the presence of numerous EC-level 3 subclasses. Each 
subclass, recorded in the database, comprises only a small 
sample size, resulting in a higher diversity of substrates 
and products compared to other classes. Notably, the 
prediction of enzymes (EC number) exhibited the lowest 
accuracy when predicting translocases. This discrepancy 
can be attributed to the imbalance in the training data.

This result confirms that although the model can distin-
guish between different categories of enzyme-catalyzed 
reactions based on the given dataset, it fails to achieve 
satisfactory prediction accuracy in specific categories 
due to insufficient training data. The distribution of data 
shows a significant imbalance in the substrate-product 
samples. In EC-level 3, a few subcategories of trans-
ferase reactions (EC Class 2) have a large sample size. 
Conversely, reactions catalyzed by oxidoreductases (EC 
Class 1) and hydrolases (EC Class 3) are classified into 
numerous sub-subclasses. Many of these sub-subclasses 
comprise a limited number of samples, posing challenges 
for comprehensive analysis and accurate prediction. 
The observed lower overall accuracy in isomerases (EC 
Class 5) primarily results from their unique function of 
catalyzing intramolecular modifications. These modifica-
tions might be mistakenly predicted as being catalyzed 
by other enzymes if they were to occur intermolecularly. 
Additionally, the wide variety of these reactions further 
complicates their classification. On the other hand, reac-
tions catalyzed by lyases (EC Class 4), ligases (EC Class 
6) constitute a smaller proportion in EC-level 3 classifica-
tion, although most of these subcategories contain only a 
few samples. Therefore, it is crucial to consider the varied 
populations within each sub-subclass and the diversity of 
reactions within a single class when assessing sub-sub-
classes at EC-level 3, to ensure accurate and appropriate 
evaluation.

Comparison with other benchmark methods
To evaluate the performance of our proposed model in 
comparison to the current leading solutions in machine 
learning-based chemical reaction prediction, we con-
structed six additional models for benchmarking. These 
included three models based on reaction differential fin-
gerprint, two models based on drfp fingerprint embed-
ding, and one gnn classification model. When compared 

Table 1 Predicted results at different EC‑levels on the ECREACT 
test set

Data ACC MCC F1-score

Level 1 0.962± 0.003 0.945± 0.004 0.963± 0.003

Level 2 0.934± 0.003 0.928± 0.003 0.933± 0.003

Level 3 0.916± 0.003 0.907± 0.003 0.913± 0.004
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to our model using the identical test set, this study 
observed that BEC-Pred model achieved the highest 
accuracy, MCC, and F1 score among the models utilizing 
enzyme reaction embedding.

Table 2 provides a profound comparison between BEC-
Pred and other traditional classification methods such 
as KNN, RF, MLP, and GNN. BEC-Pred is a Bert model 
that has been pretrained extensively on the USPTO reac-
tion dataset and fine-tuned according to specific tasks. It 

boasts the highest accuracy in the validation set, at 0.916, 
with a Matthews correlation coefficient (MCC) of 0.907 
and an F1 score of 0.913. These results are significantly 
superior to other models, including KNN-morgan2, 
RF-morgan2, MLP-morgan2, KNN-drfp, MLP-drfp, 
and Graph Convolutional Network (GCN). Models like 
KNN-morgan2 and MLP-morgan2 also exhibit good 
accuracy and F1 scores, but BEC-Pred still outperforms 
them. The RF-morgan2 model has the lowest F1 score of 
0.739, indicating the lowest precision and recall among 
all models. Overall, our BEC-Pred model surpasses all 
other models in terms of accuracy, MCC, and F1 scores, 
making it the best choice for the given task. This pre-
trained Bert-based model demonstrates the powerful 
capabilities of transformer architecture by leveraging 
their ability to capture deep contextual relationships 
within data, a significant advancement beyond the capa-
bilities of models like KNN, RF, MLP, and GNN. While 
these traditional models are useful, they cannot match 
the complex pattern recognition and feature extraction 
abilities of BEC-Pred. Particularly, BEC-Pred’s advanced 
understanding of sequences and context greatly enhances 
the accuracy of predictions, making it a valuable tool for 
tasks requiring nuanced differentiation. Furthermore, the 

Fig. 3 a The figure illustrates a comparison between BERT classification results with and without pre‑training on USPTO datasets. It is evident 
that the pre‑trained BERT model consistently outperforms the non‑pre‑trained model across all evaluation metrics; b The figure below displays 
the prediction results of BEC‑Pred for 7 categories in the test set. Different colors represent the three evaluation indicators. Remarkably, the bc‑pred 
model achieved the highest accuracy for categories 1, 2, 4 and 6 among all seven categories. Moreover, the model demonstrated moderate 
accuracy for categories 3 and 5, while the category 7 exhibited relatively lower accuracy

Table 2 Comparison of the predictive performance of our BEC‑
Pred model with other machine learning methods at level 3 of 
the EC number

The evaluation criteria used include accuracy, MCC, and F1 scores

Data ACC MCC F1 score

KNN‑morgan2 0.843± 0.005 0.827± 0.005 0.843± 0.005

RF‑morgan2 0.768± 0.003 0.744± 0.005 0.739± 0.005

DNN—morgan2 0.861± 0.005 0.847± 0.005 0.848± 0.006

KNN‑drfp 0.837± 0.006 0.820± 0.005 0.837± 0.006

DNN‑drfp 0.852± 0.004 0.834± 0.005 0.837± 0.004

GNN 0.861± 0.002 0.847± 0.002 0.854± 0.003

BEC‑Pred (ours) 0.916± 0.003 0.907± 0.003 0.913± 0.004
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model’s pre-training allows it to assimilate a vast array 
of unlabeled data from the USPTO reaction datasets, 
thereby augmenting its generalization capabilities and 
making it exceptionally proficient in fine-tuning across 
varied downstream datasets—an evident superiority over 
traditional machine learning alternatives.

To validate the effectiveness of our pre-training strat-
egy, we conducted a comparative performance analy-
sis by training the BERT model on the ECREACT [21] 
dataset from scratch, using the same parameters as the 
fine-tuned model. The outcomes of this experiment, 
demonstrating the impact of the pre-training approach, 
are presented in Fig.  3a. The results indicate that the 
BERT model, once pre-trained, outperforms its unpre-
trained counterpart with a significant margin in terms 
of classification accuracy. This suggests that the transfer 
learning process effectively internalizes the intrinsic pat-
terns and relationships characteristic of chemical reac-
tions present in the USPTO datasets. Furthermore, it 
demonstrates the model’s capability to efficiently transfer 
the acquired knowledge to subsequent tasks involving 
the classification of reactions.

To demonstrate that the impressive performance of 
BEC-Pred, as summarized in Table  2, indicates its abil-
ity to learn highly relevant chemical rules for EC clas-
sification, we employed the TMAP [17] and Faerun [37] 
visualization library to visualize the reaction fingerprints 
of enzyme-catalyzed reactions embedded in pre-trained 
and unpre-trained models(Fig.  4); each label is denoted 
by a distinct color.

Molecular fingerprinting is a widely used method for 
analyzing molecules with similar structures and chemical 
compositions [39–42]. In our study, the [CLS] token—
consistently unmasked throughout both pre-training 
and fine-tuning phases—serves as a BERT fingerprint, 
embedding a global descriptor of the reaction. This con-
stant engagement allows the model to effectively recover 
any tokens that have been masked within the sequence. 
Specifically, the embedding of the [CLS] token in our 
model is a 512-dimensional vector, aligning with the hid-
den layer size of the standard BERT model.

As depicted in Fig.  4, the rainbow colors and their 
shades represent 308 enzymatic reaction labels, provid-
ing critical insights into the spatial distribution of enzy-
matic reactions at the molecular level and substantiates 
the effective clustering of diverse enzymatic reactions. 
Notably, the reaction clusters within the pre-trained 
model (Fig. 4b) exhibit a tighter association than those in 
the non-pre-trained model (Fig. 4a). Specifically, Fig. 4b 
demonstrates the pre-trained BERT model’s enhanced 
ability to differentiate between hydrolase enzymes (EC 
3.x.x), thereby substantiating the pre-trained model’s 
superior performance in categorizing related reaction 

classes. In Fig.  4b, we also present the detailed view of 
this reaction diagram, demonstrating that through visual 
inspection of the TMAP, reactions catalyzed by the same 
enzyme can be easily identified in proximity to the given 
reaction. This comparison confirms that the fine-tuned 
BEC-Pred model excels in the classification of enzyme-
catalyzed reactions, with generated reaction fingerprints 
capable of distinguishing various chemical compo-
nents and effectively differentiating types of enzymatic 
catalysis.

Use-cases of classification prediction models
To evaluate the efficacy of BEC-Pred in addressing the 
challenges of predicting actual enzyme-catalyzed reac-
tions, we conducted predictive validations for reactions 
catalyzed by lipases and hydrolases. This involved assess-
ing the potential for practical application of the enzyme 
reaction classification prediction model by juxtaposing 
enzyme classification data from actual experiments with 
model predictions. Lipases and hydratases are particu-
larly suited for such research due to their broad sub-
strate spectra, coupled with their high substrate, regio-, 
and enantioselectivity [43, 44]. These enzymes have gar-
nered extensive research interest and data support within 
academic circles. There is a wealth of experimental data 
available, encompassing their catalytic mechanisms, 
structures, and properties, making them ideal subjects 
for investigation.

Lipase (EC 3.1.1.3) is a widely distributed protease 
belonging to the α/β serine hydrolase family, which exists 
in  vivo [45, 46] The important role of natural lipase in 
nature is the hydrolysis of triglyceride (TAG) and the for-
mation of free fatty acid (FFA).

Water molecules are selectively added to their pri-
mary, secondary, or tertiary alcohols in the FFA carbon–
carbon double bond [47]. Hydrase is a highly efficient 
asymmetric catalytic system, which has important appli-
cation value in organic synthesis [47]. Among the current 
hydratases, keto hydratase, catalpa lime hydratase and 
acetylene hydratase are considered to be the most impor-
tant hydratase, which can perform enzyme addition of 
water hydratase and free fatty acids.

Therefore, our model BEC-Pred selected an additional 
set of 24 lipase- and hydratase-catalyzed reactions (not 
included in the training dataset) from BRENDA [25] 
and SABIO-RK [48], another biochemical reaction data-
base, to serve as an external test set for model validation. 
Remarkably, on this extra test set, BEC-Pred achieved a 
prediction accuracy of 83.3% and a Matthew’s Correla-
tion Coefficient (MCC) of 73.5%, underscoring its robust 
predictive capability. Table  3 meticulously outlines both 
sets of successful and unsuccessful predictions, alongside 
their respective ground truths. Successful example 1–9 
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reflect the ability of the model to predict the enzymes 
required for novel enzymatic reactions.

In the unsuccessful example (10), the model failed to 
predict enzymatic reactions to hydrolysis of 2-hydroxy-
succinic acid. The reaction was incorrectly identified as 
one catalyzed by an enzyme classified under EC 1.1.2.x, 

which typically involves the dehydrogenation of alcohols 
and the concomitant transfer of hydrogen ions. The con-
fusion may arise because the hydrolysis of 2-hydroxysuc-
cinic acid, while not directly a dehydrogenation reaction, 
does involve the removal of hydrogen atoms as part 
of the water molecule released. This subtle but critical 

Fig. 4  Response Atlas. Specifically, a and b present visualizations of reaction fingerprints generated by the unpre‑trained and pre‑trained BERT 
models, respectively, using the ECREACT dataset
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Table 3 Predict application instances. For each response, basic facts are shown in black, and predictions that are wrong are shown in 
red

No Rxn SMILES True/predicted

1 3.1.1/3.1.1

2 3.1.1/3.1.1

3 3.1.1/3.1.1

4 3.1.1/3.1.1

5 4.2.1/4.2.1

6 4.2.1/4.2.1

7 4.2.1/4.2.1

8 4.2.1/4.2.1

9 4.2.1/4.2.1

10 4.2.1/1.1.2

11 3.1.1/3.7.1
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distinction between hydrolysis and dehydrogenation 
processes might have led the model to erroneously asso-
ciate the reaction with cytochrome-dependent enzymes 
that operate under the 1.1.2.x classification. Example (11) 
highlighted the prediction of different EC-level 3 tokens 
to catalyze the reaction. Given the ground truth that 
the reaction is catalyzed by the Carboxylic-ester hydro-
lase (3.1.1.x), the prediction suggests that the reaction is 
catalyzed by an in ketonic substance (3.7.1.x). This choice 
likely reflects a potential bias influenced by the uneven 
number of training samples in the two sub-subclasses, 
with 979 reactions categorized under EC 3.1.1 and only 
61 under EC 3.7.1.

Lipase, as a biocatalyte, has shown satisfactory cata-
lytic ability in hydroxyaldehyde condensation, Michael 
addition, Knoevenagel condensation and other reactions. 
It has been reviewed that lipase as a catalyst can induce 
various polycondensation reactions to produce various 
new polyester [49]. Novozym 435 (EC 3.1.1.3), as a bio-
logical catalyst, can induce the hydrolysis of BuDLa and 
BuLLa substrates [50]. In the absence of this enzyme, no 
hydrolysis reaction occurs under similar reaction condi-
tions.This reaction can be successfully predicted as EC 
3.1.1 by our model, with the reaction pathway illustrated 
in Fig. 5.

Monooctyl 4-iconate (4-OI), a cell permeable lipid 
derivative of iconate, has shown great medical poten-
tial in treating multiple sclerosis, tinea leucoides, lupus 
erythematosus and other diseases by means of immune 
regulation. In addition, in the novel coronavirus pneu-
monia and a variety of human pathogenic virus infection 
has shown strong antiviral and anti-inflammatory dual 
effects.

The two-step synthesis route for 4-OI, as previously 
reported, exhibited a high selectivity (94%) and yield 
(95%). However, the synthesis involves significant storage 
costs for the intermediate, Itaconic Anhydride. Addition-
ally, the production of Itaconic Anhydride necessitates 
the use of acidic catalysts and high-temperature con-
ditions, coupled with extensive purification processes. 
These requirements not only increase the potential for 
environmental pollution but also escalate production 

costs. Liu et al. [51] investigated an innovative green syn-
thetic method, efficiently producing 4-OI in a single step. 
This process utilizes lipase (EC 3.1.1.3) catalysis, employ-
ing Itaconic Acid (IA) and Octanol. Their research 
revealed that Novozym 435 (CALB)’s distinctive cav-
ity structure, in conjunction with the solvent shrinkage 
effect, facilitates an almost complete direct conversion 
of IA and Octanol to 4-OI (nearly 100% efficiency). This 
method is in line with green engineering principles, aim-
ing to minimize operational steps and reduce energy con-
sumption. However, the current chemical synthesis route 
of 4-OI has some shortcomings, such as low selectivity, 
low yield, complicated process, serious pollution and 
high price. Liu et  al. [51] explored a new green process 
for the efficient synthesis of 4-OI from iconic acid (IA) 
and octanol in one step catalyzed by lipase (EC 3.1.1.3). 
Different methods for the synthesis route of 4-OI are 
illustrated in Fig.  6. BEC-Pred can successfully predict 
the method that Carboxylic-ester hydrolases (EC 3.1.1) 
can catalyze the one-step synthesis of 4-OI between IA 
and octanol, and BEC-Pred can also successfully predict 
the EC number. This result also demonstrates that BEC-
Pred holds great potential for use in the chemical synthe-
sis industry.

Conclusion
In this study, we developed BEC-Pred, a molecular 
converter-based multi-classification model, for pre-
dicting Enzyme Committee (EC) numbers. Our model 
demonstrates significant improvement in overall pre-
cision compared to other machine learning methods, 
evidenced by an accuracy of 91.6%, MCC of 90.7%, and 
an F1 score of 91.3%. The unique Bert fingerprint gen-
erated by BEC-Pred offers an in-depth characterization 
of enzyme-catalyzed reactions, contributing to a bet-
ter understanding of enzymatic behavior and catalysis. 
This advancement holds promise for innovative appli-
cations in chemical biology, synthetic biology, and drug 
metabolism. To further illustrate the usefulness of BEC-
Pred beyond simple benchmarks, we discussed several 
catalytic examples of lipases and hydrolases as veri-
fied by BEC-Pred model, and successful prediction of 
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Fig. 5 Novozym 435 induced hydrolysis of BuDLa and BuLLa substrates
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Novozym 435-induced hydrolysis of BuDLa and BuLLa 
substrates and lipase-catalyzed single-step synthesis of 
4-OI, which were useful real-wrold cases collected from 
literatures. These examples demonstrated that BEC-
Pred model can retrieve reaction metadata, and provide 
useful assistance in exploring biocataltic processes. The 
latest iteration of BEC-Pred demonstrates significant 
predictive accuracy, yet it faces challenges. The data-
set’s imbalance notably affects the precision in catego-
rizing EC sub-subclasses within enzymatic reactions, 
particularly for those with limited sample representa-
tion. Enhancing the model’s performance necessitates 
not only dataset expansion but also the incorporation 
of more comprehensive experimental data. This would 
substantially improve the model’s predictive prowess. 
Looking ahead, BEC-Pred possesses vast potential for 
wider applications. It has the capability to revolution-
ize enzyme screening for specific reactions, enhance 
enzymatic reaction identification accuracy, assist in 
predicting enzyme functions in less-explored species, 
and provide a vital enzyme allocation function in the 
algorithm for biosynthesis planning. Furthermore, the 
seamless integration of CLEAN and BEC-Pred enables 
the efficient screening of enzymes for specific chemical 
reactions, offering a reliable reference for classifying a 
broader range of unannotated catalytic reactions. Such 

progress could be groundbreaking in enzyme engineer-
ing, drug discovery, and the synthesis of novel bio-
molecules, where a detailed understanding of enzyme 
functions is crucial.
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