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Abstract 

Natural products are a diverse class of compounds with promising biological properties, such as high potency 
and excellent selectivity. However, they have different structural motifs than typical drug-like compounds, e.g., 
a wider range of molecular weight, multiple stereocenters and higher fraction of sp3-hybridized carbons. This makes 
the encoding of natural products via molecular fingerprints difficult, thus restricting their use in cheminformatics 
studies. To tackle this issue, we explored over 30 years of research to systematically evaluate which molecular finger-
print provides the best performance on the natural product chemical space. We considered 20 molecular fingerprints 
from four different sources, which we then benchmarked on over 100,000 unique natural products from the COCO-
NUT (COlleCtion of Open Natural prodUcTs) and CMNPD (Comprehensive Marine Natural Products Database) data-
bases. Our analysis focused on the correlation between different fingerprints and their classification performance 
on 12 bioactivity prediction datasets. Our results show that different encodings can provide fundamentally different 
views of the natural product chemical space, leading to substantial differences in pairwise similarity and performance. 
While Extended Connectivity Fingerprints are the de-facto option to encoding drug-like compounds, other finger-
prints resulted to match or outperform them for bioactivity prediction of natural products. These results highlight 
the need to evaluate multiple fingerprinting algorithms for optimal performance and suggest new areas of research. 
Finally, we provide an open-source Python package for computing all molecular fingerprints considered in the study, 
as well as data and scripts necessary to reproduce the results, at https:// github. com/ dahvi da/ NP_ Finge rprin ts.

Keywords Fingerprint, Natural products, Virtual screening, Similarity, Supervised classification

Introduction
Natural products (NPs) are a source of inspiration for 
drug discovery due to their high potency and biologi-
cal selectivity, which has translated in remarkable suc-
cess in treating infectious diseases and cancer [1]. 
However, cheminformatic modeling of NPs has been 
limited because of their diversity from typical drug-like 
molecules (on which computational pipelines are usu-
ally developed), e.g., in terms of their broader molecular 
weight distribution, multiple stereocenters, a higher frac-
tion of sp [3]-hybridized carbons and extended ring sys-
tems [2, 3]. This issue is further compounded by a lack 
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of biological annotations for NPs [4] and the widespread 
presence of activity cliffs due to their highly specialized 
biological functions [1].

One of the key steps of cheminformatics pipelines is 
how to encode structural information into ‘machine-
readable’ formats for further processing. This can be 
achieved through the so-called molecular descriptors [5], 
which convert selected molecular features into one or 
more numbers via a pre-defined algorithm. Among vari-
ous descriptors applied to natural products [6, 7], molec-
ular fingerprints—which convert a molecular structure 
into a vector—bear promise to capture structural infor-
mation on natural products (e.g., presence or absence of 
certain substructures). In fact, fingerprints generally pro-
vide satisfactory performance for quantitative structure–
activity relationship (QSAR) modeling [8–10], even in the 
presence of activity cliffs [11]. Given the relevance of fin-
gerprints in cheminformatics, over 30  years of research 
in the field have led to a broad and diverse selection of 
fingerprinting algorithms [12, 13]. However, while exten-
sive research exists on the performance of these algo-
rithms on synthetic, drug-like molecules, little is known 
about the best practices for natural products encoding.

Stemming from these observations, the aim of this 
study is to comprehensively compare and evaluate how 
different types of molecular fingerprints perform for 
modeling the NP chemical space, and ultimately to (a) 
provide effective recommendations to cheminformat-
ics practitioners in the field of NPs, and (b) underscore 
future directions for the development of molecular fin-
gerprints. We systematically compared 20 different 
molecular fingerprinting algorithms from four packages 
[14–18], on two cheminformatics tasks. First, we evaluate 
the similarity of fingerprints encoding using the COCO-
NUT database [4], containing over 400,000 unique NPs 
from 52 different sources, and a wide variety of organ-
isms, geographic locations and applications. Then, we 
evaluated the selected fingerprints for quantitative struc-
ture–activity relationship (QSAR) modeling, using 12 
datasets from the CMNPD database. [19]

The diverse fingerprint behavior in similarity searches 
and QSAR modelling using NPs allowed us to shed on 
their effect in representing the chemical space of natural 
products.

Materials and methods
Dataset curation
Unsupervised analysis
We used the COCONUT database [4], which contains 
over 400,000 unique NPs from 52 different sources, 
including compounds from a wide variety of organ-
isms, geographic locations and applications. We con-
sidered those natural products whose source organism 

was reported, as done in a previous study [20]. Solvent 
exclusion, salt removal and charge neutralization were 
performed with the ChEMBL structure curation pack-
age [21]. Compounds that failed this standardization step 
or have SMILES could not be parsed with RDKIT were 
removed. The resulting dataset included 129,869 unique 
natural products (Table 1), divided into six sources: plant, 
fungi, bacteria, marine, animal and mixed (defined for 
cases where the same natural product is produced by 
multiple organisms). Additional file  1: Table  S1 details 
how many compounds were removed at each preproc-
essing step. Each class was characterized by a differ-
ent diversity in terms of percentage of atomic scaffolds, 
which was computed by dividing the number of unique 
Bemis Murcko [22] scaffolds by the total number of com-
pounds in each class (Table 1).

The distribution into classes (NP sources) is strongly 
skewed towards the plant class, encompassing 67.1% of 
total compounds, followed by fungi, bacteria, marine, 
mixed and animal (0.5%). In terms of compound diver-
sity, there are four compounds per scaffold on average. 
The only outlier in this regard is the animal class, which 
has a much higher scaffold diversity rate (51.3%). This 
behavior might be related to the low number of NPs 
annotated for this class, or to the presence of acyclic nat-
ural products (e.g. linear peptides), making the Murcko 
scaffolds not as informative.

To compare the chemical space of NPs to typical drug-
like compounds, we also included the Drug Repurposing 
Hub library in our analysis [23]. We preprocessed this 
dataset following the same procedure as for COCONUT, 
yielding 6776 unique drugs.

QSAR modeling
Concerning the supervised classification datasets, we 
standardized the natural products from the CMNPD 
database (Comprehensive Marine Natural Products 
Database) [19] as described above. We considered 12 dif-
ferent molecular property prediction tasks. To construct 

Table 1 Summary of the data used in this study, collected and 
curated from COCONUT

Class Number of 
compounds

Dataset % Number of 
scaffolds

Scaffold 
diversity %

Plant 87,135 67.1 21,546 24.7

Fungi 15,516 11.9 4905 31.6

Bacteria 12,338 9.5 3824 31.0

Marine 8876 6.8 2443 27.5

Mixed 5290 4.1 1744 33.0

Animal 714 0.5 366 51.3

All 129,869 100 31,567 24.3



Page 3 of 16Boldini et al. Journal of Cheminformatics           (2024) 16:35  

each task, we selected all NPs annotated with the desired 
property as the positive class and a random sample of 
NPs from CMNPD as the negative class, enforcing a min-
imum dataset size of 1000 compounds (Table 2).

Similar dataset generation procedures have been pop-
ularized for evaluating ligand-based virtual screening 

approaches [24–26], but they have the drawback of 
potentially introducing noise in the labels of the inactive 
compounds, since the negative class is constructed by 
sampling unlabeled molecules. However, this was neces-
sary for our benchmark due to the scarcity of biological 
annotations for NPs, making it difficult to generate classi-
fication datasets where negative data had also been meas-
ured [3, 27].

Molecular fingerprints
In total, we analyzed 20 different fingerprinting algo-
rithms belonging to five different categories (Table 3). We 
used the default calculation parameters provided by the 
source package for each fingerprint.

Five categories of fingerprints were considered, based 
on the type of molecular information they capture:

• Path-based fingerprints generate molecular fea-
tures by analyzing the paths through the molecular 
graph given a pair of atoms and hashing them inside 
a fixed-size vector [16]. For example, Depth First 
Search (DFS) represents a compound by storing all 
unique paths in its graph, obtained by using each 
atom as the path starting point and moving away up 
to a number of bonds d. [32] Another example of this 

Table 2 Summary of the classification datasets used in this 
study, collected and curated from CMNPD

Dataset Number of 
compounds

Active 
compounds

Antibiotic 1000 112

Antiviral 1000 106

Antitumoral 1000 154

Antimalarial 1000 92

Antileishmanial 1000 20

Kinase C inhibition 1000 22

Serine Protease inhibition 1000 29

ATPase inhibition 1000 78

HIV 1000 178

Antifungal 1000 364

Anti-inflammatory 1000 156

Phosphatase inhibition 1000 95

Table 3 List of molecular fingerprints evaluated in this study, detailing for each the original publication year, the algorithm category, 
bit information type, number of bits, source package and parameters used for the calculation

Name Year Category Type Size Source Parameters

Topological Torsion (TT) [28] 1987 Path Count 4096 RDKIT [14] targetSize = 4

Atom Pair (AP) [29] 1985 Path Count 4096 RDKIT [14] N.A

Avalon [30] 2006 Path Count 1024 RDKIT [14] N.A

Daylight [31] 1973 Path Binary 1024 CDK [15] Depth = 7

Depth First Search (DFS) [32] 2005 Path Binary 4096 jCompoundMapper [16] Depth = 7

All Shortest Paths (ASP) [16] 2011 Path Binary 4096 jCompoundMapper [16] Depth = 7

RDKIT [14] 2012 Path Binary 2048 RDKIT [14] Depth = 7

Pharmacophore Pairs (PH2) [33] 2006 Pharmacophore Binary 4096 jCompoundMapper [16] N.A

Pharmacophore Triplets (PH3) [33] 2006 Pharmacophore Binary 4096 jCompoundMapper [16] N.A

MACCS [34] 2002 Substructure Binary 166 RDKIT [14] N.A

PubChem [35] 2009 Substructure Binary 881 CDK [15] N.A

ESTATE [36] 1995 Substructure Binary 79 CDK [15] N.A

Klekota-Roth (KR) [37] 2008 Substructure Binary 4860 CDK [15] N.A

Extended
Connectivity (ECFP) [38]

2010 Circular Binary 1024 RDKIT [14] Radius = 2

Functional Class (FCFP) [38] 2010 Circular Binary 1024 RDKIT [14] Radius = 2

RAD2D [39] 2004 Circular Binary 4096 jCompoundMapper [16] N.A

LSTAR [16] 2011 Circular Binary 4096 jCompoundMapper [16] N.A

LINGO [40] 2005 String Binary 1024 CDK [15] N.A

MinHashed (MHFP) [18] 2018 String Categorical 1024 Ref. [19] Radius = 3

MinHashed Atom
Pair (MAP4)17

2020 String Categorical 1024 Ref. [18] Radius = 2
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class of algorithms are Atom Pair fingerprints (AP), 
where a molecule is described by collecting all pos-
sible triplets of two atoms and the shortest path con-
necting them [29].

• Pharmacopohore fingerprints, which are a variation of 
path-based fingerprints, where atoms are described 
by whether they are a pharmacophore point (e.g. 
whether they are hydrogen bond donors or accep-
tors) [33]. This leads to bit vectors that are less 
related to the compound structure, but instead try to 
encode how the molecule interacts with its chemical 
environment. Examples of this class of algorithms are 
Pharmacophore Pairs (PH2) and Pharmacophore Tri-
plets (PH3) [33].

• Substructure-based fingerprints, in which each bit 
encodes whether the compound contains a prede-
fined structural moiety [34, 37]. Examples of this 
class of algorithms are the MACCS structural keys 
and the PUBCHEM fingerprints [34, 35].

• Circular fingerprints also break up a target compound 
into different fragments like substructure-based fin-
gerprints, but instead of relying on expert-defined 
structural patterns, they construct them dynami-
cally from the molecular graph for each compound 
[38, 39]. To do so, they initially represent each atom 
according to some properties, such as atomic mass 
or valence. Then, for each atom, the numerical iden-
tifier of neighboring atoms is added, thus generating 
a fragment identifier. This process can be repeated 
several times, progressively increasing the radius 
of the neighborhood to consider when aggregating 
information. Finally, all unique fragments for a given 
molecule are hashed into a fixed-size vector. Typi-
cally, the difference between fingerprints belonging 
to this class lies in using different properties for the 
atom identifiers. For example, Extended Connectivity 
fingerprints (ECFP) use features such as the atomic 
number, atomic charge and so forth, while Functional 
Class fingerprints (FCFP) consider whether the atom 
is basic, acid, a hydrogen bond donor/acceptor etc 
[38].

• String-based fingerprints generate molecular repre-
sentations by operating on the SMILES string of the 
compound, instead of its graph representation [18, 
40]. For example, for a given dataset, LINGO fin-
gerprints fragment the SMILES strings in fixed-size 
substrings and compute the total number of unique 
substrings across all compounds [40]. Then, each 
compound is encoded according to which SMILES 
substrings in the set it contains, using either counts 
or binary values. Another example of string-based 
algorithms are the MinHashed fingerprints (MHFP) 
[18]. This method works similarly to circular finger-

prints, but instead of using atom identifiers, it con-
siders the SMILES substring of a given fragment as 
its identifier. Each fragment identifier is then stored 
in a fixed-size vector via MinHash. MinHashed Atom 
Pair fingerprints (MAP4) [17] work similarly, but also 
consider the topological distance between atom pairs 
in the fragment for generating the fragment identi-
fier.

Molecular fingerprints can be further characterized 
according to the information they encode in each element 
of the vector: binary fingerprints indicate the presence or 
absence of a given molecular pattern, count-based fin-
gerprints have integer values specifying the number of 
occurrences of a given fragment and categorical finger-
prints use numerical identifiers to describe the chemical 
motifs in the compound. [15–18]

Similarity metrics
We used the Jaccard-Tanimoto similarity [41] to assess 
pairwise similarities between compounds for all finger-
prints. For categorical fingerprints (MAP4 and MHFP), 
we used a modified version of the Jaccard-Tanimoto sim-
ilarity which considers two bits as a match if they con-
tain exactly the same integer, as introduced in a previous 
study [17, 18, 20]. To ensure comparability, count-based 
fingerprints were converted into binary bits, by only 
encoding whether a fragment is present or absent, and 
then pairwise similarities were measured as for the other 
encodings. This ensures that any variation in pairwise 
similarities between two fingerprint types is exclusively 
related to differences in how the vectors are computed, 
and not due to using different metrics.

Pairwise distribution correlation analysis
For each type of fingerprint, evaluating all pairwise simi-
larities on all compounds from the preprocessed version 
of the COCONUT dataset would be computationally 
infeasible, given that this would require calculating 
more than 8 billion similarity values. To mitigate this, we 
adopted a repeated resampling procedure which consid-
ered batches of 10,000 randomly selected NPs to com-
pute the similarity, as:

• Given a sample of n = 10, 000 compounds, we com-
puted their fingerprints according to the 20 consid-
ered algorithms (Table 1), and for each type of finger-
print all the corresponding pairwise similarities.

• We concatenated the pairwise similarities in a matrix 
B(m× p) , with m =

10000∗9999
2

= 49995000 and 
p = 20 , and calculated mean, standard deviation, 
median and percentiles of the distribution of the 
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compound pairwise similarities for each type of fin-
gerprint.

• Then, we computed the correlation matrix of B , 
yielding a matrix C(20× 20) , which describes how 
well each fingerprint correlates with one another 
in terms of pairwise similarities for a given natural 
product batch.

• Finally, once all batches were processed, we averaged 
all statistics across all 50 iterations.

The same procedure was repeated for the Drug Repur-
posing Hub dataset, but since it only has 6776 unique 
compounds, the procedure was carried out without the 
use of batches.

Unsupervised embeddings
We computed Uniform Manifold Approximation and 
Projection (UMAP) [42] embeddings for each finger-
print, using different metrics for each fingerprint numeri-
cal type as described in the Similarity metrics section. 
Each other parameter was set to its default value from 
the UMAP package [43]. We focused our analysis on the 
first batch of 10,000 molecules we used for the pairwise 
correlation analysis, since using the entire dataset would 
have been computationally infeasible. We verified that 
the class distribution and the chemical diversity for each 
batch is consistent with the values obtained for the whole 
dataset (Additional file 1: Tables S1-S2), ensuring that the 
UMAP analysis of the batch is representative of the entire 
chemical space we investigated.

Classification
To assess how well each fingerprint can be used for 
QSAR modeling of natural products, we evaluated them 
on 12 different bioactivity prediction datasets. Each clas-
sification dataset (Table  2) was divided in three folds 
using an 80:10:10 ratio between training, validation and 
test set with scaffold split [44]. For each fingerprint type, 
we then trained two models:

• Random Forest classifier (RF) [45]. Bayesian hyper-
parameter optimization for 20 iterations, training on 
the training split and measuring the ROC-AUC on 
the validation set (hyperparameters: number of trees 
between 50 and 500 with a step of 50, maximum tree 
depth between 5 and 12 with a step of 2, the mini-
mum number of samples per split between 2 and 20, 
minimum number of samples per leaf between 2 and 
100, number of features as a choice between the loga-
rithm, the square root or 10% of the fingerprint size). 
We finally trained on the training set and evaluated 
the performance on the test set with 5 replicates.

• Dense Neural Network (DNN) [46] with 2 hidden lay-
ers, batch normalization and dropout. Each DNN 
was trained for 100 epochs using AdamW as the opti-
mizer and binary cross-entropy as the loss function 
on the training set. The parameters were optimized 
via Bayesian optimization for 20 iterations accord-
ing to the ROC-AUC on the validation set. We tuned 
the number of units per layer (between 128 and 512 
with a step of 128), the dropout rate (between 0 and 
0.4), the learning rate (between 0.0001 and 0.05) and 
the batch size (between 16 and 64 with a step of 8). 
Once the optimal hyperparameters were determined 
on the validation set, we retrained on the training set 
and measured all metrics on the test set, repeating 
the procedure 5 times.

The classification performance was quantified using 
precision, recall, specificity, Matthews Correlation Coef-
ficient (MCC), F1 score, balanced accuracy, ROC-AUC 
and PR-AUC [47]. Our selection ensures that our evalu-
ation encompasses all aspects of a given classifier’s per-
formance and is robust to class imbalance [48, 49]. To 
assess whether the any fingerprint was ranked differently 
than the others across all datasets, we first performed a 
Friedman test for each classification metric and classifi-
cation model [50]. If the outcome of the Friedman test 
was statistically significant (α < 0.05), we then performed 
post-hoc tests (2-tailed Wilcoxon signed rank test with 
Benjamini–Hochberg correction, α < 0.05) to identify 
which fingerprint pair was significantly different [51, 52].

Hardware and software
The analysis and calculation pipelines were implemented 
in Python 3.8, using JPype 1.4.1 to access packages origi-
nally written in Java. We used RDKIT 2022.9.5, CDK 2.2 
and jCompoundMapper 1.0 for computing fingerprints, 
scipy 1.8.1 and numpy 1.22.3 for computing Tanimoto 
similarity and performing statistical tests, statsmodels 
0.15 for adjust p-values with the Benjamini–Hochberg 
correction [53], RDKIT 2022.9.5 and chembl_structure_
pipeline 1.2.0 for compound standardization, hyperopt 
0.2.7 for Bayesian hyperparameter optimization [54], 
Pytorch 2.1.0 [55] for training the DNN models and 
scikit-learn 1.2.2 [56] for training the RF models and 
computing classification metrics. All calculations were 
carried out on a server with an AMD Ryzen Threadrip-
per 3970 × 32-core CPU and 128GB of RAM, using all 
threads available. The code for reproducing the results, 
calculating all the considered fingerprints, along with the 
performance metrics for each individual dataset and clas-
sifier are provided for free in the following Github reposi-
tory: https:// github. com/ dahvi da/ NP_ Finge rprin ts.

https://github.com/dahvida/NP_Fingerprints
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Results and discussion
Pairwise similarity distribution
We first analyzed the distribution of pairwise similari-
ties across the COCONUT dataset (Fig.  1 and Table  4) 
and the Drug Repurposing Hub compounds (Additional 
file  1: Figure S1) to understand which fingerprints pro-
vide a more granular view for NPs and whether these pat-
terns differ with drug-like molecules.

On the COCONUT dataset, Pharmacological finger-
prints (PH2 and PH3) have the broadest distribution of 
pairwise similarities as well as the highest median Jac-
card-Tanimoto similarity. Crucially, both distributions 
consistently reach similarity scores above 0.95, especially 
for PH2, indicating that even though the dataset is with-
out replicates, according to these embedding many com-
pounds are nearly indistinguishable. This is consistent 
with how this class of fingerprint is computed: instead 
of capturing information pertaining to the molecular 

structure, these embeddings try to describe molecules 
in terms of how they interact with their biological envi-
ronment through their pharmacophores. As such, com-
pounds that have very different chemical structures can 
still have identical pharmacophoric points, which is 
reflected by their high similarity scores in terms of PH2 
and PH3 fingerprints. This shows that these featuriza-
tion approaches are well suited for scaffold hopping in 
the NP chemical space, but their inability to separate 
structurally different compounds might be problematic 
for other QSAR applications. On the Drug Repurpos-
ing Hub both fingerprints achieve significantly lower 
median Jaccard-Tanimoto similarities (Mann Whitney 
test with Benjamini–Hochberg correction, α = 0.05), 
especially PH3. This might be due to the smaller dataset 
size and higher scaffold diversity compared to COCO-
NUT (62% instead of 24%), which generally lowers all 
median Jaccard-Tanimoto similarities for all fingerprints. 

Fig. 1 Jaccard-Tanimoto similarity distribution for each fingerprint across all possible pairwise comparisons in the natural product dataset. 
Violin plots indicate the percentiles of the distribution of Jaccard-Tanimoto similarities, with the circle indicating the median similarity value. The 
fingerprints where the similarity distribution on natural products is significantly different than the one obtained for drug-like compounds are 
highlighted in bold (Mann Whitney tests with Benjamini–Hochberg correction, α = 0.05)
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Another factor could be a larger range of pharmacoph-
oric arrangements between the drugs considered for the 
analysis, consistently with the broad range of therapeu-
tic targets of the molecules of this library. In that case, 
this pattern would affect PH3 more since it considers tri-
plets instead of pairs, which leads to a higher number of 
potential combinations.

Next, substructure-based fingerprints like MACCS, 
ESTATE, PubChem and KR tend to achieve the high-
est Jaccard-Tanimoto similarity scores. This is consist-
ent with their reliance on predefined fragments, rather 
than processing each molecular graph individually. Since 
the fragments chosen by these fingerprints were defined 
for small molecules, only a fraction of them is usually 
found in NPs, while other highly informative NP-like 
substructures are not encoded. This reduces the aver-
age bit variance across the fingerprints, leading to more 
similar vectors overall. These types of embeddings can 
therefore be problematic for the NP chemical space, 
unless custom fragments are added to account for the 
molecular distribution shift and feature selection is used 
to remove uninformative bits. This issue seems especially 
pronounced for MACCS and KR, since they achieve sig-
nificantly lower median similarity scores (Mann Whitney 
test with Benjamini–Hochberg correction, α = 0.05) on 
the Drug Repurposing Hub, shifting from 0.40 and 0.21 
to 0.32 and 0.13. In contrast, PubChem and ESTATE 

remain comparable. This trend reflects the focus MACCS 
and KR have on drug discovery, thus biasing the frag-
ment choice on relevant motifs for the drug-like chemical 
space. [34, 37]

Both path-based and circular fingerprints have median 
values of Jaccard-Tanimoto similarity around 0.1, and 
narrower score distributions. Two exceptions to this pat-
tern are RDKIT, which has a comparable distribution to 
substructure-based encodings, and LSTAR, which has a 
very narrow distribution with a lower median similarity 
than other circular or path-based fingerprints. A similar 
trend is observed on the Drug Repurposing Hub, with 
path-based and circular fingerprints being distributed 
between 0.2 and 0.1 median Jaccard-Tanimoto similarity 
scores.

When it comes to MinHashed fingerprints, the low 
median Jaccard-Tanimoto scores obtained by MAP4 
on both COCONUT and the Drug Repurposing Hub 
(less than 0.02) could be related to two factors. First, 
this fingerprint uses categorical encodings, which 
means that their similarity is computed via the modi-
fied Jaccard-Tanimoto similarity. According to that 
metric, for two bits to be considered a match it is not 
enough that they are both non-zero, but they must 
have the same integer value. As such, the fraction of 
matching bits given two fingerprints of this type tends 
to be much lower compared to binary fingerprints. 

Table 4 Distribution statistics for the pairwise Jaccard-Tanimoto similarity scores obtained by each fingerprint across all batches of the 
COCONUT dataset

Fingerprint Minimum 25th percentile 50th percentile 75th percentile Maximum

MAP4 0.000 0.002 0.011 0.026 0.067

LSTAR 0.026 0.039 0.048 0.059 0.080

MHFP 0.000 0.028 0.052 0.082 0.141

TT 0.000 0.023 0.055 0.103 0.212

ASP 0.020 0.043 0.064 0.090 0.140

DFS 0.026 0.054 0.077 0.107 0.169

ECFP 0.046 0.082 0.108 0.137 0.190

LINGO 0.018 0.065 0.114 0.173 0.279

RAD2D 0.047 0.087 0.118 0.154 0.226

FCFP 0.053 0.099 0.139 0.186 0.275

Daylight 0.059 0.111 0.171 0.249 0.404

AP 0.042 0.113 0.184 0.267 0.399

KR 0.047 0.125 0.210 0.317 0.504

RDKIT 0.062 0.166 0.261 0.371 0.550

Avalon 0.084 0.211 0.326 0.467 0.648

PubChem 0.167 0.294 0.396 0.516 0.706

MACCS 0.168 0.313 0.410 0.511 0.667

ESTATE 0.186 0.364 0.500 0.615 0.799

PH3 0.036 0.322 0.638 0.830 0.952

PH2 0.228 0.500 0.875 1.000 1.000
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Second, it could be that MinHashing paths rather than 
circular fragments lead to more potential categorical 
values for each bit, reducing the number of bit matches 
when comparing two fingerprints. This would explain 
why MHFP has higher median pairwise Jaccard-Tani-
moto similarity.

To further analyze the distribution of pairwise simi-
larity scores, we evaluated the average “bit saturation” 
[57] of each fingerprint on the COCONUT and Drug 
Repurposing Hub datasets (Additional file 1: Table S5). 
On average, most fingerprints have higher saturation 
scores for natural products than for synthetic drugs, 
indicating the presence of larger, and more complex 
molecular structures [1]. One exception to this trend 
is substructure fingerprints, which have lower bit satu-
ration on natural products than drug-like compounds. 
This is caused by the presence of uninformative frag-
ments for natural products in the fingerprint defini-
tion, leading to less bits being set when encoding a 
given compound.

Fingerprint correlation analysis
To better evaluate which fingerprints provide different 
views of the NP chemical space, we calculated the Pear-
son correlation coefficient between each pairwise similar-
ity score across all fingerprints (Fig. 2a). It is immediately 
apparent that both pharmacological fingerprints (PH2 
and PH3) are outliers, given that they are extremely cor-
related between each other and almost completely uncor-
related with all others. This could be related to the fact 
that, unlike the other fingerprints analyzed, these finger-
prints describe the occurrence of ‘fuzzy’ pharmacophoric 
points, rather than focusing on the presence or occur-
rence of functional groups and substructures.

When evaluating the correlations between the other 
fingerprints, it becomes clear that some fingerprints are 
highly correlated (above 0.8) with each other. MAP4 
and MHFP (string fingerprints), as well as DFS and ASP 
(pharmacophore fingerprints) show high Pearson cor-
relation coefficients (0.85 and 0.92 respectively). This 
is consistent with the fact that they belong to the same 
class, and hence are based on a similar featurization 

Fig. 2 Jaccard-Tanimoto similarity correlation analysis for all fingerprints. a Correlation matrix for all fingerprints evaluated in this study 
on the COCONUT dataset. b Difference between the correlation matrix obtained for the COCONUT dataset and for the Drug Repurposing Hub. 
Positive values indicate higher fingerprint correlation in the NP space, while negative values denote higher correlation in the drug-like space. 
Asterisks denote statistical significance according to one-sample Mann Whitney tests with Benjamini–Hochberg correction (α = 0.05). c MST 
constructed from the fingerprint correlation matrix obtained for the NP chemical space. Each encoding is colored on the basis of its category
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strategy. The first pair is especially interesting, given 
that while they both rely on SMILES substrings, MAP4 
relies on topological distances between atom pairs, while 
MHFP considers circular neighborhoods around atoms 
for its fragments. This difference is also consistent when 
looking at their correlation with other circular finger-
prints, such as ECFP and FCFP: MHFP strongly corre-
lates with both (0.77 and 0.88), while MAP4 to a lesser 
extent (0.67 and 0.77).

To quantitatively assess which fingerprint correlation 
pairs change the most when considering the NP chemi-
cal space specifically, we first computed the correlation 
matrix for the Drug Repurposing Hub dataset (Additional 
file 1: Figure S2) and then calculated the Pearson R differ-
ence between the values obtained for NPs and the ones 
for drugs (Fig.  2b). For most encoding pairs, the differ-
ence is statistically significant, as shown in Fig. 2b (one-
sample Mann Whitney tests with Benjamini Hochberg 
correction, α = 0.05). Most fingerprints are more corre-
lated in the NP space than in the drug-like space, with 
an average Pearson R difference of around 0.1, except for 
PH2 and PH3, which instead are less correlated to the 
others. The correlation increase for the majority of fin-
gerprints likely reflects the fact that many bits are less 
informative for NPs than they are for drugs, thus reduc-
ing the ability of different fingerprints to capture molecu-
lar similarity from different perspectives. Notably, the 
correlation difference between Avalon and KR, MAP4 
and MHFP is especially high (0.4), indicating that their 
chemical space mapping is very similar with NPs but not 
with drug-like compounds. On the other hand, the cor-
relation decrease observed for PH2 and PH3 hints at the 
fact that similarities computed using these encodings 
tend to be outliers in the NP chemical space, as observed 
when evaluating their distribution and as discussed 
below when analyzing their unsupervised embeddings.

Another key difference between natural products and 
drug-like compounds is that the former tend to have a 
higher number of repetitive chemical moieties, which can 
be accurately captured by using count-based fingerprints. 
To evaluate how using counts affects the encoding of nat-
ural products, we repeated the Pearson correlation analy-
sis for all count-based fingerprints (AP, TT and Avalon) 
for both COCONUT and Drug Repurposing Hub data-
sets (Additional file  1: Table  S6). While there is a con-
sistently high similarity score correlation between using 
counts and binary bits for a given fingerprint (e.g. AP has 
a Pearson R of 0.75 on the COCONUT dataset), there 
is a statistically significant difference for all fingerprints 
in how correlated counts and bits are when comparing 
natural products and drug-like compounds. Specifically, 
AP and Avalon show less correlation on natural products 
than on drug-like molecules, decreasing by 0.01 and 0.03 

in terms of Pearson R respectively. In contrast, TT shows 
higher Pearson R on medicinal chemistry compounds. 
These results suggest therefore that count-based AP and 
Avalon fingerprints are more appropriate at capturing 
repetitive chemical moieties found in natural products, 
since there is larger disagreement between counts and 
binary fingerprints in terms of molecular similarity.

Visualizing fingerprint similarity via minimum spanning 
tree
To further aid in the visualization of the similari-
ties between fingerprints, we constructed a Minimum 
Spanning Tree (MST) [58] from the correlation matrix 
(Fig.  2c). The Minimum Spanning Tree was performed 
by calculating the Pearson correlation distance from the 
correlation matrix (Fig. 2a), as P = 1− C , where C is the 
correlation matrix with all positive values.

Path-based encodings are in proximity of each other 
except for Daylight, which is linked to PubChem and 
FCFP, and RDKIT, which is only connected to Avalon. 
DFS is the fingerprint of this category that is most cor-
related within its category, reaching all other path-based 
algorithms in at most two steps within the MST. Circular 
and string-based fingerprints are mostly interconnected 
with each other, apart from LSTAR. MHFP connects with 
FCFP, ECFP and RAD2D, consistently with the fact that 
it also relies on circular fragments, while MAP4 connects 
with ASP, which likely reflects the fact that it encodes 
topological distances between atom pairs. FCFP is 
unique among all fingerprints, given that it connects with 
a fingerprint from all other categories except for pharma-
cophore-based encodings. This is especially surprising 
given that FCFP uses pharmacophoric information for 
the atom identifiers, which one might assume would lead 
to higher correlation with PH2 and PH3. Furthermore, it 
is notable that ECFP and FCFP correlate more strongly 
with MHFP than with each other, despite using the same 
algorithm except for the atom definitions. This seems to 
suggest that MinHashing SMILES substrings provide a 
hybrid representation that captures both chemical and 
pharmacophoric properties of the molecule. Substruc-
ture-based fingerprints are the most diverse, with only 
KR not connecting to algorithms belonging to different 
categories. PubChem and MACCS are linked to Daylight 
and AP respectively, while ESTATE is related to FCFP. 
This indicates that the fragment choices of these encod-
ings are mostly orthogonal with each other and that, 
overall, this category is correlated to path-based and 
circular approaches. Pharmacophore fingerprints are 
separated from all other categories, consistently with the 
correlation matrix and their pairwise similarity distribu-
tion. The closest neighbor from a different class is AP, 



Page 10 of 16Boldini et al. Journal of Cheminformatics           (2024) 16:35 

which is connected to PH2, reflecting the fact that that 
both algorithms rely on distances between atom pairs.

Finally, this analysis confirms the assumption that, 
when deciding which fingerprint to use for similarity 
searches or QSAR modeling, the optimal strategy is to 
consider approaches belonging to different categories in 
order to minimize redundancy.

Similarity search ranking comparison
Similarity searching is often employed to identify the top 
K most similar compounds to a query molecule, e.g. to 
identify new bioactive molecules given a ligand for a pro-
tein of interest according to the similarity principle [59–
61]. To examine whether different fingerprints would 
produce the same hits when used for similarity-based 
virtual screening, we repeated the sampling procedure 
described for the correlation comparison analysis and 
calculated for each compound the top 1% most similar 
molecules. We performed this procedure for each fin-
gerprint and given a pair of encodings, we measured how 
many hits were ranked in the top 1% by both approaches. 
Finally, to evaluate whether natural products and drug-
like compounds yield different results, we repeated this 
procedure for both the COCONUT and Drug Repurpos-
ing Hub datasets (Additional file 1: Figure S3).

Most fingerprint pairs exhibit an overlap score of 
approximately 25% on natural products, meaning that 
given a query molecule, 25% of the virtual screening hits 
are the same using both fingerprints. DFS and ASP show 
higher overlap than average (62%), consistently with the 
use of similar path enumeration algorithms to encode 
chemical graphs. When comparing the results obtained 
on COCONUT with the ones from Drug Repurposing 
Hub, the change in overlap percentage is between − 4% 
and 10% and is statistically significant for most finger-
print pairs (Additional file  1: Figure S3b). Finally, the 
ranking overlap difference is mostly consistent with the 
change observed in terms of similarity score correlation. 
For example, ESTATE and RAD2D fingerprints are gen-
erally more diverse from other encodings in the natural 
product space both in terms of top 1% ranking and over-
all pairwise Tanimoto correlation.

Exploring the natural product chemical space 
via dimensionality reduction
To analyze the effect that fingerprints have on captur-
ing the distribution of NPs in the chemical space, we 
compared their bidimensional embeddings via UMAP 
(Fig.  3). Additionally, we investigated whether any 
embedding could separate NPs according to different tax-
onomical classes, given that different organisms produce 
biomolecules in different ranges of molecular weight, 
fraction of sp3-hybridized carbon and logP [20]. To do so, 

we colored the UMAP projections of NPs according to 
their taxonomy, after removing all compounds originat-
ing from multiple organisms.

Overall, no fingerprint can visually separate NPs 
according to their taxonomy, indicating that while differ-
ent organism types generally produce compounds with 
different molecular properties, there is a significant over-
lap between these distributions. This is also consistent 
with the non-negligible fraction of NPs which are pro-
duced by multiple taxonomical classes found in COCO-
NUT (4%).

Concerning the quality of the embeddings, PH2 and 
PH3 have atypical behaviors compared to all other fin-
gerprints, with the former having one large compound 
group separated from everything else, while the latter 
showing none. These patterns are likely caused by the 
very broad similarity distribution observed for these fin-
gerprints, making it difficult for the UMAP algorithm to 
preserve the manifold correctly.

Substructure-based fingerprints provide clear grouping 
of compounds according to their chemical structure, as 
shown by the clearly separated clusters in their embed-
dings, although this does not necessarily correlate with 
taxonomical information.

Path-based and circular fingerprints instead seem to 
provide much more uniform embeddings, causing most 
clusters to be closer together than for substructure-based 
approaches and making the manifold internal structure 
less distinct.

Finally, MAP4 and MHFP have comparable embed-
dings to path-based and circular fingerprints, albeit with 
a larger number of isolated compounds.

Classification performance
Depending on the classifier, metric and assay of inter-
est, different fingerprints perform the best, with no clear 
favorite across the board. The only consistent pattern 
across all analyses is that pharmacophore fingerprints 
tend to underperform for classification, likely due to their 
inability to precisely distinguish chemical motifs.

When considering RF, in terms of global classifica-
tion metrics, on average RAD2D achieves the best MCC 
(0.506), LSTAR outperforms all alternatives in terms 
of ROC-AUC (0.900) and MHFP performs the best in 
terms of PR-AUC (0.669), as shown in Additional file 1: 
Table S7. ASP is also a competitive option, ranking first 
in terms of ROC-AUC on 3 datasets out of 12 (Additional 
file 1: Table S9). In terms of individual datasets, LSTAR 
is especially promising for antiviral activity prediction 
(0.90 ROC-AUC, 0.71 PR-AUC), while MHFP excels at 
modeling the antitumor dataset (0.89 ROC-AUC, 0.82 
PR-AUC). To further inspect the classification behav-
ior of each fingerprint, we visualized their performance 
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in terms of precision, recall and specificity scatter plots 
(Fig.  4a and b), with contour lines indicating F1 score 
and balanced accuracy respectively. From these plots, 
we can conclude that MAP4, MHFP and LSTAR tend to 
have less false positives, while PubChem, MACCS and 
ESTATE generate less false negatives. Substructure fin-
gerprints also rank particularly highly in terms of bal-
anced accuracy (Fig.  4b), achieving a good balance of 
recall and specificity. When considering the post-hoc 

pairwise comparison tests, the situation differs from 
metric to metric (Additional file 1: Figure S5). Most fin-
gerprints have statistically significant differences when 
considering precision, recall and specificity, while they 
are more comparable in terms of MCC, ROC-AUC and 
PR-AUC. This indicates that the false positive and true 
positive rate of RF models is significantly affected by the 
choice of molecular encoding, while the overall classifica-
tion performance is less influenced.

Fig. 3 Plot of UMAP embeddings for each fingerprint. Chemicals are colored on the basis of their source organism
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When considering DNNs, ASP achieves the best 
MCC (0.562), ROC-AUC (0.8787) and PR-AUC (0.713), 
as shown in Additional file 1: Table S8. LSTAR is also a 
promising alternative, ranking first for anti-inflamma-
tory activity modeling (0.96 ROC-AUC, 0.74 MCC) 
and achieving the highest precision in 3/12 datasets 
(Additional file 1: Table S10). One interesting difference 
between DNN and RF is the change in behavior of sub-
structure-based fingerprints: while they generally lead to 

high recall for RF, they have more diverse performance 
when using DNNs. For example, PubChem here scores 
highly in precision, while ESTATE maintains high recall 
instead (Fig.  4c and d). One notable similarity between 
RF and DNN is that both have good performance with 
the MHFP fingerprint (Additional file 1: Figure S6). Given 
that its bit values are categorical, the expectation would 
be that this fingerprint would be a poor encoding choice 
for QSAR modeling with DNNs, since they generally 

Fig. 4 Mean classification performance of each fingerprint across all datasets. a Recall versus precision plot for Random Forest, contour lines denote 
F1 scores. b Recall versus specificity plot for Random Forest, contour lines indicate balanced accuracy. c Recall versus precision plot for Dense Neural 
Networks, contour lines denote F1 scores. d Recall versus specificity plot for Dense Neural Networks, contour lines indicate balanced accuracy
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assume feature cardinality. In light of these results, it is 
likely that the performance could be increased even fur-
ther with additional preprocessing, e.g. one-hot encoding 
of categorical bits. Finally, when considering the post-hoc 
statistical tests, all methods are equal in terms of recall, 
while there are many significant differences in PR-AUC 
compared to RF (Additional file 1: Figure S6).

Conclusions
Natural products are a promising class of compounds 
for drug discovery which is steadily becoming a crucial 
focus for biomedical research, thanks to their structural 
diversity, potency and selectivity in biological pathways. 
However, the best practices for molecular featurization 
of natural products is still an open question, given how 
different they are from typical drug-like molecules, thus 
limiting their use in cheminformatics applications.

Our analysis of molecular fingerprints in the natural 
product chemical space shows that algorithms belong-
ing to the same category tend to be highly correlated, 
but they strongly diverge in terms of classification per-
formance, pairwise similarities and chemical space rep-
resentation when comparing them across categories. 
This finding suggests that when choosing which encod-
ing to use for cheminformatics applications, it is benefi-
cial to sample multiple fingerprints belonging to different 
classes to maximize diversity.

Concerning bioactivity prediction, our results show 
that the choice of molecular fingerprint has a significant 
impact on the classification performance across data-
sets (Additional file 1: Table S11). While ECFP has been 
the de-facto standard fingerprint for encoding drug-like 
compounds, our analysis indicates that other encod-
ings can match or outperform them—the most promis-
ing ones being ASP, LSTAR and MHFP. Additionally, we 
highlight that while some approaches tend to perform 
better than others, no encoding significantly outperforms 
all others across all QSAR datasets in our study. This 
finding indicates that it is necessary to evaluate multiple 
fingerprints in order to obtain the best performance pos-
sible when constructing molecular property prediction 
models for the NP chemical space.

In terms of further fingerprint development, our study 
highlights two key findings. First, substructure-based 
fingerprints can be competitive with path and circu-
lar algorithms on NP modeling, even though they were 
developed for different types of molecules. As such, it 
would be interesting to specifically create substructure-
based encodings for NPs, considering the most fre-
quent motifs of NPs. The recently developed Natural 
Compound Molecular Fingerprints (NC-MFP) could 
be an interesting starting point for the investigation of 

substructure-based approaches for this class of com-
pounds. [62]

Second, different graph traversal algorithms lead to 
substantially different fingerprints in terms of QSAR 
performance. As such, it would be interesting to pair 
new atom identifiers or fragment encoding algorithms 
with the most promising path and circular fingerprints. 
One particularly intriguing possibility would be to use 
data-driven approaches to process SMILES substrings 
obtained by e.g. LSTAR or ASP, potentially combin-
ing the robustness of expert-defined encodings with the 
expressiveness of learned molecular representations.

Scientific contribution statement
This work is to our knowledge the first benchmarking 
study of molecular fingerprints for similarity searches 
and bioactivity prediction on natural products, a biologi-
cally relevant class of compounds that has seen limited 
cheminformatics modeling so far. Crucially, our findings 
indicate that Extended Connectivity Fingerprints, the 
most common encoding for drug-like compounds, can 
be outperformed by other molecular fingerprints, high-
lighting the importance of evaluating multiple encod-
ing approaches and suggesting new research directions. 
Finally, we provide an open-source Python package to 
compute all molecular fingerprints investigated in this 
study to streamline their use in further cheminformatics 
applications.
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ECFP  Extended Connectivity Fingerprint
MHFP  MinHash Fingerprint
NP  Natural product
TT  Topological Torsion fingerprint
AP  Atom Pair fingerprint
DFS  Depth First Search fingerprint
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information contained any predefined keywords, as done in a previous 
study by Capecchi et al. Table S2. Class distribution of each batch of 
the preprocessed subset of the COCONUT database used in this study. 
Table S3. Murcko scaffold diversity for each batch of the preprocessed 
subset of the COCONUT database used in this study. Table S4. P-values 
for the Mann Whitney tests with Benjamini-Hochberg correction between 
the similarity score distributions arising from the COCONUT and Drug 
Repurposing Hub datasets for each fingerprint. Table S5. Fingerprint 
saturation percentage for the COCONUT and Drug Repurposing Hub 
datasets. Table S6. Pearson correlation between using count or binary 
bits for a given fingerprint on the COCONUT and Drug Repurposing Hub 
datasets. P-values are calculated according to one-sample Mann Whitney 
tests with Benjamini-Hochberg correction. Table S7. Mean classification 
performance of each fingerprint using Random Forest across all datasets. 
Table S8. Mean classification performance of each fingerprint using a 
Dense Neural Network across all datasets.Table S9. Best performance 
rank counts for each fingerprint across all datasets for Random Forest. 
Table S10. Best performance rank counts for each fingerprint across all 
datasets for Dense Neural Networks. Table S11. Friedman test p-values 
evaluating the presence of significant differences in the performance of 
fingerprints across all datasets.  Figure S1. Jaccard-Tanimoto similarity 
distribution for each fingerprint across all possible pairwise comparisons 
in the Drug Repurposing Hub dataset.  Violin plots indicate the percen-
tiles of the distribution of Jaccard-Tanimoto similarities, with the circle 
indicating the median similarity value.Figure S2. Correlation matrix of all 
pairwise similarities for all fingerprints evaluated in this study on the Drug 
Repurposing Hub dataset.Figure S3. Similarity search ranking overlap 
between fingerprints, focusing on the top 1% most similar compounds. 
a Rank overlap between fingerprints on the COCONUT dataset. b Differ-
ence in rank overlap between fingerprints when comparing the values 
obtained on the COCONUT and Drug Repurposing Hub datasets. Positive 
overlaps mean that a given fingerprint pair has a higher overlap on natural 
products than on drug-like compounds. Asterisks denote significance 
(α=0.05) according to a one-sample Mann Whitney U test with Benjamini 
Hochberg correction. Raw p-values are available on the Github repository 
of this article.Figure S4. Significance of the Random Forest performance 
differences between fingerprint pairs across all datasets, according to 
a 2-tailed Wilcoxon test with the Benjamini-Hochberg correction. Red 
denotes whether the difference is significant (α=0.05 ).Figure S5. Signifi-
cance of the Dense Neural Network performance differences between 
fingerprint pairs across all datasets, according to a 2-tailed Wilcoxon 
test with the Benjamini-Hochberg correction. Red denotes whether the 
difference is significant (α=0.05).Figure S6. Performance comparison for 
each fingerprint depending on the classifier. The x-axis shows the mean 
ROC-AUC performance of a Random Forest classifier trained with a given 
fingerprint. The y-axis shows the mean ROC-AUC performance of a Dense 
Neural Network using different fingerprints as inputs.
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