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Abstract 

We present a user-friendly molecular generative pipeline called Pocket Crafter, specifically designed to facilitate hit 
finding activity in the drug discovery process. This workflow utilized a three-dimensional (3D) generative modeling 
method Pocket2Mol, for the de novo design of molecules in spatial perspective for the targeted protein structures, 
followed by filters for chemical-physical properties and drug-likeness, structure–activity relationship analysis, and clus-
tering to generate top virtual hit scaffolds. In our WDR5 case study, we acquired a focused set of 2029 compounds 
after a targeted searching within Novartis archived library based on the virtual scaffolds. Subsequently, we experimen-
tally profiled these compounds, resulting in a novel chemical scaffold series that demonstrated activity in biochemical 
and biophysical assays. Pocket Crafter successfully prototyped an effective end-to-end 3D generative chemistry-based 
workflow for the exploration of new chemical scaffolds, which represents a promising approach in early drug discov-
ery for hit identification.

Scientific contribution 

Hit identification is a time-consuming and costly step in drug discovery process. Here we developed a molecule 
generative pipeline called Pocket Crafter that can speed up this process greatly. This workflow utilized 3D generative 
modeling method Pocket2Mol for the de novo design of molecules in spatial perspective for the target and applies 
filters for chemical-physical properties and drug-likeness to generate top virtual hits with further structure–activity 
relationship analysis and clustering to output a focused set of hit compounds, which led to the success of hit finding 
as it showed in our demo case.
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Introduction
Hit identification is an essential and challenging step in 
the drug discovery process due to limited understanding 
of disease biology or target complexity, as well as the con-
straints of screening assays [1]. High-throughput screen-
ing for hit compound identification, can be both costly 
and time-consuming [1], which limits the number of the 
potential targets that can be screened and the diversity of 
hit chemicals for each target. To address these challenges 
and expedite the drug development process, innovative 
computational tools are being extensively employed [2, 
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3]. While traditional structure-based virtual screening 
plays a vital role in identifying diverse hits through dis-
criminative models, there is still considerable room for 
improvement in terms of hit rate and chemotype diver-
sity in the early hit discovery stage [4].

Generative models offer a distinct approach by learn-
ing to represent and optimize molecules in a continuous 
latent space [5, 6]. They have proven to be highly effec-
tive in generating one-dimensional (1D) molecules with 
SMILES (Simplified molecular-input line-entry system) 
representations [7, 8] and two-dimensional (2D) mol-
ecules with molecular graphs representations [9]. This 
advancement holds the potential to accelerate the hit dis-
covery process and minimize the requirement for evalu-
ating hundreds of thousands of candidate compounds 
virtually [10, 11]. In instances where protein structures 
haven’t been reported, or the potential binding pockets 
are not determined, 1D and 2D methods can significantly 
enhance the ligand-based generation approaches. This is 
particularly beneficial if there are available hit molecules. 
These techniques effectively design molecules based on 
their ligand characteristics, without explicit informa-
tion on the protein pocket structure. Moreover, these 
methods can provide accurate results if they are sup-
ported by high-quality assay data. They have proven to 
be useful for de novo design during later stages of drug 
design, in addition to their broad use in the early stages. 
However, 2D generative models have limitations in rep-
resenting molecular structures and generating chemical 
diversity. These models are based on linear sequences of 
atoms and bonds, which restricts their ability to capture 
structural features such as stereochemistry and confor-
mational flexibility. Additionally, they often rely on pre-
defined templates, leading to the generation of similar 
molecules with limited novelty. To adequately capture 
the complexity of the target pocket, more advanced mod-
eling approaches, such as three-dimensional (3D) gen-
erative models, are necessary to address these challenges 
in drug discovery. 3D methods are more tailored for 
structure-based approaches when the protein structures 
and binding pockets are already known, which can gen-
erate de novo molecules with explicit three-dimensional 
coordinates based on the information of protein pocket 
structure.

Significant progress has been made in the field of 3D 
generative models, including variational autoencod-
ers (VAE) [12, 13], convolution neural network (CNN) 
[14], generative adversarial network (GAN) [15, 16], 
and graph neural network (GNN) [17]. These advances 
have enabled the development of deep learning models 
capable of directly generating de novo molecules in the 
3D space. Among these approaches, Pocket2Mol has 
emerged as a noteworthy innovation, enhancing both 

efficiency and molecule quality compared to previous 
structure-based drug design models [18]. More specifi-
cally, Pocket2Mol is a novel E(3)-equivariant generative 
neural network that has been pretrained on the Cross-
Dock dataset. It effectively captures spatial and bond-
ing relationships between atoms within the binding 
pockets. The conditional molecular sampling algorithm 
employed by Pocket2Mol demonstrates efficiency in 
characterizing novel position generation strategies and 
accurately predicting element types without relying on 
MCMC (Markov chain Monte Carlo) [19]. Importantly, 
molecules sampled from Pocket2Mol exhibit signifi-
cantly improved binding affinity as validated through 
experimental evaluations [18].

Antagonism of protein–protein interactions (PPIs) 
with small molecules is increasingly considered as a 
viable therapeutic strategy [20, 21]. Successful PPI 
inhibitors tend to target proteins that possess deep 
partner-binding pockets rather than the flat protein 
interacting surfaces. The WD40 repeat (WDR) domain-
containing proteins comprise one of the most abundant 
PPI domains in the human proteome, playing crucial 
roles in various cellular processes, including numerous 
disease-associated mechanisms [22, 23]. Despite lack-
ing clinical validation, WDR5, a novel target with cau-
tious optimism for the treatment of leukemia and other 
cancer types, has garnered significant attention [24]. 
Multiple efforts have been undertaken to discover bind-
ers for the two distinct peptide-binding pockets present 
on this scaffold protein, the WIN (WDR5-interacting) 
pocket and the WBM (WDR5-binding motif ) pocket 
[25]. The proto-oncogene MYC interacts with WDR5 
on the WBM interface [26, 27], making it a great 
drug target for employing a 3D generative modeling 
approach. The aim is to enable the structural diversity 
of hits, thereby expanding drug discovery efforts for 
MYC through this co-factor [28].

In this study, we developed a hit identification pipeline, 
i.e. Pocket Crafter, that leverages a 3D generative chem-
istry method to generate novel active molecules as early 
hits. We utilized this pipeline to propose hit molecules 
for WDR5 in the 3D space, specifically targeting its WBM 
pocket that interacts with the oncogenic factor MYC. To 
evaluate the potential hits, we conducted in  vitro bio-
logical assays on WDR5 and identified a novel chemical 
series exhibiting clustered activity. This chemical series 
demonstrated the ability to disrupt WDR5-MYC inter-
action in the biochemical assay and acted as binders to 
WDR5 in the biophysical assay. Together with this case 
study, our work represents an end-to-end 3D generative 
chemistry workflow as a viable approach for discover-
ing novel active compounds in the early drug discovery 
phase.
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Materials and methods
Pocket Crafter workflow overview
The Pocket Crafter workflow has been developed to 
construct de novo compounds in 3D by crafting atoms 
and bonds that precisely fit into specific tertiary protein 
pockets. Unlike methods dependent on reference ligands, 
our workflow enables thorough exploration of the desired 
pocket’s characteristics. Virtually, it generates small mol-
ecule concepts for a wide range of chemical structures 
and identifies candidate hit compounds through chemo-
type enrichment, providing guidance to drug discovery 
projects not only for novel chemical synthesis but also 
for biological profiling of the interaction site. The overall 
Pocket Crafter workflow is depicted in Fig. 1. It is a two-
step scalable automated workflow suitable for GPU/CPU 
high-performance computing and cloud environments, 
which  sample code and example dataset is available in 
supplementary additional file 1.

Input of protein pocket information for diverse hit 
generation
Pocket Crafter workflow starts from a pre-defined ter-
tiary protein structure with the 3D coordinates of the 
binding pocket centroid. The workflow requires the pro-
tein or pocket tertiary structure information as the input, 

typically provided as a set of files, such as PDB (Protein 
Data Bank) files. To prepare the protein pocket tertiary 
structure, the Molecular Operating Environment (MOE) 
QuickPrep module was employed using default settings 
[29]. Subsequently, the 3D generative chemistry algo-
rithm, Pocket2Mol, was integrated into the workflow with 
the goal of generating a large and diverse set of virtual 3D 
molecules that fit the binding pocket [18]. Pocket2Mol 
utilizes a graph-based approach, sequentially adding one 
atom/bond at a time based on learned relationships.

In this workflow for our case study, we initially uti-
lized the Pocket2Mol code available on GitHub [18], then 
increased the sampling parameters to 2000 and repeated 
the process 300 times with different random seeds to 
obtain a diverse set of molecular candidates. Conse-
quently, over 500 thousand de novo compounds were 
generated for the protein pocket, showcasing enhanced 
diversity within the generated molecules.

Primary filtering for chemical‑physical properties
After generating half a million compounds in SDF 
(structure data files) format, we employed Pipeline Pilot 
[30] to validate the generated molecules (Fig.  2), ensur-
ing the correctness of atom type, valency, and charge. 
Subsequently, we performed calculations for chemical-
physical properties, which included molecular weight 
(Molecular_weight), AlogP, molecular polar surface area 
(Molecular_PolarSurfaceArea), and number of rotatable 
bonds (Num_RotatableBonds). Next, we introduced a 
new Boolean field and incorporated it into the molecule 
SDF file as a filter for chemical-physical properties. The 
filter is assigned a value of “true” if the following crite-
ria are satisfied: Molecular_weight is no greater than 800, 
AlogP is between -1 and 7, Molecular_PolarSurfaceArea 
(Å2) is less than 125, and Num_RotatableBonds is less 
than 12. Otherwise, the filter is set to “false”.

Secondary filtering for hit calling using SAscore, QED 
and GBVI/WSA ΔG scores
Following the initial filtering, firstly all compounds that 
passed the chemical-physical properties filters were sub-
jected to further filtering using the synthetic accessibility 
score (SAscore or SAS) [31] and quantitative estimation 
of drug-likeness (QED) score [32, 33] obtained from 
RDKit with default parameter settings. In our approxi-
mation, the SAscore is calculated as a combination of two 
components [31]:

The QED measurement relies on empirical reasoning, 
which considers the distribution of various molecular 
properties. These properties include molecular weight, 

(1)
SAscore = FragmentScore− ComplexityPenalty

Fig. 1 Workflow of Pocket Crafter. The integrated modules and data 
flow are illustrated. The overall process is shown as following: 
tertiary protein pocket structure as the input; de novo binder 
generation with Pocket2Mol 3D generative chemistry approach; 
chemical-physical property filters; hit calling filters; virtual hit 
chemotype enrichment (SAR enrichment); the output of Pocket 
Crafter are novel diverse hit scaffolds with binding pose in tertiary 
protein pocket; interaction site profiling or de novo synthesis 
or archived library searching could be followed to generate a focused 
set of compounds for biological test
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LogP (partition coefficient), topological polar surface 
area, the count of hydrogen bond donors and acceptors, 
the number of aromatic rings and rotatable bonds, as 
well as the presence of undesired chemical functionali-
ties. By taking into account these diverse factors, the 
QED measurement offers a comprehensive evaluation 
of molecular quality and desirability as potential drug 
candidates [34]. The complete weighted QED equa-
tion from the original development [32], where W rep-
resents the weighting for each respective desirability 
function, is as follows:

Subsequently, two new Boolean fields, namely SAS and 
QED filters, are generated and included in the molecule 
SDF file. The SAS filter is assigned a value of “true” if the 
SAscore is ≤ 4, otherwise it is set to “false”. The QED filter 
is set to "true" if the QED score is ≥ 0.5, otherwise it is set 
to “false”.

Then we employed the structure-based clustering 
to group the generated compounds. Using the afore-
mentioned Pipeline Pilot, we fragmented and anno-
tated all the molecules with Murcko fragment SMILES 
using the “Bemis-Murcko Assemblies” fragmentation 
approach [35]. Bemis-Murcko assemblies define a ring 
system and any chain that connects two or more rings, 
while removing other chains from the molecule. Subse-
quently, the molecules were clustered based on ECFP_6 
descriptors of Murcko SMILES using the maximum 

(2)QEDw = exp
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dissimilarity method for selecting cluster centers and 
a maximum distance of 0.625. Finally, all compounds 
were annotated with a cluster ID (identification) and 
the number of compounds in each cluster (Fig. 2).

Secondly, for all the molecules that passed the chem-
ical-physical property filters, we calculated the GBVI/
WSA ΔG score as the predicted binding affinity for 
each compound-protein pair in MOE [29], which 
script can be found in supplementary additional file 3. 
The GBVI/WSA ΔG score is a forcefield-based scoring 
function that estimates the free energy of binding for 

the ligand in a given pose. It has been trained using the 
MMFF94x and AMBER99 forcefields on a training set 
of 99 protein–ligand complexes from the SIE dataset 
[36]. The functional form of the GBVI/WSA ΔG score 
is a sum of terms:

where:
c represents the average gain/loss of rotational and 

translational entropy.
α, βare constants which were determined during 

training (along with c and are forcefield-dependent. If 
not using an AMBER forcefield, the parameters will be 
set by default to the MMFF trained parameters.

(3)

�G ≈ c + α

[

2

3
(�ECoul +�Esol)+�EvdW + β�SAweighted

]

Fig. 2 Pipeline Pilot protocol for chemical-physical properties filtering and "Bemis-Murcko Assemblies" clustering. Components in Pipeline 
Pilot protocol and the parameter cutoffs are illustrated here and also in supplementary additional file 2. Chemical-physical property calculation 
including molecular weight (Molecular_weight), AlogP, molecular polar surface area (Molecular_PolarSurfaceArea or PSA), and number of rotatable 
bonds (Num_RotatableBonds)
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ECoulis the coulombic electrostatic term which is cal-
culated using currently loaded charges, using a con-
stant dielectric of εi = 1.

Esol is the solvation electrostatic term which is calcu-
lated using the GB/VI solvation model.

EvdWis the van der Waals contribution to binding.
SAweighted is the surface area, weighted by exposure. This 

weighting scheme penalizes exposed surface area.
For the calculation of GBVI/WSA ΔG score in MOE, 

we utilized the Docking module with the input of the 
protein pocket’s tertiary structure. If the original tertiary 
structure contains a co-crystallized ligand in the protein 
pocket, that molecule is used in the Docking workflow 
after being prepared with the QuickPrep module using 
the default settings. However, if the original tertiary 
structure is an apo protein structure, dummy atoms (LP 
atoms with no bonded neighbors) were employed in the 
Docking workflow to designate the pocket location. In 
the Docking workflow, since our focus is the GBVI/WSA 
ΔG score calculation rather than the actual docking, we 
maintained all default parameters except for specific 
docking parameters: we utilized the existing ligand con-
formation if available, selected “None” for the placement 
method, and chose “Rigid Receptor” with a termination 
criterion of 0.1 gradient for receptor refinement.

Virtual hit chemotype enrichment (SAR enrichment) 
and diverse scaffold generation
After completing the two filtering steps, the dataset is 
now ready for virtual SAR enrichment analysis. The con-
cept is to utilize the statistical Fisher test p-value to deter-
mine which hit scaffolds is more abundant in the de novo 
compounds generated from the 3D generative chemistry 
model. This information can then guide us to focus on 
these enriched hit scaffolds for subsequent library screen-
ing. Firstly, the molecules that passed the SAscore, QED 
score, and GBVI/WSA ΔG score filters were defined as 
virtual hits. Taking into account the variation in binding 
pockets across different protein families, the workflow 
facilitated incremental exploration of virtual SAR enrich-
ment analysis by employing a range of GBVI/WSA ΔG 
score cutoffs, starting from GBVI/WSA ΔG score of -6 
and incrementing in intervals of -0.1. This ensured the 
generation of 100 to 200 top diverse hit SAR scaffolds.

To determine if there was a statistically significant asso-
ciation between the assigned cluster ID (SAR) and the hit 
calling annotation within the cluster, we performed Fisher’s 
exact test. Fisher’s exact test is a statistical significance test 
developed by Ronald Fisher, a renowned statistician [37–
39]. It is widely used for the analysis of contingency tables, 
particularly for small sample sizes, but is also applicable to 
datasets of all sizes. Fisher’s exact test falls under the cat-
egory of exact tests, as it calculates the exact significance 

of the deviation from a null hypothesis, providing a precise 
p-value. This characteristic distinguishes Fisher’s exact test 
from other tests that rely on approximations, which are 
accurate only when the sample size approaches infinity. The 
equation for Fisher’s exact test is as follows:

where:
p = p-value
a, b, c, d = values in a contingency table
n = total frequency
The GBVI/WSA ΔG score represents the potential 

energy change that occurs when the protein and ligand 
interact. A higher negative score indicates a stronger 
binding affinity, while a lower negative or positive score 
suggests the weaker or non-existent binding. In this con-
text, we consider de novo compounds with a GBVI/WSA 
ΔG score of -6 or lower as virtual hits, indicating a higher 
likelihood of being true binders that should be further 
validated through experimental verification. In our work-
flow, for any molecule in the test, it can only be assigned 
as “yes” or “no” for the hit, and “yes” or “no’ for a clus-
ter ID. a, b, c, d are the structure counts in the contin-
gency table for hit vs.(versus) not-hit and in-this-cluster 
vs. not-in-this-cluster, and n is the total number of the 
structures. After the test, any cluster showing p-value less 
than or equal to 0.05 is considered as a hit enriched SAR 
cluster. This virtual SAR enrichment analysis allows us to 
identify which chemical groups and structures are most 
likely to be the true binders for the pocket with dynamic 
SAR range suitable for medicinal chemists to further 
optimize. We then selected the top GBVI/WSA ΔG score 
molecule(s) from each cluster as the hit scaffold(s). By 
selecting the top compound(s) from each hit cluster, we 
were able to focus on the most promising binders for the 
next step processing: as the starting point for de novo 
synthesis and further potency and property improve-
ment, or the archived and virtual libraries searching, as 
well as the protein ligand interaction site profiling.

Archived and virtual libraries searching
To create molecules that meet pharmaceutical standards, 
including desired biological activity, target selectivity, and 
drug properties relevant to pharmacokinetics and phar-
macodynamics, challenges often arise due to the synthe-
sis of these proposed molecules. Beside this, the de novo 
synthesis of the novel scaffolds generated by generative 
chemistry algorithms might be challenging due to the 
inherent complexity of these virtual molecules. A portion 
of the generated molecules may have intricate and uncon-
ventional architectures or possess unique chemical fea-
tures and functional groups that are not commonly found 

(4)p =
(a+ b)!(c + d)!(a+ c)!(b+ d)!

a!b!c!d!n!
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in existing compounds. The synthesis may involve mul-
tiple steps or requires the use of specialized reagents or 
reaction conditions that may not be readily available. This 
lack of precedent might make it difficult to develop effi-
cient synthetic strategies to access these novel structures. 
The complexity, coupled with limitations in scalability 
and cost-efficiency, poses practical hurdles for the experi-
mental synthesis, even when considering only a subset of 
these molecules [40, 41]. To address this, we propose an 
intermediate approach that involves conducting searches 
in archived and virtual libraries. This approach can be 
seamlessly integrated with virtual screening techniques 
and subsequently validated through wet lab experiments, 
such as high throughput biological assays. This approach 
involves utilizing existing small molecule libraries, either 
commercial or those available within the research unit. 
In our case, we utilized a Novartis internal diverse library 
containing 3 to 4 million compounds, as well as an exter-
nal Enamine REAL database with coverage of 4 to 10 bil-
lion compounds that can be synthesized on-demand [42]. 
Another option is the use of a customized enumeration 
library, referred to as PFL (Project Focus Library), which 
can be designed based on reaction schemes and building 
blocks specific to the target of interest [43].

Furthermore, once we generated 100–200 top diverse 
hit scaffolds, as illustrated in Fig. 3, we employed ROCS 
(Rapid Overlay of Chemical Structures) [44] and other 
ligand-based machine learning models to search for 
compounds in the archive or/and prioritize designed 
compounds synthesis based on shape, electrostatic prop-
erties, pharmacophoric features, and other 2D or 3D 
characteristics of the compounds and protein pocket 

residues. ROCS is a powerful virtual screening tool 
known for its ability to rapidly identify putatively active 
compounds through the shape comparison. It has dem-
onstrated strong competitiveness and often outperforms 
structure-based approaches in the virtual screening [45–
47]. Notably, ROCS has been instrumental in identifying 
novel and interesting molecular scaffolds, particularly for 
targets that were traditionally challenging for computa-
tional techniques [48]. In our case study, we used individ-
ual 3D SDF files of the top 100–200 diverse hit scaffolds 
as the input for ROCS searching against a pre-compiled 
Novartis archived library Omega database with a Tani-
moto Combo score cutoff of 1.0.

For all the molecules identified from the ROCS results, 
we calculated the GBVI/WSA ΔG score as the predicted 
binding affinity for each compound-protein pair using 
the same MOE method described in detail as above. We 
applied the same GBVI/WSA ΔG score cutoff as used in 
the SAR enrichment step. The compounds that passed 
the GBVI/WSA ΔG score filter underwent further fil-
tering based on (1) available quantity to ensure suffi-
cient amounts for biological testing; (2) LC-QC (Liquid 
Chromatography-Quantitative Control) filter to ensure 
matched analytical evaluation of the compounds; (3) 
Novartis global solubility machine learning prediction 
and solubility experimental filter to ensure the com-
pounds’ solubility for biological testing. Moreover, the fil-
tered compounds eligible for other ligand-based machine 
learning models can be seamlessly integrated into this 
workflow for orthogonal screening compound set selec-
tion, such as the profile-quantitative structure–activ-
ity relationship (pQSAR) models from Novartis [49] or 

Fig. 3 Pipeline for archived and virtual libraries searching. Modules in the pipeline and the parameter cutoffs are illustrated. The process is: diverse 
hit scaffolds from the output after two layers filtering and SAR enrichment; Shape and electrostatics ROCS searching in libraries; GBVI/WSA ΔG 
calculation; more optional filters can be added such as compound amount, compound QC results, solubility experimental data or machine learning 
(ML) prediction, and bioactivity machine learning model prediction, to generate a focused set of compounds for biological testing
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customized models specific to the target’s mechanism 
of action. Ultimately, the selected compound set is sub-
jected to biological activity testing.

The approximate runtime for each protein or pocket 
calculation is one week using High-Performance Com-
puting (HPC) GPU clusters for Pocket2Mol (10 nodes) 
and CPU clusters (1–200 nodes).

Compound QC (quality control) analysis
Purification of the compounds was carried out either 
using pre-packed silica gel cartridges (Biotage or ISCO) 
or reverse-phase HPLC (High-performance liquid chro-
matography) with C18 columns, > 95% purity for all the 
active compounds tested in the biological assay has been 
confirmed by analytical HPLC. 1H NMR (proton nuclear 
magnetic resonance) spectra were recorded in acetoni-
trile-d3 or methanol-d4, on Bruker NMR spectrometer 
with 400 or 500 MHz 1H Larmor frequency. NMR chem-
ical shifts (δ) were quoted in parts per million (ppm) and 
are reported relative to residual nondeuterated solvent 
signals. Coupling constants are reported in Hertz (Hz). 
Splitting patterns are indicated as follows: br, broad; s, 
singlet; d, doublet; t, triplet; q, quartet; dd, doublet of 
doublets, m, multiples.

WDR5 biochemical HTRF (homogeneous time resolved 
fluorescence) assay
The assay was adapted [50] and performed in 384-well 
white OptiPlate plate (PerkinElmer) for compound sin-
gle dose (40 μM) or the dose response assay. A mixture 
of protein and peptide was added into the well and incu-
bated for 20 min. Compounds in DMSO were dispensed 
at a 14-point, 3.16-fold dilution scheme with the top con-
centration of 75 μM. A mixture of HTRF detection anti-
bodies was then added and incubated for 1 h before plate 
reading (Perkin Elmer, Envision). The final assay com-
ponent concentrations are 6 nM WDR5 (N-His, 1–334), 
50  nM MYC MbIIIb peptide (256–268 a.a., QEDEEE-
IDVVSVE-GKK-Biotin-OH), 1.5  nM Eu-anti-His-Ab 
(PerkinElmer, AD0401) and 3 µg mL-1 Sreptavidin-Sure-
light APC (PerkinElmer, AD0201) in the assay buffer of 
25 mM HEPES (pH = 7.5), 0.05% v/v Tween-20, 100 mM 
NaCl, 2  mM DTT and 0.1% w/v BSA. For the coun-
ter assay, protein pair of WDR5 and MYC was replaced 
with a biotin-PEG-PEG-6xHis peptide (GenScript), to 
evaluate if the compound interferes with elements of 
the assay format. This helps to characterize the specific 
activity of the compound against the PPI of WDR5 and 
MYC in HTRF. Dose response curves and half-maximal 
inhibitory concentration (IC50) values were generated by 
GraphPad Prism. The representative curves are based on 
the mean values from at least two independent experi-
ments in triplicates.

WDR5 differential scanning fluorimetry (DSF) assay
The compound was dissolved in DMSO at a concentra-
tion of 10  mM before mixing with WDR5. 2  µM full-
length WDR5 protein was mixed with 5 × SYPRO Orange 
(Thermo Fisher Scientific, S6650) in DSF assay buffer 
(20 mM HEPES pH = 8.0, 150 mM NaCl) and then mixed 
with 200  µM compound in a 384-well PCR plate. The 
mixture solution was then incubated with shaking for 
5  min before running the thermal melting experiments 
on the CFX384 Touch™ Real-Time PCR detection sys-
tem (Bio-Rad). The samples were heated from 20 to 95 °C 
at a rate of 0.5 °C/30 s. The melting curve and peak data 
was analyzed by a modified Boltzmann equation using a 
Novartis in-house program. The reported Tm (melting 
temperature) values are based on the mean values from 
two independent experiments in triplicates.

Results and discussion
The interaction between WDR5 WBM pocket (high-
lighted by orange color in Fig. 4) and MYC is involved in 
MYC’s association with chromatin and required for its 
oncogenic function in cancers [26, 27]. Disrupting the 
WDR5-MYC interaction might be a promising approach 
for targeting MYC through WDR5, as a few WBM pocket 
binders have been identified and published by the Fesik 
lab and us [50–53]. How MYC peptide and these known 
small molecules bind to WBM pocket is presented by 
the zoom-in diagram in the right panel of Fig.  4. These 
small molecules or their corresponding original hits were 
acquired through wet lab experimental activities such as 
fragment-based screening or high throughput biochemi-
cal screening. Taken together, the biological significance 
of targeting this WBM pocket in MYC or WDR5 related 
diseases, the knowledge of existing screening results and 
the feasibility of using the validated binders as the bench-
mark really makes it a good case study to validate the 
Pocket Crafter workflow that we elucidated in Fig. 1–3.

Diverse scaffold generation through Pocket Crafter
In order to explore the chemical space beyond the exist-
ing chemical matters for the WDR5 WBM pocket, we 
employed the Pocket Crafter workflow (depicted in 
Fig. 1). This innovative methodology allows for the gen-
eration of molecular entities tailored to complement 
the unique 3D topology of specific protein pockets. To 
achieve this, we utilized 3D generative chemistry model 
with the known tertiary structure of WDR5 (PDB: 8F1G) 
[50], and successfully generated an expansive library con-
sisting of 543,491 distinct and valid structures, thereby 
significantly expanding the diversity of chemical entities 
available for investigation in this context.

A 2-dimensional chemical space map was constructed 
using two datasets (Fig.  5): a total of 543,491 virtual 
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compound set (represented in green) was generated via 
Pocket Crafter workflow; a total of 1,101,793 compound 
set was screened at Novartis (represented in pink) to 
identify inhibitors of WDR5-MYC PPI using biochemical 
HTRF. Combining these datasets, this map was created 
using the R programming language, utilizing chemical-
physical properties and ECFP-6 descriptors, with the 
assistance of the Rtsne function, t-distributed stochastic 
neighbor embedding (or t-SNE), a statistical method for 
visualizing high-dimensional data by giving each data-
point a location in a two or three-dimensional map. In 
order to illustrate the chemical space coverage connec-
tion between the two sets (Pocket2Mol and Novartis 
HTRF screen library) visually, we applied buffering to 
each data point in the t-SNE space as above, and then 
created circles with a fixed radius of r = 0.02. Subse-
quently, the circles were combined for both the Pocket-
2Mol (green) and Novartis HTRF (pink) sets. The light 
brown region represented the overlap of the chemical 
space as a function with radius of 0.02 in Fig.  5. This 
chemical space map effectively demonstrates a broader 
coverage of the chemical landscape from Pocket2Mol, 
especially by the green “edge” area of the data point col-
lection, highlighting the diversity of chemical scaffolds 
over Novartis library, even though this is an extremely 
diversified library by designing [54].

Postprocessing results with two layers of filters
After the calculations to determine the chemical-phys-
ical properties of the generated compounds and data 
visualization in Fig.  6, we applied a set of filters based 
on specific criteria (molecular weight, AlogP, Molecular 
Polar Surface Area, and Number of Rotatable Bonds) as 

depicted in Fig.  6A–D. As a result, 352,820 structures 
successfully met the selection criteria and advanced to 
the subsequent stage of analysis and evaluation.

352,820 novel virtual structures pose a significant chal-
lenge for early drug discovery, particularly concerning 
follow-up activities such as synthesis. This challenge is 
commonly encountered in generative chemistry. While 
generative chemistry garners increasing attention, the 
critical task of ensuring the synthetic feasibility of the 
generated molecules remains paramount. Bridging the 
gap between the innovative potential of generative chem-
istry and its practical application in synthesis is crucial 
for successful integration into drug discovery endeavors. 
To overcome this challenge, we conducted a comprehen-
sive analysis on the 352,820 molecules that passed the 
chemical-physical property filters. These molecules were 
further evaluated based on their SAscore, QED score and 
GBVI/WSA ΔG score, employing specific cutoff values 
outlined in Table  1. The distribution of compounds by 
these hit calling parameters was thoroughly examined 
and visualized in Fig. 7A–D.

Following this subsequent hit calling filtering process, 
we successfully identified 9531 virtual hits that exhibited 
favorable properties. These hits were then subjected to 
in silico SAR enrichment analysis, enabling a more pro-
found exploration of their potential as promising candi-
dates in the field of drug discovery. As we mentioned that 
Novartis library used for HTRF screen covers about 1.1 
million druglike diverse compounds, so it is not surpris-
ing that many virtual hits from Pocket Crafter overlap 
with these structures in Novartis library, just showing as 
those dark brown dots in the light brown area of Fig. 5. In 
this figure, it also reveals an intriguing coincidence: two 

Fig. 4 Overview of the WDR5 WBM pocket and the known binding molecules. Left Panel: WBM pocket (orange) on WDR5 protein (β-propeller 
blades each in a different color). Right Panel: zoom-in of WBM pocket showing ligands with binding mode illustration. Ligand structures were 
superimposed with MOE. MYC MbIIIb peptide (Cyan, PDB: 4Y7R), WM-662 (Green, PDB: 8F1G) and Compound 1 (Red, PDB: 8G3C) from Novartis, 
and Compound 12 from the Fesik lab (Magenta, PDB: 6UOZ)
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hit scaffolds, WM-662 [50] and Compound 1 [53], pre-
viously identified from the experimental HTRF screen 
and published by us, are highlighted in red and aligned 
with the virtual hits identified through the Pocket Crafter 
workflow. This “overlapped hit” observation proves the 
great potential of this workflow to generate hit com-
pounds virtually with high relevance to the target, as the 
pocket binders. More encouragingly, this workflow can 
go beyond our diverse library and generate novel “hits”, as 
many dark brown dots are outside of the overlapped area, 
which means they are distinct structures not covered by 
the 1.1 million diverse compound collection.

The Pocket Crafter and traditional virtual docking 
approaches can both be utilized for virtual screening of 

our internal compound library, which has approximately 
3 million compounds. The Pocket Crafter approach 
employs a generative algorithm to construct compounds 
atom-by-atom and bond-by-bond within a 3D binding 
pocket, effectively exploring the pocket’s chemical space. 
Subsequently, diverse top virtual hit scaffolds are used to 
map compounds onto the binding pocket via ROCS. This 
method is highly efficient and suitable for ultra-large vir-
tual screening (ULVS). Also confirmed hits from Pocket 
Crafter tend to be more drug-like, chemically diverse, and 
target selective compared to those from virtual docking. 
Despite both approaches being applicable to structure-
based virtual screening, the compound lists generated by 
Pocket Crafter and virtual docking have limited overlap 

Fig.5 Chemical space map representation for compounds generated by Pocket Crafter or the reported HTRF screening. t-SNE was used 
for visualizing data by giving each datapoint a location in this two-dimensional map. The diversity of chemical space generated from Pocket2Mol 
is represented in green. In comparison, compounds obtained from Novartis diverse library HTRF experimental screening are depicted in pink. The 
overlapped chemical space (based on a buffered radius of 0.02) between Pocket2Mol and Novartis HTRF screened library is represented by the light 
brown. The two published WDR5 WBM binder scaffolds from HTRF screening, namely WM-662 (indicated by a red star) and Compound 1 (depicted 
by a red circle), are among the virtual hits generated by the workflow after filtering and hit calling (shown in dark brown). The three novel hits 
from Pocket Crafter, PC-1, PC-2 and PC-3 (related to Fig. 9) are marked by cross symbols in blue, red and purple respectively, which are not covered 
by HTRF screen with Novartis library
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due to significant differences in their algorithms and 
workflows.

SAR enrichment analysis and archived and virtual libraries 
searching
To enhance our analysis, we developed a separate com-
prehensive compound library searching pipeline, as 
illustrated in Fig.  3, that leverages essential information 
obtained from the potential hit compounds. This pipeline 
incorporates the extraction of critical features, includ-
ing shape, electrostatic properties, and pharmacophoric 
characteristics. By focusing on these key attributes, we 
were able to narrow down the selection of compounds 
for subsequent library screening, significantly improving 
the efficiency and success rate of the hit discovery pro-
cess. The selected compounds can be ordered directly 

from existing small molecule libraries or prioritized for 
synthesis, then tested.

In this WDR5 case study, we utilized Novartis internal 
archived diverse library consisting of 3 to 4 million com-
pounds. Beyond this, multiple compound sources can be 
utilized potentially in this pipeline including an external 
Enamine REAL database covering 4 to 10 billion com-
pounds and a customized enumeration library. For all 
the molecules obtained from the ROCS analysis, we cal-
culated the GBVI/WSA ΔG score and further refined the 
compound selection based on availability, solubility, and 
quality control results. This rigorous selection process 
resulted in a focused set of 2029 compounds for subse-
quent biological testing.

Hit confirmation and data comparison with Novartis 
diverse library HTRF screening results
We tested this 2029 compound set by 40  μM dose in 
WDR5-MYC PPI biochemical HTRF assay, with the 
similar assay condition used in the previous biochemi-
cal screening (Novartis diverse library HTRF screen) 
which led to the finding of WM-662 and Compound 1 
[50, 53], the known WBM pocket binding molecules. The 
compound activity distribution was presented in a dot 
plot (Fig. 8) that shows 7 compounds inhibited the assay 
signal greater than 40%, which was the same criteria we 

Fig.6 Histograms of WDR5 compounds distribution from Pocket Crafter after chemical-physical properties filtering. Filters are: A Molecular Weight 
(Molecular_weight) ≤ 800; B AlogP between -1 and 7; C Molecular Polar Surface Area (Molecular_PolarSurfaceArea or PSA) (Å2) < 125; D Number 
of Rotatable Bonds (Num_RotatableBonds) < 12. In each histogram, blue means compounds that passed all the other three filters and red means 
the compounds that failed either of the other three filters

Table 1 Secondary layer filters for WDR5 hit calling in Pocket 
Crafter workflow

Filter Criteria cutoff

SAscore  ≤ 4

QED score  ≥ 0.5

GBVI/WSA ΔG score  ≤ -6
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applied to select primary hits in the early experimen-
tal HTRF screen using the library of around 1.1 million 
compounds. WM-662 showing 70% inhibition was used 
as the positive control. Notably, our efforts leveraging 
Pocket Crafter on WDR5 have yielded encouraging out-
come for the hit rate. Through the implementation of this 
integrated workflow, we have achieved a substantial 12.8-
fold increase in the hit rate compared to the early diver-
sity library HTRF screening of 1,101,793 compounds 
(Table  2). This significant improvement highlights the 
effectiveness of our tailored compound generation strat-
egy in enhancing the chance of identifying compounds as 
primary hits against the target protein.

Biological activity profiling for WDR5 hit compounds
Next, we further conducted WDR5-MYC HTRF dose–
response curve (DRC) study to analyze the single dose 
activity from the primary hits more quantitatively. Three 
out of the 7 primary hits (Fig.  9A) showed good dose 
response curve fitting and the IC50s of 35.6, 27.5 and 
28.5 μM respectively for compound PC-1, PC-2 and PC-3 
(Fig.  9B), reaffirming the in  vitro potency of these hit 
compounds biochemically from single dose testing. Even 
though their activities are a little weaker than WM-662 or 
Compound 1 (18 or 14 μM) in this WDR5-MYC HTRF 
assay [46, 49], they don’t hit the HTRF counter assay as 
the flat black curves indicated in Fig. 9B, suggesting the 
true specificity of these compounds in disrupting WDR5 
and MYC interaction.

Moreover, we tested the binding of these hit com-
pounds to WDR5 in an orthogonal biophysical assay. The 
direct binding of PC-1 and PC-2 to WDR5 was demon-
strated by Differential Scanning Fluorimetry (DSF) assay 
(Fig.  9C). Thermal shift analysis showed that adding 
PC-1 or PC-2 to WDR5 resulted in a negative Tm (melt-
ing temperature) shift of 4.2  °C or 1.2  °C in compound 
treated groups, compared to DMSO control. WM-662 
was tested together as a binder control with the validated 
shift, which triggered the Tm shift of 3.2  °C. This Tm 
shift in DSF indicates that the PC-1 or PC-2 compound 
can work on WDR5 protein as the true binder from this 
biophysical readout. The negative Tm shift indicates that 
there might be an interaction between the compound and 
the protein that is destabilizing to the protein’s tertiary 
structure [55], since the positive or negative Tm shift is 
dependent on the compound’s preference for binding 
either the native state of the protein or a less populated 
conformational state, such as a partially unfolded state 
that is energetically close to the native state. Basically, the 
compound influences the conformational equilibrium 
and determines the direction of the Tm shift.

We mapped these three hits back to the data points 
in Fig.  5, as the arrow indicated in the upper right 

Fig.7 Histograms of WDR5 compounds distribution after 2nd 
layer filtering for hit calling. Molecules that passed the chemical 
physical-property filters are further calculated for A SAScore, B QED 
score and C GBVI/WSA ΔG score with the cutoffs in Table 1. In each 
histogram, blue means compounds that passed both the other 
two hit calling filters, and red means the compounds that failed 
either of the other two filters

Fig.8 Distribution of HTRF activities for 2029 compounds. 2029 
compounds were tested in biochemical WDR5-MYC PPI HTRF assay 
at 40 μM with duplicates, each indicated in red or blue. The control 
DMSO activity was set up as 100% for normalization. Compounds 
showing greater than 40% inhibition were considered as the primary 
hits. The published probe WM-662 was highlighted by the circle 
as the positive control inhibitor. X-axis: compound. Y-axis: HTRF 
activity. Dash line: 40% inhibition
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corner. They are in the green area, not covered by HTRF 
screened Novartis library, which supports again this 
workflow can identify new binder chemotype. Interest-
ingly, in addition to the aggregation pattern they showed 
up in the map, we did notice these two compounds and 
the biochemically active compound PC-3 show certain 
structure and binding mode similarity (Fig.  9A and D), 
suggesting Structure–Activity Relationship empirically 
for further medicinal chemistry exploration. They also 
showed different binding mode to known WDR5 binding 
small molecules such as WM-662, Compound 1 or the 
Fesik lab’s Compound 12 putatively, from the superim-
posed results of X-ray co-structures and the binding visu-
alization by Pocket Crafter (Fig. 9E), suggesting they are 
indeed novel hits. The quality analysis results for these 
three archived compounds are as below:

Compound PC-1: LC–MS: m/z = 382.1 [M +  H]+. 1H 
NMR (500 MHz, acetonitrile-d3) δ = 9.90 (s, 1H), 7.71 (d, 
J = 8.1 Hz, 1H), 7.62–7.43 (m, 2H), 7.30 (ddd, J = 8.2, 7.0, 
1.2  Hz, 1H), 7.15 (ddd, J = 8.0, 7.0, 1.0  Hz, 1H), 6.98 (d, 
J = 2.2 Hz, 1H), 5.09 (s, 2H), 4.70 (dq, J = 9.3, 4.0 Hz, 1H), 
4.28 (s, 4H), 3.96 (t, J = 8.8 Hz, 1H), 3.86–3.61 (m, 3H).

Compound PC-2: LC–MS: m/z = 379.8 [M +  H]+0.1H 
NMR (500 MHz, acetonitrile-d3) δ = 9.82 (s, 1H), 7.69 (d, 
J = 8.0 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.29 (t, J = 7.7 Hz, 
1H), 7.14 (q, J = 7.5 Hz, 1H), 6.91 (d, J = 2.2 Hz, 1H), 5.48–
5.17 (m, 2H), 4.28 (s, 1H), 3.82 (tt, J = 11.7, 6.2 Hz, 2H), 
3.08 (d, J = 16.6  Hz, 1H), 2.79 (d, J = 16.3  Hz, 2H), 2.53 
(t, J = 6.4  Hz, 4H), 1.97 (dt, J = 5.0, 2.5  Hz, 4H), 1.28 (d, 
J = 7.0 Hz, 3H).

Compound PC-3: LC–MS: m/z = 384.3 [M +  H]+.1H 
NMR (400  MHz, methanol-d4) δ = 7.57 (s, 1H), 6.45 (d, 
J = 2.3 Hz, 1H), 5.02 (s, 2H), 4.24 (q, J = 3.4 Hz, 4H), 3.77 
(s, 2H), 2.60 (t, J = 6.1  Hz, 2H), 2.52 (t, J = 6.0  Hz, 2H), 
1.85—1.71 (m, 4H), 1.54 (s, 6H).

Protein–ligand interaction profiling for other novel 
scaffolds
Our study offers an intriguing application wherein we 
identify new hit scaffolds that deviate from the existing 
SAR scaffolds explored on the same target. The discovery 
of these novel scaffolds presents exciting prospects for 
chemical optimization and the exploration of unexplored 
regions on the protein surface within the pocket.

To assess the effectiveness of our approach, we con-
ducted protein–ligand interaction profiling, comparing 
the interactions of known scaffolds or the MYC MbIIIb 
peptide (Fig. 10A–D) with those hits generated through 
the Pocket Crafter workflow. Remarkably, our approach 
successfully generated molecules that exhibited simi-
lar interaction patterns to those observed in X-ray co-
crystal structures. These generated molecules effectively 
engaged in all the key interactions with Ser223, Pro224, 
Asn225, Lys227, Lys272, and Leu288 on the WDR5 
protein.

Furthermore, the protein–ligand interaction profile 
generated from the top diverse chemotypes produced 
by our workflow facilitated the identification of all the 
key WDR5 residues involved in interacting with the 
MYC MbIIIb peptide (Fig.  11A). This includes not only 
the residues that interact with known ligands (Pro224, 
Asn225, Lys227, and Lys888) but also additional residues 
(Lys250 and Glu289) that were previously unexplored 
in the hit molecules. These newly identified residues 
hold significant potential for the design of compounds 
that can effectively engage them as the stronger WDR5 
binder, particularly in the context of competition with 
MYC MbIIIb peptide, for instance the optimization of 
WM-662 to WM-586 that can engage Lys250 signifi-
cantly improved the potency in the SAR study of that 
scaffold series [50]. Detailed interactions between the key 
residues and the top diverse hits selected from Pocket 
Crafter workflow are shown in Fig.  11A and the Addi-
tional file 1: Table S1 the Protein Ligand Interaction Fin-
gerprints (PLIF) summary. This interaction histogram is 
generated with the residue-ligand interaction abundance 
percentage data from the PLIF tool in MOE using WDR5 
tertiary structure (PDB: 8F1G) and top hit scaffolds. It 
summarizes the interactions between ligands and pro-
teins using a fingerprint scheme. Interactions such as 
hydrogen bonds, ionic interactions and surface contacts 
are classified according to the residue of origin and built 
into a fingerprint scheme which is representative of a 
given database of protein–ligand complexes. Further-
more, it illustrates 3D view of all the top diverse hits in 
the pocket of WDR5 with hydrogen bond interactions in 
Fig. 11B (shown in green) with the key residues identified 
in Fig. 11A.

Table 2 Hit summary and comparison with Novartis diverse library HTRF screen results

Hit generation approach Compound number Hit Number (cutoff: 40% inhibition at 
40 μM)

Hit Rate

Novartis diverse library HTRF screen 1,101,793 2715 0.025%

Pocket Crafter 2029 7 0.345%
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Fig.9 Biological activity validation for WDR5 hit compounds from Pocket Crafter. A Chemical structures of the three compounds showing 
IC50 < 50 μM in HTRF assay, named PC-1, PC-2 and PC-3, B Dose response curves fitted from HTRF assay. IC50 = 35.6 ± 0.6, 27.5 ± 3.9 and 28.5 ± 0.2 μM 
respectively for compounds PC-1, PC-2, and PC-3 in the binding assay and all IC50s > 75 μM in the counter assay, C Melting peaks in WDR5 DSF 
by compound treatment. Thermal (Tm) shift: -4.2 °C by PC-1 and − 1.2 °C by PC-2 compared to the DMSO control. WM-662 was tested together 
as an assay control showing Tm shift of 3.2 °C, D Binding modes proposed by Pocket Crafter for the three hit compounds in WDR5 (yellow ribbon). 
PC-1 (Magenta), PC-2 (Orange) and PC3 (Cyan), E The comparison of binding modes among PC-1 (Magenta), WM-662 (Yellow), Compound 1 (red) 
and the Fesik lab’s Compound 12 (blue)

(See figure on next page.)
Fig. 10 Binding modes of different WBM binders to WDR5. Individual binding mode visualization of WBM pocket binders and protein–ligand 
interaction diagram for A WM-662, PDB: 8F1G, B compound 1, PDB: 8G3C, C compound 12 from the Fesik lab, PDB: 6UOZ, D MYC MbIIIb peptide, 
PDB: 4Y7R
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Fig. 10 (See legend on previous page.)
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Moreover, the protein–ligand interaction profile 
revealed another key WDR5 residue, Tyr 228, which 
interacts with diverse scaffolds generated through the 
Pocket Crafter workflow. This finding underscores the 
versatility of our approach in generating compounds that 
interact with diverse regions and key residues, thereby 
expanding the chemical space and offering new avenues 
for further exploration and optimization.

Conclusions
We have developed the Pocket Crafter workflow to 
carry out virtual hit identification in early drug discov-
ery using a 3D generative chemistry approach. As a case 
study, the Pocket Crafter workflow has facilitated the hit 
identification for the WDR5 WBM pocket successfully, 
with a higher hit rate compared with the experimental 
HTRF screening results. The biological activity of these 
hits has been validated through in vitro assays, confirm-
ing their role as genuine WDR5 binders and disruptors 

of the WDR5-MYC interaction. The discovery of this 
new chemical series marks a promising starting point for 
WDR5 drug development. Through the efficient explo-
ration of a vast chemical space and the incorporation of 
pertinent structural information, we have showcased 
the significant potential and efficacy of this workflow in 
expediting the identification of potential drug candidates. 
This approach opens up new avenues for the develop-
ment of innovative therapies to address unmet medical 
needs, offering expanded possibilities in the field of drug 
discovery.

Abbreviations
3D  Three-dimensional
SMILES  Simplified molecular-input line-entry system
PPI  Protein–protein interactions
WBM  WDR5-binding motif
WIN  WDR5-interacting site
PDB  Protein data bank
SAR  Structure–activity relationship
MOE  Molecular operating environment

Fig. 11 Protein–ligand interaction profiling with the hits generated from Pocket Crafter. A Protein–ligand interaction profiling results from MOE 
PLIF histogram showing the number of Pocket Crafter diverse hit scaffolds (relative frequency indicated by Y-axis, or the bar height) with each 
amino acid residue plotted in the X-axis. Each fingerprint bit is denoted by a character to indicate its meaning. D sidechain hydrogen bond donor. 
A: sidechain hydrogen bond acceptor. a: backbone hydrogen bond acceptor. R: arene attraction. B Protein ligand hydrogen bond interaction map 
(highlighted in green) between WDR5 (PDB: 8F1G) and top diverse hit scaffolds selected from initial 3D generative chemistry compounds
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