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Abstract 
Machine learning is a valuable tool that can accelerate the discovery and design of materials occupying com-
binatorial chemical spaces. However, the prerequisite need for vast amounts of training data can be prohibitive 
when significant resources are needed to characterize or simulate candidate structures. Recent results have shown 
that structure-free encoding of complex materials, based entirely on chemical compositions, can overcome this 
impediment and perform well in unsupervised learning tasks. In this study, we extend this exploration to super-
vised classification, and show how structure-free encoding can accurately predict classes of material compounds 
for battery applications without time consuming measurement of bonding networks, lattices or densities.

Scientific contribution  
The comprehensive evaluation of structure-free encodings of complex materials in classification tasks, includ-
ing binary and multi-class separation, inclusive of three classifiers based on different logic function, is measured 
four metrics and learning curves. The encoding is applied to two data sets from computational and experimental 
sources, and the outcomes visualised using 5 approaches to confirms the suitability and superiority of Mendeleev 
encoding. These methods are general and accessible using source software, to provide simple, intuitive and inter-
pretable materials informatics outcomes to accelerate materials design.
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Introduction
Classification of materials based on their chemical com-
position is an important task for various reasons, includ-
ing quality control [44], safety [25, 37], regulation and 
compliance [6], and life-cycle management [34]. It is also 
a valuable tool during development (regardless of the size 
of the data set [54, 66]), since identifying and assigning 
the class of a material can aid in design, and the selec-
tion of materials that more closely meet the requirements 
of various industries [26], from aerospace and auto-
motive to electronics and healthcare. In medicine and 

pharmaceuticals, materials are typically classified based 
on drug formulation, medical device development, and 
treatments [12]. The classification helps ensure the safety 
and efficacy of the final products. In electronics, materi-
als can be classified based on selectivity, sensitivity, speci-
ficity or economic viability [7, 16, 31, 40, 53].

Classification also aids in new scientific understanding 
[39, 62, 67], simplifying the study of materials chemical, 
physical, and structural characteristics and properties. 
Machine learning (ML) [3, 8, 28, 30, 56, 59] offers a vari-
ety of approaches to classification, predicting the classes 
of materials (the  labels) based on the physicochemi-
cal characteristics (the features). During discovery and 
design the possible categories are not always known, and 
unsupervised learning can be used to identify hidden 
patterns, trends and relationships among different mate-
rials based on their similarities in a high-dimensional fea-
ture space, regardless of their functional properties [4, 9, 
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22, 24, 47, 55, 61]. Coupling clustering with classification 
can be a useful way to find new classes of materials that 
are difficult to identify based on intuition[48–50, 67]. In 
most cases, however, a lot of information about the mate-
rials chemistry is required to train the models, making 
it difficult to focus the research on specific classes with 
promising applications without committing a lot of time 
and money to structural characterisation.

Recently a comprehensive assessment of structure-
free encodings of complex material was reported, using 
only the information from the chemical formula [69]. 
This paper evaluated three structure-free encodings 
with increasing information content (one-hot, Mend-
eleev and Mendeleev+ encoding), using three data sets 
of complex materials used for battery applications and 
four different unsupervised learning methods, inclusive 
of six algorithms with four evaluation metrics, in addi-
tion visualisations of the results. Although unsuper-
vised learning lacks a ground truth, it is less susceptible 
to p-hacking by using only the feature space differences, 
which could be entirely attributed to the different encod-
ings. The encodings compared are available in commonly 
used informatics platforms [1, 15, 35, 63–65], but it was 
unclear from this study if similar performance could be 
expected in supervised tasks, and since the unsupervised 
methods were uninterpretable, what useful insights can 
be obtained from models that are ignorant of bonding, 
symmetry, density or disorder. Successful and inter-
pretable structure-free models would be invaluable to 
cheminformatics.

In this study we address these questions, comparing 
the effectiveness of one-hot, Mendeleev and a Mend-
eleev+ encoding in classification tasks. To ensure the 
results are consistent and directly comparable with the 
unsupervised assessment, we use the same computa-
tional and experimental data sets, and the clusters iden-
tified by the (superior) agglomerative clustering as the 
categorical labels. We include three linear and non-linear 
classification algorithms and three evaluation metrics, 
across binary and multiple classifications, and interpret 
the results to provide chemical insights. As we will show, 
Mendeleev encoding, which is based entirely on elemen-
tal compositions, provides consistently accurate and 
stable results, and maximizes interpretability for both 
computational and experimental data sets. The inclu-
sion of additional features based on summary statistics 
in Mendeleev+ encoding results in a marginal improve-
ment in accuracy and a reduction in actionable insights 
that must be weighed against the simplification of model 
architectures.

Methods
The objective of supervised learning [57] is to make a 
prediction of a target label when information on the 
physicochemical features of each instance (individual 
material) is available. Common supervised learning tasks 
include classification [32, 41] and regression [60]. Clas-
sification involves the separation of data instances based 
on their similarities or differences in a high dimensional 
space using their features. A classifier is trained (using 
input training data) to recognize how unseen instances 
relate to some known categories of known instances and 
assigns them accordingly. There are numerous classifica-
tion algorithms available, and the superiority of one over 
another depends on the application and the data set. In 
this study, three classification algorithms were chosen, 
and the scikit-learn [51] implementation was used for all. 
We include logistic regression, as it is provides an inter-
pretable model using a linear decision boundary and 
probabilistic logic, and is conventionally used as a base-
line classifier; decision trees as a non-linear example of 
an interpretable tree-based model, which uses recursive 
partitioning logic; and support vector machines based on 
margin maximization to select the hyperplane that best 
separates the classes in the feature space, using geometric 
margin maximization logic.

Logistic regression (LR)
LR is a simple algorithm that finds a linear correlation 
among features by fitting a linear regressor model to the 
feature space, with the feature space preferably linearly 
separable. The output is then converted to a probability 
value through a logistic function, known as a sigmoid 
function:

where, z = w
T
x is the raw output. The loss function 

used to optimize the model is the cross-entropy loss. To 
extract meaningful feature importance from this model, 
the input vector x should be scaled prior to training, such 
that all features are on a similar numerical scale. The 
scaling method used to achieve this can be found in the 
Encoding section. Feature importances are simply the 
optimized weight vector w.

LR is known to perform very well on binary or mul-
tiple linearly separable classes, and the importance of 
features can be clearly reflected by the magnitude of the 
corresponding coefficients (weights) [14]. This method 
was included here to explore whether there is a linear 
relationship between features and class labels previously 

(1)φ(z) =
1

1+ e−z
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obtained by agglomerative clustering, since the other 
classifiers (described below) do not discriminate between 
linear and non-linear relationships. Logistic regression 
therefore provides a baseline.

Decision trees (DT)
DT classifiers are non-linear, non-parametric models 
based on simple decision rules inferred from the struc-
tural features, and trained by recursively splitting the data 
to predict binary and multi-class problems. They are sim-
ple to understand, and an explanation for the condition 
can be easily obtained using boolean logic. Advantages of 
DTs are that they require little data preparation and they 
can be validated using statistical tests. Disadvantages 
include possible instability with respect to small variation 
in the data, locally optimal decision at nodes dominate 
since they are based on heuristic algorithms (given that 
an optimal decision tree is known to be NP-complete), 
biased trees can be created if some classes dominate, and 
they are prone to over-fitting [10].

Support vector machine (SVM)
SVM seeks the optimal partitioning hyperplane to split 
sets of vectors and generate support vectors on either 
side of the hyperplane (i.e. the vectors with the shortest 
geometric distance from the hyperplane). SVMs are char-
acterized by sparse solutions and Vapnik-Chervonenkis 
control of the margin and the number of support vec-
tors, resulting in an effective tool in real-value function 
estimation. Fundamentally, SVMs are linear classifiers 
and require non-linearly separable problems to be con-
verted into linearly separable problems using the kernel 
trick. This is achieved by mapping non-linearly separable 
data into a higher dimensional space [11] via a mapping 
function. In the present study we included the selection 
of the kernel as a hyper-parameter to be tuned during 
optimization, as the selection of the appropriate kernel is 
non-trivial.

SVM was chosen as it is known to generalize well on 
unseen data, and the computational complexity does not 
depend on the dimensionality of the input space. SVMs 
are good at avoiding local minima and generally exhibit 
less over-fitting than other sophisticated algorithms [52]. 
SVMs require careful tuning as model performance is 
sensitive to the hyper-parameters. In the present study, 
we optimized the regularization parameter, the toler-
ance for stopping criterion, the maximum iterations for 
the solver, and a number of parameters related to the ker-
nel such as the kernel coefficient, the independent term 
and true degree of the polynomial (should that kernel be 
selected).

Encodings
The simplest machine readable format for chemical for-
mulas can be is one-hot encoding. This encoding expands 
the single categorical information into a 1× N  matrix 
(vector) with entries that are either 0 or 1. All material 
compounds can be encoded using one-hot encoding, but 
it does not encode stoichiometric differences.

Another simple, modified structure-free encoding is 
Mendeleev encoding [69], which is chemically intuitive 
and is capable of discriminating between compounds 
that would share the same one-hot matrix. In Mendeleev 
encoding the categorical compounds are expanded into a 
1× N  matrix (vector) with entries that reflect the chemi-
cal composition. This encoding can accommodate non-
stoichiometric chemical formulae (provided x is assigned 
a value).

A more complex structure-free encoding can include 
features based entirely on properties of the periodic sta-
ble such as atomic weights, group or period. This has 
been refereed to as Mendeleev+ encoding, with features 
including statistics such as the  minimum, maximum, 
range, mean and standard deviation, with properties such 
as molar volume, density, atomic weight and volume, the 
atomic number and Mendeleev number, the column, row, 
block and group of the atom, and the number of valence 
electrons. These non-integer ‘artificial’ features can make 
the data instances (compounds) more distinguishable, 
even though entirely different chemical formulae can give 
the same feature value [69].

To normalize the feature values, a global Min-Max 
scaling was applied to all Mendeleev features, such that 
all values are in [0,1]. For the additional Mendeleev+ fea-
tures, each feature was individually scaled to have range 
[0,1].

Previous work has found that Mendeleev encodings are 
more accurate, stable and reliable than one-hot encoding 
in unsupervised tasks, and may be more sensitive to the 
nature of a compound than just the constituent elements 
(less additive). Principle component analysis of Mend-
eleev encoded materials captured more of the variance 
in fewer components than one-hot encoded materials, 
as did archetypal analysis to reduce the instance space. 
Mendeleev encodings consistently resulted in superior 
clustering outcomes, as determined by the silhouette, 
Calinski-Harabasz and Davies-Bouldin scores.

Evaluation
In this study, the results from each classifier have also 
been evaluated using a number of techniques and met-
rics. To begin with, learning curves were generated for 
each training process to determine a number of fac-
tors. The training curve is used to identify any bias error 
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leading to under-fitting, which occurs when the model is 
not sophisticated enough to effectively fit the data. This 
indicates that the model cannot sufficiently describe the 
trends in the data. The k-fold cross-validation curves are 
used to identify any variance error leading to over-fitting, 
which occurs when the model is too sophisticated and 
effectively fits to the noise. This indicates that the model 
cannot generalize to unseen data. We look for conver-
gence with training and cross-validation curve to identify 
whether performance could be improved with the addi-
tion of more training data, or if sufficient data has been 
provided for the choice of model and hyper-parameters.

The performance of the classifiers on unseen data in 
the testing set is evaluated using classification reports, 
based on the number of true positives (TP), true 

negatives (TN), false positives (FP) and false negatives 
(FN). The reports include the precision (positive predic-
tive value, TP/[TP+FP]) and the recall (sensitivity, TP/
[TP+FN]). Accuracy (measured here using the F1-score) 
is simply a ratio of correctly predicted observation to the 
total observations, such that: F1-score = 2 × ([precision 
× recall]/[precision+ recall]). In addition to classification 
reports, we also present the fractional number of TP, TN, 
FP, FN as a confusion matrix, cross referencing the pre-
diction with the ground truth label.

Receiver operating characteristic (ROC) curves are 
widely used in health and medical informatics [19, 33] to 
evaluate the sensitivity of classification tasks. ROC curves 
use the number of FP and TP classifications as the hori-
zontal and vertical axes respectively, and the area under 
the curve (AUC) measures the successful classification 
TP and TN rates of the ground truth classes. In this study 
we provide the AUC-ROC curves in Additional file 1.

Fig. 1 Visualisation the 2-cluster (a, c, e) and 5-cluster (b, d, f) 
results from agglomerative clustering of battery compounds 
in the computational data set from Ref. [69], encoded using (a, b) 
one-hot encoding, (c, d) Mendeleev encoding, and (e, f) Mendeleev+ 
encoding

Table 1 Binary classification report for logistics regression (LR), 
decision trees (DT) and support vector machines (SVM) tested on 
the computational battery compounds data set, encoded using 
one-hot, Mendeleev and Mendeleev+ encoding

The accuracy is measured using the F1-score

Algorithm Encoding Metric Class 0 Class 1

Precision 0.981 0.970

One-hot Recall 0.979 0.973

Accuracy 0.980 0.972

Precision 0.999 1.000

LR Mendeleev Recall 1.000 0.992

Accuracy 1.000 0.996

Precision 1.000 1.000

Mendeleev+ Recall 1.000 1.000

Accuracy 1.000 1.000

Precision 0.997 0.992

One-hot Recall 0.994 0.995

Accuracy 0.996 0.994

Precision 1.000 0.992

DT Mendeleev Recall 0.999 1.000

Accuracy 1.000 0.996

Precision 1.000 1.000

Mendeleev+ Recall 1.000 1.000

Accuracy 1.000 1.000

Precision 0.997 0.997

One-hot Recall 0.998 0.995

Accuracy 0.998 0.996

Precision 1.000 1.000

SVM Mendeleev Recall 1.000 1.000

Accuracy 1.000 1.000

Precision 1.000 1.000

Mendeleev+ Recall 1.000 1.000

Accuracy 1.000 1.000
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In some cases the outputs from the classifiers are inter-
pretable, via feature importance profiles. Both logistic 
regression and decision trees output a ranked order of 
the  features that reflects how important they are to the 
architecture of the model, and therefore how important 
they are to the prediction. They are model specific, and 
available for both binary and multi-class classification. 
In the case of decision trees the profiles are determined 
by how may times the feature is used to split the data 
at nodes. In the case of logistic regression, the profiles 
are the weights on each feature and so multiple profiles 
are generated for each class and these can be averaged 
to obtain the overall ranking for the multi-class task. In 
addition to this, we report the architecture of the deci-
sion trees.

Results
Structure-free classification is particularly useful to the 
discovery and design of materials for energy storage sys-
tems such as batteries, due to the large combinatorial 
space. Batteries are complex electrochemical reaction 
systems [5, 13, 20] and Li-ion batteries are well estab-
lished as the benchmark for high energy and power den-
sity, and high efficiency and recharging cycles [38, 43, 45]. 
New high-capacity battery materials [27, 29] that reduce 
our dependence on Li [42] are an area of intense research, 
motivated by our need to make the energy economy more 
sustainable [2, 58]. Research into alternative materials, 
such as sodium-ion batteries [21, 46] shows promise, and 
ML has been instrumental in predicting the electrochem-
ical potential for new cathode materials and establishing 
quantitative molecular structure-redox potentials rela-
tionships [17, 36].

In this study, we have used two battery materials data 
sets to compare the performance of structure-free clas-
sification of highly complex chemical systems. Each set 
represents compounds proposed or currently used for 
energy storage applications, with different sample sizes, 
dimensionality and sources. As mentioned above, the 
categories used as target labels were previously identified 
using unsupervised agglomerative clustering, as reported 
in Ref. [69]. Each dataset was split into a training and test 
set with 85% and 15% of the total data population respec-
tively. All data pre-processing and training was done 
purely on training set, with only the final testing car-
ried out on the test set. A hyper-parameter optimization 
searching 20 samples in the LR, DT and SVM training 
was performed to ensure stability and optimal perfor-
mance. During optimization we used 7-fold stratified 
cross-validation, and 10-fold stratified cross-validation 
were used for computing the learning curve.

Computational predictions
To explore the utility of the three structure-free encod-
ings in classification tasks, we have used a computational 
data set of 10,129 instances of battery compounds that 
was retrieved from the Materials Project online data-
base [23, 68]. The data set was obtained using both the 
legacy and the new APIs offered by the Materials Pro-
ject. Each data compounds contributes at least one “volt-
age pair”, containing the charge and discharge formulas, 
and the working ion of a single electrochemical reaction 
step. Post-processing has been applied to remove redun-
dant metadata, and the discharge formula is chosen as 
the most representative formula of a data instance, since 
it provides insights into both the working ion and the 
charge formula. Most battery compounds contain one 
voltage pair each, but some contribute several voltage 

Fig. 2 Feature importance profiles showing the top 15 features 
for binary classification of battery compounds in the computational 
data set using (a, c, e) logistic regression, and (b, d, f) decision 
trees, encoded using (a, b) one-hot, (c, d) Mendeleev, and (e, f) 
Mendeleev+ encoding
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Fig. 3 Binary classification decision tree battery compounds in the computational data set, encoded using (a) one-hot, (b) Mendeleev, and (c) 
Mendeleev+ encoding
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steps to the database, and each voltage pair represents a 
unique data instance.

The results or the two-cluster and five-cluster cases 
based on agglomerative clustering from Reference [69] 
are shown in Fig.  1 for one-hot, Mendeleev and Mend-
eleev+ encodings, respectively. These results will be used 
as target labels for binary classification and multi-class 
classification of this data set. Since the clustering results 
are uninterpretable, the LR and DT classifiers provide 
insights into the characteristics of the materials that 
determine the hidden categories.

Binary classification
The results of the binary classification of the computa-
tional data set encoded with one-hot, Mendeleev and 
Mendeleev+ encoding are captured in the classification 
report in Table  1. It can be observed that all of these 
structure-free encodings are capable of separating the 
materials into the unsupervised categories, proving in 

this case they are separable classes. This is confirmed 
by the AUC-ROC curves in Additional file 1. Due to the 
class imbalance, all models report superior accuracy, 
precision and recall for Class 1 (the majority class). The 
scores for each model improve as more information is 
encoded, with Mendeleev+ encoding delivering perfect 
results every time, while the one-hot encoding has not 
converged with 8000 training instances and needs more 
data for all models to improve. From LR to DT to SVM, 
the accuracy, precision and recall of each encoding gen-
erally increases. In each case the model parameter are 
included in Additional file 1 for reproducibility.

The superior results from Mendeleev+ encoding is 
somewhat diminished when we look for deeper chemi-
cal insights. Both LR and DT expose feature rankings 
that provide insights into the model architecture. These 
are show in Fig.  2, for the one-hot, Mendeleev and 
Mendeleev+ encoded data, where we can see that LR 
treats the feature space more evenly, with a few highly 

Table 2 Multi-class classification report for logistics regression (LR), decision trees (DT) and support vector machines (SVM) tested on 
the computational battery compounds data set, encoded using one-hot, Mendeleev and Mendeleev+ encoding

The accuracy is measured using the F1-score

Algorithm Encoding Metric Class 0 Class 1 Class 2 Class 3 Class 4

Precision 0.971 0.987 1.000 0.974 0.991

One-hot Recall 0.973 0.984 0.992 1.000 0.983

Accuracy 0.972 0.986 0.996 0.987 0.987

Precision 0.989 1.000 0.955 0.950 0.975

LR Mendeleev Recall 0.985 0.980 0.980 1.000 0.965

Accuracy 0.987 0.990 0.968 0.974 0.970

Precision 1.000 1.000 1.000 1.000 1.000

Mendeleev+ Recall 1.000 1.000 1.000 1.000 1.000

Accuracy 1.000 1.000 1.000 1.000 1.000

Precision 0.990 0.995 1.000 0.982 0.982

One-hot Recall 0.983 0.995 1.000 1.000 0.991

Accuracy 0.987 0.995 1.000 0.991 0.987

Precision 0.998 1.000 0.997 1.000 0.990

DT Mendeleev Recall 1.000 0.983 1.000 1.000 0.997

Accuracy 0.999 1.000 0.990 1.000 0.993

Precision 1.000 1.000 1.000 1.000 1.000

Mendeleev+ Recall 1.000 1.000 1.000 1.000 1.000

Accuracy 1.000 1.000 1.000 1.000 1.000

Precision 0.993 0.997 1.000 0.991 0.983

One-hot Recall 0.993 0.996 1.000 1.000 0.991

Accuracy 0.993 0.997 1.000 0.996 0.987

Precision 0.998 0.990 0.994 1.000 0.991

SVM Mendeleev Recall 0.998 1.000 0.986 1.000 0.995

Accuracy 0.998 0.995 0.990 1.000 0.993

Precision 1.000 1.000 1.000 1.000 1.000

Mendeleev+ Recall 1.000 1.000 1.000 1.000 1.000

Accuracy 1.000 1.000 1.000 1.000 1.000
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weighted features dominating the models. In contrast, 
DTs split the data based on one dominant features, 
and then require deep branches based on the remain-
ing features to separate the materials. Given the high 
dimensionality of the input data, it is not surprising 
that the decision trees are deep and complicated. How-
ever, as we see from Fig. 3, the complexity of the trees 
significantly decreases as the encoding includes more 
information.

The way the structure-free features is used to develop 
the binary classifiers is consistent across the encodings. 
The ranking of the important features is less consist-
ent, and less useful. The top 5 one-hot encoded features 

are entirely different between LR and DT classifiers, 
and there are only a few elements that are among the 
top 15 (shown) for both models. The top 5 features for 
Mendeleev encoded features are the same, regardless of 
the classifier, and there are other elements consistently 
appearing in the top 15 ranked features. The top feature 
for the Mendeleev+ encoded materials is the same for LR 
and DT, but most other features in the top 15 are differ-
ent. The top Mendeleev+ encoded features are also quite 
non-specific, related to things like the maximum number 
of f valence electrons, which can vary a lot between mate-
rials, and be the same for different materials. This makes 
the Mendeleev+ encoded features less interpretable, and 
the classes less useful for applications or further design.

Multi‑class classification
Companion results for the 5-class case are summarized 
in the classification report in Table  2. Here we can see 
that three structure-free encodings are all capable of 
achieving the more difficult classification task, dealing 
with greater class imbalance using the three different 
model architectures. As we saw for the binary classifica-
tion, greater accuracy, precision and recall is achieved 
with more sophisticated encoding. Mendeleev+ encod-
ing again delivers perfect results, including the learning 
curves converging with fewer training instances and the 
AUC-ROC curve showing perfect TP and FP rates for 
DTs and SVMs.

When examining the architecture of the interpretable 
models we also see a similar result to the binary classi-
fication, with one-hot encoding producing inconsistent 
rankings of the elemental features (see Fig.  4a, b) and a 
deep complicated tree (Fig.  5a); Mendeleev encoding 
producing relatively consistent rankings of the elemen-
tal features (Fig. 4c, d) and a deep, but less complicated 
tree with multiple leaves on a branch, but fewer branches 
(Fig. 5b); and Mendeleev+ encoding producing relatively 
consistent rankings of the summary statistics with fewer 
insights for battery design (Fig. 4e, f ) and a shallow, less 
complicated tree (Fig. 5c). Due to the improved efficiency 
over one-hot encoding, and the superior insights over 
Mendeleev+ encoding, and the high precision, recall, 
accuracy and sensitivity (see AUC-ROC curves in Addi-
tional file  1), Mendeleev encoding is recommended for 
structure-free classification.

Experimental observations
The exploration above compared the three encodings 
with two tasks using three different classifiers based on 
three different logics, evaluated with the 4 different met-
rics concluded that Mendeleev encoding is superior. This 
is a comprehensive comparison, also identified variations 

Fig. 4 Feature importance profiles showing the top 15 
features for multi-class classification of battery compounds 
in the computational data set using (a, c, e) logistic regression, and (b, 
d, f) decision trees, encoded using (a, b) one-hot, (c, d) Mendeleev, 
and (e, f) Mendeleev+ encoding
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Fig. 5 Multi-class classification decision trees for battery compounds in the computational data set, encoded using (a) one-hot, (b) Mendeleev, 
and (c) Mendeleev+ encoding
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in model complexity and efficiency, and the inferiority of 
Mendeleev+ interpretability.

To challenge the utility of Mendeleev encoding in clas-
sification tasks, we applied the same set of test algorithms 
and metrics to a much larger and more challenging 
experimental data set. This data set consists of 265481 
data instances of battery materials, refined from the work 
of Huang and Cole [18]. Each data instance represents 
a battery cell that contains one or more battery compo-
nents, with each component expressed as its chemical 
formula. The set was originally 311716 chemical formu-
las auto-extracted from the literature, but due to inac-
curate document digitisation and error-prone chemical 

language processing significant data cleaning and pro-
cessing was required. We developed a set of sophisticated 
rules to inspect the formulas, and data instances are 
either retained, corrected, or discarded accordingly, to 
minimize errors.

An electronic notebook outlining this procedure is 
included in Additional files 2  (using Additional file  3), 
but in short, instances are dropped when there are non-
numeric coefficients in the formulas (e.g. SiOx ); one of 
the components listed by the original paper is an ion 
(e.g. Ni(II) or Ni2+ ); and when one of the formulas is 
manually identified as invalid due to text recogni-
tion errors. Common mistakes include Oxygen being 
confused with zero, capital I and/or lowercase l being 
confused with number one, missing battery compo-
nents due to the ChemDataExtractor not recognising 
“–” (dash) as a separator, or one of the formulas being 
manually identified as erroneous when compared to the 
source text.

This data set was also processed using agglomerate 
clustering and the binary and multi-class (5 class) cases 
are visualized in Fig.  6. We applied LR, DT and SVM 
classifiers to these categorical labels, and the classifica-
tion report is provided in Table 3. The model parameters 
are listed in Additional file  1. Once again, Mendeleev 
encoding has represented the materials, which are lin-
early separable, with outstanding precision, recall and 
accuracy (see confusion matrices with TP, TN, FP, FN in 

Fig. 6 Visualisation the results of agglomerative clustering of battery 
compounds in the experimental data set, encoded using Mendeleev 
encoding, showing (a) 2 clusters, and (b) 5 clusters

Table 3 Multi-class classification report for logistics regression (LR), decision trees (DT) and support vector machines (SVM) tested on 
the experimental battery compounds data set, encoded using Mendeleev encoding

The accuracy is measured using the F1-score

Classification Algorithm Metric Class 0 Class 1 Class 2 Class 3 Class 4

Precision 1.000 1.000 — — —

LR Recall 1.000 0.997 — — —

Accuracy 1.00 0.998 — — —

Precision 1.000 1.000 — — —

Binary DT Recall 1.000 1.000 — — —

Accuracy 1.000 1.000 — — —

Precision 1.000 1.000 — — —

SVM Recall 1.000 0.998 — — —

Accuracy 1.000 0.999 — — —

Precision 0.996 0.996 0.992 1.000 0.999

LR Recall 0.998 0.992 0.992 1.000 0.996

Accuracy 0.997 0.994 0.992 1.000 0.997

Precision 1.000 0.999 0.996 0.995 1.000

Multi-class DT Recall 1.000 1.000 1.000 1.000 0.999

Accuracy 1.000 1.000 0.998 0.997 1.000

Precision 1.000 1.000 1.000 1.000 1.000

SVM Recall 1.000 1.000 0.988 0.989 0.995

Accuracy 1.000 1.000 0.994 0.999 0.997
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Additional file  1), with excellent sensitivity (TP and FP 
rates) in the AUC-ROC curves in Additional file 1.

We can also see that the feature importance histograms 
are remarkably consistent (see Fig.  7. Both LR and DT 
report O as the most important element in the model, 
with H, F, and C also consistently among the top 4 (occu-
pying the upper nodes in the decision trees in Fig 8), for 
both the binary and multi-class schemes. This consist-
ency gives confidence that the concentration of these 
elements are critical to determining the class of battery 
compounds.

Discussion
The results above confirm the reliability of Mendeleev 
encoding for binary and multi-class separation tasks 
using three algorithms, based of convectional evalu-
ation metrics such as precision, recall, accuracy (see 
Tables 1,  2 and 3) and ROC-AUC sensitivity (see Addi-
tional file  1). The scores are consistently over 95% for 
LR, 98% for DT and 99% for SVM, even with imbalanced 
classes. This detailed comparison also revealed additional 
advantages in terms of efficiency and interpretability by 
using the more expressive and informative features of 
Mendeleev encoding.

Having established that Mendeleev encoding provides 
an effective way to separate complex battery compounds 

without requiring structural information, the question 
remains as to how well these classes reflect the materials 
chemistry? To investigate the relationship between the 
chemical composition of the experimental battery classes 
and the functional properties, we have again used the 
manifold t-SNE mapping for visualisation. The results for 
showing the distribution of anode and cathode materials 
are show in Fig. 9, which can be directly compared with 
Fig. 6. As we can see from this comparison, the applica-
tions as anodes or cathodes has no relation to either the 
binary or multiple classes. These classes are intrinsic, 
though there is evidence for some minor grouping of 
cathode and anode materials in Fig. 9.

The composition of the classes can be distinguished 
by comparing the normalized average features values for 
each class, as shown in Fig. 10. In the case of the binary 
classification in Fig. 10a we can see that there are a large 
number of elements that only appear in Class 0, including 
many Lanthanides and Actinides. Class 0 also has materi-
als with higher concentrations of C, H, and N, while Class 
1 has much higher concentrations of O, Li, Ti, V and P. 
The distributions between classes change when 5 classes 
are separated (Fig. 10b), but similarities with the binary 
classification can be observed, such as Class 2 contain-
ing the highest concentrations of C, H and N, and Class 0 
containing most Lanthanides and Actinides.

While there are multiple ways of encoding materials 
compounds for machine learning applications, Mend-
eleev encoding is straightforward, scientifically intuitive, 
computationally efficient and accurate. Although Mend-
eleev+ produces more accurate models than Mendeleev 
encoding when using simpler algorithms like LR, the per-
formance difference quickly diminishes when the com-
plexity of the classifiers rises: both were able to achieve 
perfect results using SVM. This could be explained by 
the fact that all additional features in Mendeleev+ can be 
derived from Mendeleev encoding, and Mendeleev+ can 
be seen as a transformed feature space by using a fixed 
mapping function on Mendeleev encoding, which is not 
unlike the kernel transformation in SVM.

Mendeleev encoding can be performed using widely 
available informatics platforms, but this study represents 
the first rigorous test that confirms the validity of the 
approach for classification tasks, from both a domain and 
data perspective.

Conclusions
Determining the precise structure of a materials is 
expensive; either in terms of (human or computer) time, 
resources, expertise or infrastructure. The ability to 
explore a materials space before investment of structural 

Fig. 7 Feature importance profiles showing the top 15 features 
of battery compounds in the experimental data set, encoded 
using Mendeleev encoding, for binary classification using a logistic 
regression, and b decision tree classification; and multi-class 
classification using c logistic regression, and d decision tree 
classification
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characterisation has been made has scientific and eco-
nomic advantages.

In this study we have evaluated the use of three struc-
ture-free materials encodings, with increasing chemical 
complexity, for two different supervised classification 
tasks (binary and multi-class classification). Using a 
computational data set of battery compounds we have 
compared one-hot, Mendeleev and Mendeleev+ encod-
ing using three different linear and non-linear classifiers 
based on different logics, and evaluated their perfor-
mance using learning curves, precision, recall, accuracy 
and area under the receiver operating characteristic 
curves to test their sensitivity. We also used the fea-
ture importance rankings exposed by the interpretable 

Fig. 8 a Binary decision tree, and b multi-class decision tree for battery compounds in the experimental data set, encoded using Mendeleev 
encoding

Fig. 9 Distribution of the anode and cathode materials 
across the experimental data set, bearing no relations to the classes 
confirmed from unsupervised learning show in Fig. 6



Page 13 of 16Zhuang and Barnard  Journal of Cheminformatics           (2024) 16:47  

Fig. 10 Normalized average features values for each class in the experimental battery compounds, separated using a binary, and b multi-class 
classification with Mendeleev encoding
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classifiers to show how the different encoding affect the 
model architectures. The decision trees produced by the 
DT algorithms were shown, and the materials data were 
visualised using manifold learning and feature value 
histograms.

Through this comprehensive comparison we find 
that the Mendeleev encoding provides the best bal-
ance between model complexity and performance. This 
encoding, which decomposes the chemical formula into 
features representing the concentration of elements in 
the periodic table, is able to accurately support binary 
and multi-class classification using logistic regression, 
decision trees and support vector machines, for highly 
complex materials compounds with superior consistency 
and interpretability. The scores are consistently over 95% 
for LR, 98% for DT and 99% for SVM, even with imbal-
anced classes.

Future work is planned to determine if this perfor-
mance extends to the prediction of continuous material 
properties using regression, and to other complex mate-
rials such as alloys, where the macroscopic performance 
is known to be intrinsically link to the composition, even 
at low elemental concentrations.
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