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Abstract 

The challenge of devising pathways for organic synthesis remains a central issue in the field of medicinal chemistry. 
Over the span of six decades, computer-aided synthesis planning has given rise to a plethora of potent tools for for-
mulating synthetic routes. Nevertheless, a significant expert task still looms: determining the appropriate solvent, 
catalyst, and reagents when provided with a set of reactants to achieve and optimize the desired product for a spe-
cific step in the synthesis process. Typically, chemists identify key functional groups and rings that exert crucial influ-
ences at the reaction center, classify reactions into categories, and may assign them names. This research introduces 
Rxn-INSIGHT, an open-source algorithm based on the bond-electron matrix approach, with the purpose of automat-
ing this endeavor. Rxn-INSIGHT not only streamlines the process but also facilitates extensive querying of reaction 
databases, effectively replicating the thought processes of an organic chemist. The core functions of the algo-
rithm encompass the classification and naming of reactions, extraction of functional groups, rings, and scaffolds 
from the involved chemical entities. The provision of reaction condition recommendations based on the similar-
ity and prevalence of reactions eventually arises as a side application. The performance of our rule-based model 
has been rigorously assessed against a carefully curated benchmark dataset, exhibiting an accuracy rate exceeding 
90% in reaction classification and surpassing 95% in reaction naming. Notably, it has been discerned that a pivotal 
factor in selecting analogous reactions lies in the analysis of ring structures participating in the reactions. An examina-
tion of ring structures within the USPTO chemical reaction database reveals that with just 35 unique rings, a remark-
able 75% of all rings found in nearly 1 million products can be encompassed. Furthermore, Rxn-INSIGHT is proficient 
in suggesting appropriate choices for solvents, catalysts, and reagents in entirely novel reactions, all within the span 
of a second, utilizing nothing more than an everyday laptop.
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Introduction
The design of entirely new synthesis routes remains one 
of the key challenges in medicinal chemistry [1]. For 
over half a century, computer tools have been developed 
to assist synthetic organic chemists in this task [2–5], 
but it was the arrival of powerful computing resources, 
complex algorithms and large databases in chemical sci-
ences and engineering that has tremendously accelerated 
the applicability of computer-aided synthesis planning 
(CASP) tools [6–8]. A first example is the development 
of retrosynthetic software, which breaks down a mol-
ecule into simpler precursor compounds, using chemical 
knowledge from millions of reactions [9–12]. The first 

*Correspondence:
Kevin M. Van Geem
Kevin.VanGeem@UGent.be
1 Laboratory for Chemical Technology, Department of Materials, Textiles 
and Chemical Engineering, Faculty of Engineering and Architecture, 
Ghent University, Technologiepark 125, 9052 Ghent, Belgium
2 ChemInsights LLC, Dover, DE 19901, USA
3 SynBioC Research Group, Department of Green Chemistry 
and Technology, Faculty of Bioscience Engineering, Ghent University, 
Coupure Links 653, 9000 Ghent, Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00834-z&domain=pdf


Page 2 of 14Dobbelaere et al. Journal of Cheminformatics           (2024) 16:37 

retrosynthesis tools date back to the 1960s and relied on 
the principle of tree search [13]. Today’s computers are 
not as limited in core memory anymore and program-
ming is far more straightforward, but still the algorithms 
are based on the same principle of searching a synthe-
sis tree [11]. Another major research topic is designing 
reactions in forward direction by predicting the reac-
tion outcome [5]. Forward reactivity prediction tasks, in 
which the product is predicted given the precursors, have 
also benefited from data availability and machine learn-
ing algorithms in tools with satisfying accuracy [14–18]. 
The third major task in CASP is reaction condition pre-
diction, but this is a missing link in automated synthesis 
platforms as it still requires the intervention of human 
chemists [19].

Automated reaction condition prediction can be 
thought of as optimizing the reaction conditions or as 
providing an initial guess that researchers can start from. 
Usually, optimization is performed for one specific reac-
tion of a given type and the optimization is performed 
using active machine learning algorithms, such as Bayes-
ian optimization, in which new experiments are queried 
iteratively for the specific target reaction of the same 
type [20, 21]. These active machine learning models are 
able to find better reaction conditions that have not been 
reported before in literature. Other machine learning 
models such as neural networks have been applied for 
reaction condition prediction without the need for new 
experiments, but they tend to capture literature trends 
rather than proposing new and better conditions [22]. 
Hence, direct prediction models are more suited as initial 
condition guessers which can be trained on data of one 
reaction type [23] or on very large, diverse datasets [24]. 
Furthermore, machine learning models for reaction con-
dition prediction are limited by the accuracy and repro-
ducibility of the reported data in reaction databases [25]. 
So far, only a fraction of the chemical literature is publicly 
available thanks to the screening of US patent data [26] 
and the Open Reaction Database initiative [27].

Despite the availability of many advanced tools, most 
chemists look for new reaction conditions by screening 
the scientific literature and comparing the new reaction 
with similar, known examples. For this similarity match-
ing, we can look at the type of reaction, the involved 
functional groups, and the scaffold of the molecule. 
Carey et  al. [28] defined twelve categories to classify all 
reactions: heteroatom alkylation and arylation, acylation, 
aromatic heterocycle formation, C–C bond formation, 
protection, deprotection, functional group interconver-
sion, functional group addition, oxidation, reduction, 
resolution and miscellaneous. These categories have been 
adopted in future studies for analyzing chemical reac-
tion data [29–31]. Schneider et al. [30] used commercial 

software to classify reactions into more specific reaction 
motifs, such as “Williamson ether synthesis” or “Nitra-
tion”, by defining SMIRKS [32], a string-based notation 
for reaction transformations, for each reaction motif [9]. 
Only small sets of expert-defined SMIRKS patterns have 
been made publicly available so far, such as 58 reaction 
rules from Hartenfeller et  al. [33] and more than 100 
SMIRKS from Avramova et  al. [34]. Reaction transfor-
mations can also be extracted automatically as reaction 
templates [35, 36] but, in contrast to the reaction rules, 
many templates might exist for one specific reaction, 
depending on the functional groups and rings involved 
in the reaction center. The number of ring systems and 
functional groups in bioactive molecules is limited, as 
shown by Visini et al. [37], who discovered that there are 
more than 900,000 potential ring systems with up to 4 
fused rings and 14 atoms. However, less than 40,000 ring 
systems are reported so far [38]. This is in line with what 
holds for functional groups, where Ertl found that of 3080 
functional groups in bioactive molecules, just 768 occur 
in more than 10 molecules [39]. More than 150 million 
chemical reactions are out in the scientific literature [40] 
and it thus appears that these reactions can all be classi-
fied with a relatively concise set of reaction classes, reac-
tion names, chemical rings, and functional groups.

In this work we report Rxn-INSIGHT, an open-source 
framework for efficient analysis of chemical reactions 
using Reaction SMILES identifiers [32] as sole input. A 
description of the workflow and the details of the algo-
rithm are given in Sect. “Algorithm”. In Sect. “Results and 
Discussion”, we discuss the major applications of Rxn-
INSIGHT using 1.8 million reactions from the USPTO 
patent database [26]. The first application consists of 
classifying and naming the reactions. In the second appli-
cation, functional groups, rings, and molecular scaf-
folds are extracted from the products and the reaction 
centers. Finally, it is illustrated as a side application how 
Rxn-INSIGHT can be used to suggest initial reaction 
conditions with the Heck reaction as case study.

Algorithm
Overview
Rxn-INSIGHT starts from a rule-based algorithm and 
is designed to efficiently handle chemical reaction data 
and suggest reaction conditions. It makes extensive use 
of RDKit [41], one of the most widely used cheminfor-
matics frameworks. Figure  1 illustrates the algorithm’s 
workflow. The Reaction SMILES identifier of a chemi-
cal reaction is the only required input. The reaction does 
not even have to be balanced. As depicted in Fig. 1a, the 
chemical reaction is provided with atom mapping to 
make correspondence between the atoms in the reactants 
and the products. RXNMapper from Schwaller et  al. 
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[42] is used for the atom mapping tasks, as it was found 
to outperform other tools in an independent study [43]. 
The Rxn-INSIGHT algorithm has three main features: 
reaction classification using bond-electron matrices and 
reaction naming (Fig. 1b), detection of functional groups 
and rings (Fig. 1c), and suggestion of reaction conditions 
(Fig.  1d). The code is available as open-source software 
on https:// github. com/ mrodo bbe/ Rxn- INSIG HT.

Bond‑electron matrices
Chemical reactions are classified into reaction classes by 
a bond-electron (BE) matrix of the reaction center. The 
concept of BE matrices is introduced by Dugundji and 
Ugi in 1973 [44], as an extension of Spialter’s atom-con-
nectivity matrix [45]. Reactants and products of a sani-
tized reaction are represented by an N × N  nonnegative, 
symmetric BE matrix, with N  being the number of heavy 

atoms in the system. Note that many reactions from 
chemical databases are not balanced and that, therefore, 
the number of atoms in the reactants does not necessarily 
have to be equal to the number of atoms in the products. 
The unbalanced oxidation reaction from benzaldehyde 
to benzoic acid (Scheme 1) is taken as example to illus-
trate the BE matrix concept. Equation (1) gives the 9× 9 

Fig. 1 Overview of the algorithm’s workflow. A Example of a chemical reaction and its Reaction SMILES with and without atom mapping. B Ugi 
transformation matrix of an example reaction with classification. C Extraction of functional groups, rings, and scaffolds from reactants and products. 
D Suggestion of reaction conditions based on the reaction class, scaffold, and functional groups

Scheme 1: Atom-mapped oxidation reaction from benzaldehyde 
to benzoic acid

https://github.com/mrodobbe/Rxn-INSIGHT
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matrices MR and MP of respectively the reactant benzal-
dehyde and the product benzoic acid.

The BE matrix M of a molecule has the number of free 
unshared valence electrons on the diagonal values Mii . 
The off-diagonal entries Mij(i  = j) indicate the bond 
order between two atoms i and j . The bond order is 
defined as follows: Mij = 0 if there is no bond, Mij = 1 for 
a single bond, Mij = 1.5 for an aromatic bond, Mij = 2 
for a double bond, Mij = 3 for a triple bond. The reac-
tion is represented by the R-matrix, which is defined as 
the difference between the BE-matrices of the products 
and the BE-matrices of the reactants. The R-matrix for 
the oxidation reaction from Scheme 1 is given in Eq. (2).
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By this definition, the R-matrix is a representation of 
the reaction center, as the off-diagonal values indicate 
increase or decrease in bond order and the diagonal 
values indicate the gain or loss of valence electrons. For 
practical use, the R-matrix is transformed into transfor-
mation matrix T  in which all zero rows and columns are 
stripped from the R-matrix. The T-matrix for the exam-
ple reaction is given in Eq. (3).

From the T-matrix it is understood which heavy atoms 
are involved in the reaction center. In this example, a new 
bond is formed between the carbon atom with map num-
ber 2 and the oxygen with map number 3. The value 4 in 
Eq.  (3) indicates the addition of an atom with four free, 
unshared valence electrons that was not present in the 
reactants.

Reaction classification and naming
Reactions are classified into classes that reflect the 
chemical transformation that happens but not the equip-
ment that is used. The ten classes that were suggested by 

(2)R = MP −MR =
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Table 1 Classification order of different reaction classes and the general rule used in the classification scheme

Order Reaction class General rule

1 Aromatic heterocycle formation  + 0.5 or + 1.5 values in T -matrix
Formed ring contains at least one heteroatom

2 Acylation  + 1 in T  matrix corresponds to a bond formed between a heteroatom and the acyl carbon

3 Functional group interconversion A column in the T  matrix has sum zero and contains only + 1 and − 1

4 Reduction Nonpositive T  matrix, nonzero elements on diagonal correspond to oxygen atoms

5 Oxidation Nonnegative T  matrix, nonzero elements on diagonal correspond to oxygen atoms

6 Functional group addition Nonnegative T  matrix, diagonal contains nonzero elements corresponding to heteroatoms

7 Carbon–carbon coupling  + 1 in T  matrix corresponds to a new bond formed between two carbon atoms

8 Heteroatom alkylation & arylation  + 1 in T  matrix corresponds to a new bond formed between a heteroatom and non-acyl carbon

9 Protection  + 1 in T  matrix corresponds to a new bond formed between a heteroatom or alkyne carbon and a carbon 
or silicon

10 Deprotection Nonpositive T  matrix, − 1 in T  matrix corresponds to a broken bond between a heteroatom or alkyne 
carbon and a carbon or silicon
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Carey et  al. [28] are used: acylation, aromatic heterocy-
cle formation, C–C coupling, heteroatom alkylation and 
arylation, functional group addition, functional group 
interconversion, protection, deprotection, oxidation, and 
reduction. Reactions that do not match any of the criteria 
are classified as “Miscellaneous”. Enantiomers cannot be 
distinguished with the BE-matrix approach and are for 
this reason not considered in this work. Any resolution is, 
hence, classified as a miscellaneous reaction. Because the 
reaction categories are rather broad, there are reactions 
that can be classified into multiple classes. For example, 
methylation reactions are an example that can be clas-
sified as a functional group addition, a C–C coupling, a 
heteroatom alkylation or a protection. Another example 
is the reaction between an amine and the tert-butyloxy-
carbonyl (Boc) protecting group. This reaction should be 
classified as a protection, but since a carbamate is formed 
from an amine and anhydride, the reaction could techni-
cally also be classified as an acylation reaction.

A reaction is evaluated against a sequence of ten func-
tions, that each represent one of the aforementioned 
reaction classes. The evaluation process proceeds in a 
specific order and as soon as a matching reaction class 
is found, the loop is terminated. The reaction is then 
assigned to the first class it matched. Table  1 lists the 
ten reaction classes in the order of evaluation, together 
with the general rule that the evaluation function is 
based on. The first class in the loop is that of the aro-
matic heterocycle formations, which are characterized 
by a + 0.5 or + 1.5 change in the T  matrix. This trans-
formation indicates the formation of an aromatic bond, 
which is not observed in any other reaction class.

The classification rules of several reaction classes 
resemble each other, so that the order in Table  1 is 
chosen to avoid misclassifications as much as possible. 
For example, the constructive reaction classes (acyla-
tion, heteroatom alkylation and arylation, carbon–car-
bon coupling) and the protections are all characterized 
by a +1 in the T-matrix, which indicates an increase 
in bond order. To match the reaction class, the bond 
order increase must correspond to a new bond formed 
between two atom types. In acylations, this is a new 
bond between a heteroatom (N, O, S) and a carbon that 
is part of an acyl group. An exception is made for car-
bamate formations, which is a common amine protect-
ing group. In case a carbamate is formed, there will not 
be a match with the acylation function. Heteroatom 
alkylations and arylations are defined by a new bond 
formation between a heteroatom (N, O, S) and a car-
bon, which is not part of an acyl group. In carbon–car-
bon couplings, there must be a +1 in the T-matrix that 
refers to a newly formed carbon–carbon bond. Despite 
the name, Friedel–Crafts acylations are classified as 

carbon–carbon couplings (see also Roughley et al. [29]) 
because there are no heteroatoms involved.

Functional group interconversions (FGI), reductions, 
oxidations, and functional group additions (FGA) are all 
modifying reactions. To these reactions, a carbon balance 
constraint is imposed, since during the course of these 
reactions the number of carbons should remain constant. 
Exceptions are added to include some carbon-containing 
functional groups, such as tosyl groups. FGIs are in gen-
eral distinguished by the presence of a T-matrix column 
that sums up to zero and contains opposing elements. 
This pattern means that a bond is broken, and a new 
bond is immediately formed with the same atom. Reduc-
tions and deprotections are very similar in terms of T
-matrices, since both reaction classes have a nonpositive 
T  matrix. This indicates that there are only bond order 
reductions or reductions in number of free valence elec-
trons. For deprotections, the bond order reductions cor-
respond to broken bonds between an atom in a functional 
group and an atom in a protecting group. A protection 
or deprotection is detected when either a heteroatomic 
functional group or an alkyne is involved in the reaction 
center. Opposite to reductive reaction classes, are oxida-
tions and FGAs which have a nonnegative T  matrix. The 
positive off-diagonal values indicate increases in bond 
orders. In oxidations, the positive diagonal values only 
refer to oxygen atoms, while in FGAs they can be any 
heteroatom.

To all reaction classes, exceptions are added to enhance 
classification accuracy. The complete classification 
scheme is available in the “classification.py” file in 
the GitHub repository. If a reaction does not match any 
of the requirements, it is classified as a miscellaneous 
reaction.

Reaction naming is performed by matching the Reac-
tion SMILES with SMIRKS motifs in RDKit [32, 41]. A 
set of 527 named SMIRKS reaction motifs is constructed 
and manually curated. This list is an extension of the 58 
SMIRKS from Hartenfeller et  al. [33] and is found in 
Additional file 2.

Detection of functional groups, rings, and scaffolds
Figure 2 illustrates the fragmentation of a molecule into 
functional groups, rings, and a molecular scaffold. A list 
of 107 functional groups in SMARTS [46] notation is 
constructed from Ertl’s list of most common functional 
groups [39]. Detection of functional groups is performed 
with the substructure matching function in RDKit [41] 
and each atom can only be in one functional group. If the 
atom matches two functional groups, the largest group is 
selected. A functional group is said to participate in the 
reaction center if at least one of the atoms is represented 
in transformation matrix T  . 
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Ring systems are detected using the RDKit method for 
ring system counting [41]. The ring is then cleaned up by 
removing any substituents, with the exception of non-
halogen atoms that are only connected to a ring atom 
(not considering bonds with hydrogen atoms), e.g., phe-
nol or a carbonyl oxygen on an aliphatic ring. A double 
bond that connects a ring carbon with a non-ring atom 

is also considered to be part of the ring system as a con-
jugated ring. After removal of the substituents, hydro-
gen atoms are added where needed to satisfy regular 
valences, so that the individual ring system atoms are all 
closed-shell atoms. The rings are identified by the canon-
ical SMILES of the ring system. In case an atom is part of 
multiple ring systems (e.g. fused rings), then the largest 
system is considered.

The reaction center is obtained in SMIRKS using 
RDChiral, a wrapper around the open-source cheminfor-
matics software RDKit [36]. RDChiral is slightly modified 
in Rxn-INSIGHT’s implementation so that users can now 
choose the radius of atoms around the reaction center to 
be included in the reaction center. Since SMIRKS are not 
valid reaction SMILES, the reaction center is updated to 
obtain valid reaction SMILES. The main update concerns 
ring atoms, because rings can be incomplete in SMIRKS 
notation but this would raise a semantic error in SMILES. 
Hence, the complete ring system is included in the reac-
tion SMILES of the reaction center, if at least one atom 
of that ring is participating in the reaction center or if a 
functional group that is directly attached to the ring par-
ticipates in the ring.

The molecular scaffold is the core of a molecule to 
which functional groups are connected. In medicinal 
chemistry, scaffolds are a vital concept in the design of 
new bioactive compounds. RDKit is used to extract the 
Bemis-Murcko (BM) scaffold from the main reaction 

Fig. 2 Fragmentation of a molecular structure into functional groups, 
ring structures, and a Bemis-Murcko molecular scaffold

Fig. 3 Reaction similarity search. A database is filtered using the reaction analysis of the target reaction. Tanimoto similarity is used to retrieve 
the most similar reactions
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product [47]. The BM scaffold is created by removing all 
side chains from a molecular structure so that only ring 
and linker atoms remain.

Reaction similarity
Figure  3 illustrates the workflow of Rxn-INSIGHT’s 
reaction similarity search. Reaction similarity search is 
performed on a small subclass of the reaction database. 
This subclass is defined by reactions that have the same 
reaction class (e.g. C–C coupling), reaction name (e.g. 
Suzuki–Miyaura cross-coupling), the same functional 
groups in the reaction center, and the same rings that 
participate in the reaction. The subclass can be further 
specified by adding the product scaffold or widened by 
removing the involved rings.

To enable similarity search, reaction fingerprints were 
constructed for the whole database. Currently, there are 
four options to represent the reactions using fingerprints 
that are based on molecular fingerprints. Either 166-bit 
MACCS keys [48] or 1024-bit extended-connectivity 
fingerprints with radius 2 (ECFP4; also: Morgan finger-
prints) [49] can be used for representing the molecule. 
The reaction fingerprint is constructed by either adding 
or concatenating the molecular fingerprints of reactants 
and products [50]. The default mode uses the concat-
enated MACCS keys. The reaction similarity is calculated 
using the Tanimoto distance of the reaction fingerprints 
[51].

Results and discussion
Reaction classification and naming
USPTO data evaluation
The Rxn-INSIGHT reaction classification function 
described in this work is demonstrated on the open-
source USPTO patent database [26, 30]. This data-
base contains 1.8 million chemical reactions which are 
extracted from patents issued between 1976 and 2016. 
The original data is converted from the XML files pro-
vided by Lowe [52] into CSV files containing Reaction 
SMILES, which are needed as input for Rxn-INSIGHT. 

A description on the curation of the data is provided in 
Additional file 1: Section S3) and in the GitHub reposi-
tory (https:// github. com/ mrodo bbe/ Rxn- INSIG HT). 
The classification and naming of one organic reaction 
takes between 40 and 100  ms on a laptop with Intel i7 
processor, depending on the size of the molecules in the 
reaction.

We were able to classify 90% of the reactions from 
USPTO into one of the ten reaction classes, the remain-
der of the reactions being tagged as “Miscellaneous”. The 
distribution of the reactions over the reaction classes 
is given in Fig.  4B. Heteroatom alkylations and aryla-
tions are dominant with a share of nearly 30%. In the 
2016 analysis by Schneider et al. [30], this reaction class 
accounted for 27.8% of the reactions. There are several 
reasons that explain the difference between their results 
and the results in this work. First of all, the patent data 
from 2016, which is about 5% of the full database, is not 
included in the work of Schneider et  al. [30]. Secondly, 
the reaction classification is done using the commer-
cial software NameRxn (NextMove) which classifies and 
names at the same time using SMIRKS identifiers. Since 
not all reaction motifs are included in the SMIRKS iden-
tifiers, some classes might be underrepresented, such as 
aromatic heterocycle formation. Using the BE-matrix 
approach, aromatic heterocycle formations are easily rec-
ognized by a bond order change of 0.5 or 1.5 in the trans-
formation matrices. In our analysis, this class is the 5th 
largest, with a share of 6.3% of all reactions.

Using the manually curated SMIRKS patterns, 920,776 
reactions (51.2%) in the USPTO database can be named. 
Figure  4A gives an overview of the most commonly 
encountered named reactions. The most common reac-
tion type is a rather generally defined N-alkylation of 
secondary amines with alkyl halides. Another way to find 
this reaction type is by looking at the class (heteroatom 
alkylation and arylation) and the functional groups in the 
reaction center. Then, it can be deduced that in this reac-
tion type a secondary amine reacts with a primary halide, 
forming a tertiary amine.

Fig. 4 Analysis of 1.8 million reactions in the USPTO database. A Distribution of reaction classes. B Most common named reactions

https://github.com/mrodobbe/Rxn-INSIGHT
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Benchmark evaluation
We used a labelled subset of 50,000 reactions from the 
USPTO database to evaluate the naming and classifica-
tion performance [42]. The dataset counts 50 named 
reaction types and of each type there are 1000 reactions, 
all tagged with the reaction name and superclass. Because 
of the distribution of the reaction classes, this benchmark 
is a representative dataset for medicinal chemistry tasks, 
albeit without any aromatic heterocycle formations. The 
benchmark was constructed with the NameRXN ontol-
ogy, in which two reactions with the same name are 
automatically classified in the same reaction class. This 
is because the NameRXN ontology is purely SMIRKS-
based and the reaction name is a subclass of the reaction 
class. Rxn-INSIGHT handles naming and classifying of a 
reaction in two independent processes. This is why two 
reactions with the same name, might be classified into 
another reaction class. Because different sets of SMIRKS 
reaction motifs are applied, different levels of detail in 
naming occur. One such example is the “Methylation” 
reaction, of which 86.8% of the reactions could be named, 
albeit with fifteen distinctive methylation motifs. The 
reaction motifs differ by which methylating agent is used 
(e.g. methyl iodide, dimethyl sulphate, …) or by which 
atom or functional group is methylated (e.g. carbon, 
hydroxyl, …). The opposite behavior is found in Suzuki-
type cross-coupling reactions. In the benchmark dataset, 
a distinction is made between ‘Chloro Suzuki-type cou-
pling’, ‘Bromo Suzuki-type coupling’, and ‘Bromo Suzuki 
coupling’, whereas in this work Suzuki-type couplings are 
named by the other coupling partner (e.g. boronic acid).

Table  2 provides an overview of the accuracy of the 
algorithm per reaction class. Overall, Rxn-INSIGHT was 
able to correctly assign a name for 95.5% of the reactions 

and to classify 97.4% of all reactions in the benchmark 
set. 91.1% of the reactions are classified in the same class 
as in the NameRXN ontology. However, the lower score 
for acylations and functional group additions is due to 
different classification conventions. This work follows 
the classification convention defined by Roughley and 
Jordan [29] and is independent of the reaction naming, 
which explains the different scores for reaction classes 
and names. A first discrepancy is found for methylation 
reactions, which are “Functional Group Additions” in the 
NameRXN ontology, but here classified as “Heteroatom 
Alkylation and Arylation” or “C–C Coupling”, depend-
ing on the alkylated atom. Esterification reactions are the 
second type that are classified differently, namely as “Pro-
tection” in this work and “Acylation” in the NameRXN 
ontology. According to Roughley and Jordan [29], ester 
formation by alkylation of a carboxylic acid can be clas-
sified both as a “Protection” or “Acylation” depending 
on the further functionalization of the ester group. A 
true distinction is only possible by manual evaluation 
of the full reaction sequence, which is out of scope for 
both algorithms, so that both reaction classes are valid 
choices. Because of the possible ambiguity in classifica-
tion, it is difficult to compare the performance with other 
classification tools. Rxnfp from Schwaller et al. [53] was 
reported to achieve 98.2% classification accuracy against 
the NameRXN convention on another USPTO subset 
when trained on 1000 reaction templates. However, in 
that work, reactions were classified into 1000 unnamed 
reaction template classes as opposed to the 10 named 
reaction classes in this work. Furthermore, the applica-
tion range of this supervised model is limited to the tem-
plates it is trained on, whereas Rxn-INSIGHT can classify 
reactions without the need for a training set and provide 
a name by means of rings and functional groups when the 
template is undefined. Rxn-INSIGHT uses the BE-matrix 
approach, which relies on atom–atom mapping of a reac-
tion. Despite the high accuracy of RXNMapper [43], the 
mapping is in some cases inaccurate and leads to a wrong 
classification, which can partially explain that the clas-
sification accuracy is lower than the naming accuracy. 
Naming a reaction is done via SMIRKS reaction motifs, 
a process that does not require reaction mapping, so that 
a wrongly classified reaction can still be named correctly.

Ring and scaffold detection
Another way to look at a reaction is by evaluating the ring 
systems in the reaction product. We make a distinction in 
this work between the rings that are involved in the reac-
tion center, the rings that are formed during reaction, and 
the scaffold. A ring is said to be involved in the reaction 
center if the ring itself changes or if a functional group 
connected to the ring is reacting. Using the information 

Table 2 Accuracy of benchmark study for reaction classification 
and naming

Reaction class Classification 
accuracy (%)

Naming 
accuracy 
(%)

Count

Heteroatom alkylation and aryla-
tion

92.8 92.6 14,000

Acylation 81.2 97.3 8000

C–C coupling 99.8 96.9 5000

Reduction 96.5 98.9 4000

Oxidation 99.3 97.9 3000

Protection 93.9 93.1 1000

Deprotection 95.6 95.8 8000

Functional group addition 74.4 93.8 5000

Functional group interconversion 97.1 99.4 2000

Total 91.1 95.5 50,000
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of which rings are involved in the reaction center, a 
more narrow reaction type can be given. If we revisit 
the example reaction “Brc1ccccn1.O = Cc1ccc(B(O)
O)cc1 >  > O = Cc1ccc(-c2ccccn2)cc1”, then this Suzuki 
coupling with boronic acids is further specified with the 
information that a pyridine ring and a benzene ring are 
involved in the reaction center. During the course of 
this reaction, there are no new rings formed. However, 
the indication of the formed rings facilitates the nam-
ing of aromatic heterocycle formations. In other work, 
this reaction class was found difficult to name due to 
the large number of possible heterocycles, but using this 
ring detection method, it is immediately understandable 
which functional groups react and which cyclic structure 
is formed.

Enumeration of rings in USPTO reactions
The products of all USPTO reactions are analyzed to 
demonstrate the ring detection feature. We found 965,735 
unique products of which only 2.6% is an acyclic com-
pound. These products are not necessarily end points of 
reaction sequences, but can also be produced reagents or 
intermediates. We were able to distinguish 18,743 differ-
ent cyclic structures from all compounds. Of these rings, 
5436 are found only once, 1029 are found more than 100 
times, and only 201 rings are found in more than 1000 
products. Figure 5 shows the fifteen most common rings 

in USPTO products. As expected a simple phenyl is the 
most prevalent ring structure. It should be remarked that 
a polycyclic structure which contains a phenyl (e.g. naph-
thalene) is not included in this count. The other most 
found cyclic structures are mainly nitrogen-containing 
heterocycles, such as pyridine, piperidine, pyrimidine, 
and piperazine.

The formation of aromatic heterocyclic compounds is 
an important reaction in medicinal chemistry. In Fig. 4b, 
it was shown that this reaction class accounts for about 
6% of all reactions in the USPTO database. However, 
these reactions are difficult to name using SMIRKS 
because of the huge amount of possible heterocycles. 
Indeed, the analysis of 110,000 reactions revealed 3129 
different heterocycles formed, of which 105 occur more 
than 100 times and only 20 heterocycles are formed more 
than 1000 times. There are 1149 aromatic heterocycles 
that are formed only in one reaction. Figure  6 presents 
the fifteen most commonly synthesized aromatic hetero-
cycles. As was also seen in Fig.  5, the majority of these 
structures are monocyclic and all of the top-15 rings are 
aza-heterocycles. Among the aromatic heterocyclic com-
pounds that do not contain nitrogen are only 1-benzo-
furan (0.86%), benzothiophene (0.57%), and thiophene 
(0.56%) found in more than 500 reactions.

The BE-matrix approach for classification is completely 
reliant on the atom mapping and will become inaccurate 

Fig. 5 Overview of the most common rings in USPTO products. Benzene, pyridine, piperidine, and pyrimidine cover more than 50% of all rings
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Fig. 6 Overview of the most commonly formed aromatic heterocycles in USPTO products. The percentage indicates the relative occurrence 
among all formed aromatic heterocycles

Fig. 7 Overview of the most common Bemis-Murcko scaffolds in USPTO products. The percentage indicates the relative occurrence among all 
scaffolds
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when the atom mapping fails. This means that if the atom 
mapping for atoms in an aromatic heterocycle is false, a 
reaction can be labeled incorrectly as an aromatic het-
erocycle formation. Similarly, if an aromatic reactant is 
missing because of incorrect stoichiometry but the aro-
matic ring is given in the product, then the reaction can 
be falsely classified as an aromatic heterocycle forma-
tion. Where the NameRxn method underestimated aro-
matic heterocycle formations [30], our work is potentially 
slightly overestimating the number of aromatic heterocy-
cle formations.

Extraction of molecular scaffolds in USPTO reactions
We have tested the Rxn-INSIGHT functionality to 
extract the Bemis-Murcko (BM) scaffold [47] on the 
major product in all reactions from the USPTO data-
base. There are 251,116 unique BM scaffolds of which 
110,365 occur just once, and only 1275 scaffolds are 
found in the products of more than 100 reactions. The 
fifteen most common BM scaffolds in USPTO products 
are illustrated in Fig.  7. Similarly to the most common 
ring structures, benzene is the most common scaffold, 
found in 9.9% of all reaction products. Among the other 
most prevalent scaffolds are many monocyclic structures, 
such as pyridine (1.8%), piperidine (0.40%), cyclohex-
ane (0.38%), thiophene (0.34%), and thiazole (0.33%). 
Among the polycyclic scaffolds are several linked phenyl 
rings, such as biphenyl (0.71%), phenoxymethylbenzene 
(0.46%), phenoxybenzene (0.41%), and diphenylmeth-
ane (0.25%). The prevalence of these phenyl-based scaf-
folds is in agreement with the large number of phenyl 
rings seen in the database. Additionally, the large amount 
of biphenyls and phenyl ethers can explain the popular-
ity of aryl-aryl coupling reactions and of the Williamson 
ether synthesis. The imbalance in the USPTO database 
for medicinal chemistry applications is shown by com-
paring the BM scaffolds in USPTO with the BM scaffolds 

of approved small molecule drugs. A selection of 2434 
drugs, taken from ChEMBL [54], is analyzed. It is found 
that they are composed of 1243 different BM scaffolds. 
These 1243 scaffolds make up 72.8% of all scaffolds in 
USPTO products. In total, 82.5% of the BM scaffolds of 
approved drugs are covered by USPTO product scaffolds. 
The complete list of scaffolds in USPTO reactions and in 
approved drugs are found in Additional file 1.

Similarity search
A convenient way to retrieve reaction conditions for a 
new reaction is based on similarity. Since the number 
of published reactions and associated conditions is very 
high, screening the literature quickly turns into a time-
consuming task. In this work, any database with chemi-
cal reactions and conditions can be screened. There are 
three different screening options. The first method looks 
at reactions with the exact same reaction class, name, and 
involved functional groups and rings. This is a very tight 
search that is performed in less than a second. Because of 
the large diversity of rings, the request can be too narrow, 
especially for less common reactions. The second method 
offers a solution to this potential problem by broadening 
the search. Only the reaction class and the participating 
functional groups are considered in this mode. An exam-
ple is shown in Fig. 8. The target reaction is labeled as a 
“benzothiazole formation from aldehyde”, in which a pri-
mary amine, aromatic thiol, and an aldehyde react. When 
the first search method is used, only reactions are shown 
in which both reactants have phenyl groups. Thus, the 
second similar reaction in Fig.  8 is only returned when 
a broadened search is requested, since one of the reac-
tants contains a pyridine ring. The third way to search is 
by screening the complete database. For the 1.8 million 
USPTO reactions, it takes about 7 min on a laptop with 
Intel i7 processor to measure the Tanimoto distances 
with all other reactions. This feature is especially handy 

Fig. 8 Reaction similarity search. Similar reactions are searched by considering a subset of the database that contains reactions with the same 
reaction class and involved functional groups. Tanimoto distance of reaction fingerprints is used for similarity measurement
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when using smaller, more task-specific reaction datasets. 
In all modes, it is possible to set a threshold value for the 
similarity search. This threshold value is dependent on 
the fingerprint that is used. When the difference MACCS 
fingerprints are used, the similarity of the target reac-
tion with the most similar reaction is 0.914, compared 
to 0.906 with concatenated MACCS fingerprints. The 
similarity values for ECFP4 (“Morgan fingerprints”) are 
lower, respectively 0.625 and 0.694 for the concatenated 
and difference reaction fingerprints. Therefore, a higher 
threshold value is suggested when using MACCS reac-
tion fingerprints.

Reaction condition suggestion
Reaction condition suggestion is a by-product from the 
reaction classification, naming, and similarity tasks in 
Rxn-INSIGHT. Indeed, the subset of reactions in the 
database with the same name, class, and functional 
groups gives an indication of which solvent, catalyst, and 
reagent can be used for the new target reaction. As an 
illustrative case study, we demonstrate the condition sug-
gestion task on 9 Heck cross-coupling reactions between 
substituted iodo- and bromobenzenes and methyl 
acrylate (see Fig. 9), from Parker et al. [55]. All reactions 
are recognized by Rxn-INSIGHT as carbon–carbon cou-
plings, more specifically as terminal Heck vinylations 
with an aromatic halide. Hence, in the similarity search, 
the same subset of approximately 2000 Heck-type reac-
tions is selected from the USPTO dataset and the same 
reaction conditions suggestion is made for all 9 target 
reactions. Figure  9 shows the top-3 solvent, reagent, 
and catalyst suggestions from Rxn-INSIGHT for these 
Heck reactions with the frequency of occurrence. It is 
well-documented that the suggested dipolar aprotic sol-
vents (DMF, acetonitrile) and water are very commonly 

used in Heck cross-coupling reactions [56], but Rxn-
INSIGHT only screens the database and does not take 
into account the solubility of the involved species in the 
solvent. Therefore, suggested solvents might not be effec-
tive in every variant of the reaction if the reactivity is 
heavily dependent on the solvent. From this subset, Rxn-
INSIGHT also suggests to use Pd(OAc)2 as a catalyst, and 
triethylamine and triphenylphosphine as reagents, which 
are respectively used as base and as ligand.

Conclusion
In this work, we have introduced a software tool that is 
able to rapidly analyze and screen large reaction data-
bases. A rule-based classification algorithm was con-
structed that sorts a reaction in a certain reaction class 
(e.g. functional group interconversion) using a bond-
electron matrix approach. It is found that patterns in a 
mathematical representation of reaction centers can be 
linked to a human-developed reaction class without the 
need for parametrized models. We used the algorithm to 
analyze a public chemical reaction database of 1.8 mil-
lion unlabeled reactions and were able to classify 90% of 
the reactions and give a specific name to more than 50% 
of the reactions with a set of 527 reaction motifs. On a 
benchmark dataset of 50,000 reactions, labeled with reac-
tion classes and names, a classification accuracy of more 
than 90% and a naming accuracy over 95% was found. 
The choice of where to classify some reaction types is 
often debatable and not always straightforward, which 
can lead to inconsistencies between different classifi-
cation tools. Since the matrix approach is fully reliant 
on the atom–atom mapping of a reaction, the accuracy 
is limited by the accuracy of the mapping method. The 
tool also allows to analyze all the compounds in the reac-
tions, with extraction of functional groups, rings, and 

Fig. 9 Suggestion of reaction conditions for Heck cross-coupling reactions of aromatic halides and methyl acrylate. Most frequently used solvent, 
catalyst, and reagent are given with the frequency of occurrence. X = I, Br. R = H, 2-NO2, 3-NO2, 2-COCH3, 4-COCH3, 4-Cl, 4-CN
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molecular scaffolds. The ability to classify and name a 
reaction with the extraction of functional groups and 
rings in the reaction center divides the reaction database 
in smaller subsets. These subsets are then used to retrieve 
similar reactions and their synthesis conditions using the 
Tanimoto distance of reaction fingerprints. Based on the 
reaction similarity and the occurrence, a solvent, catalyst, 
and reagent can be suggested to the user as a side appli-
cation. This way of classifying reaction databases to look 
up new reaction conditions mimics a chemist’s way of 
screening literature to find reaction conditions of a new 
chemical reaction. Our model is publicly available on 
GitHub (https:// github. com/ mrodo bbe/ Rxn- INSIG HT) 
and can be applied to any reaction database.

Scientific contribution
This tool enhances computer-aided organic synthesis by 
efficiently screening large chemical databases and accu-
rately classifying and naming chemical reactions. Its abil-
ity to divide databases into subsets with similar reactions 
facilitates the rapid and reliable analysis of suitable con-
ditions, which is still a missing link in computer-aided 
synthesis planning software. The tool’s high speed and 
explainability, demonstrated with examples from lit-
erature, make it a valuable addition for integration with 
other software tools, contributing to the overall advance-
ment of synthesis planning.
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