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Abstract 

Accurate atom mapping, which establishes correspondences between atoms in reactants and products, is a crucial 
step in analyzing chemical reactions. In this paper, we present a novel end-to-end approach that formulates the atom 
mapping problem as a deep graph matching task. Our proposed model, AMNet (Atom Matching Network), utilizes 
molecular graph representations and employs various atom and bond features using graph neural networks to cap-
ture the intricate structural characteristics of molecules, ensuring precise atom correspondence predictions. Notably, 
AMNet incorporates the consideration of molecule symmetry, enhancing accuracy while simultaneously reducing 
computational complexity. The integration of the Weisfeiler-Lehman isomorphism test for symmetry identification 
refines the model’s predictions. Furthermore, our model maps the entire atom set in a chemical reaction, offering 
a comprehensive approach beyond focusing solely on the main molecules in reactions. We evaluated AMNet’s perfor-
mance on a subset of USPTO reaction datasets, addressing various tasks, including assessing the impact of molecular 
symmetry identification, understanding the influence of feature selection on AMNet performance, and comparing its 
performance with the state-of-the-art method. The result reveals an average accuracy of 97.3% on mapped atoms, 
with 99.7% of reactions correctly mapped when the correct mapped atom is within the top 10 predicted atoms.

Scientific contribution
The paper introduces a novel end-to-end deep graph matching model for atom mapping, utilizing molecular graph 
representations to capture structural characteristics effectively. It enhances accuracy by integrating symmetry detec-
tion through the Weisfeiler-Lehman test, reducing the number of possible mappings and improving efficiency. Unlike 
previous methods, it maps the entire reaction, not just main components, providing a comprehensive view. Addition-
ally, by integrating efficient graph matching techniques, it reduces computational complexity, making atom mapping 
more feasible.

Keywords Atom mapping, Graph matching, Deep learning, Graph representation learning

Introduction
During a chemical reaction, reactant molecules are trans-
formed into products. During this process, the bonds 
between atoms within the molecules are rearranged 
while the composition of the atoms remains unchanged. 
As a result, a precise and direct correspondence known 
as atom mapping, exists between the atoms in the reac-
tants and those in the products. Atom mapping makes 
it possible to identify the reaction center [1], determine 
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bond changes [2], assign reaction operators [3], extract 
reaction templates [4], identify optimal metabolic routes 
[5], and analyze scaffold transformations [6].

Traditional atom mapping methods can be categorized 
into two main categories: common substructure-based 
methods and optimization-based methods. Common 
substructure-based methods utilize algorithms to iden-
tify the maximum common substructure (MCS) and 
then employ post-processing steps to correct the remain-
ing atoms that are not part of the MCS [7–10]. However, 
extracting the MCS is recognized as an NP-hard prob-
lem. On the other hand, optimization-based approaches 
focus on minimizing the number of bonds formed and 
broken during a reaction [11–15]. Some recent studies 
have emerged that combine both methods [16–18]. These 
methods have limitations when it comes to the efficiency 
and accuracy of handling complex reactions, which 
have driven researchers to explore deep learning based 
approaches for atom mapping.

In recent years, with increased data availability and 
computational power, deep learning approaches have 
shown promising results in addressing the atom mapping 
problem. A recent benchmarking study [19] has com-
pared the performance of several existing atom mapping 
methods. This study has shown that RXNMapper [20], 
a data-driven method that was built over a transformer 
neural network architecture [21], outperforms other 
methods. RXNMapper utilizes the simplified molecu-
lar-input line-entry system (SMILES) representation for 
molecules. Utilizing an attention-guided approach, it 
maps the primary component of product atoms to reac-
tant atoms, learning atom correspondence through atten-
tion weights derived from BERT (Bidirectional Encoder 
Representations from Transformers) [22], eliminating 
the need for labeled data during training. Subsequently, 
another noteworthy study introduced GraphormerMap-
per [23], a method that integrates a graph-based trans-
former with transformers to achieve atom mapping. 
The process of atom mapping begins by incorporating 
SMILES embeddings, degree of centrality, and pairwise 
atom distance to generate molecule embeddings. These 
embedded molecules are then inputted into a BERT 
model to learn atom relations within reactions. The iden-
tification of atom correspondences is achieved by averag-
ing attention weights.

RXNMapper and GraphormerMapper, while showcas-
ing strengths in addressing atom mapping challenges, 
exhibit certain limitations. Firstly, both methods do not 
consider molecule symmetry. Due to molecule symmetry, 
it is possible that a single chemical reaction has multiple 
valid atom mappings. Understanding and accounting for 
atoms with the same chemical environment and identical 
properties, known as topologically equivalent atoms [24], 

are essential steps in ensuring accurate and meaningful 
comparisons of atom mappings. Furthermore, RXN-
Mapper’s unsupervised nature demands a vast dataset 
of unlabeled chemical reactions to capture intricate rela-
tionships in complex reactions. Additionally, mapping 
the main component of the product atoms to reactant 
atoms and reordering atoms makes it difficult to compare 
the predicted atom mapping with ground truth and use it 
on downstream tasks. On the other hand, Graphormer-
Mapper’s efficacy depends on the quality of SMILES 
embeddings, introducing a potential limitation if these 
embeddings fail to accurately capture molecular nuances. 
Moreover, the combined complexity of graph-based and 
standard transformers in GraphormerMapper poses 
computational challenges.

To mitigate these issues, we take a different direction 
in this work to tackle the atom mapping problem by 
casting it as a graph matching problem. Graph match-
ing is the process of identifying an optimal mapping 
between the nodes of two graphs. The goal of graph 
matching is to establish a mapping between nodes in the 
source graph and nodes in the target graph that maxi-
mizes the similarity between the corresponding nodes 
in the two graphs. Node similarity in graph matching 
can be computed using various similarity measures, 
including dot product and cosine similarity. These 
measures assess the similarity between nodes based on 
attributes or features associated with them [25].

Our proposed method utilizes deep learning mod-
els for graph matching to identify similarities between 
atoms based on their features [26–28]. Learning graph 
matching is the process of finding a model that can pre-
dict a match between two pairs of graphs from data [26, 
29–31]. A fundamental tool for extracting meaningful 
affinities from graphs is the application of graph neural 
networks (GNNs), which are well-suited for handling 
graph-structured data and capturing complex relation-
ships between nodes [32]. GNNs enable us to efficiently 
find the mapping between reactant and product atoms, 
thereby facilitating accurate atom mapping in chemical 
reactions.

The contributions of this paper can be summarized as 
follows:

• Proposing an end-to-end deep graph matching 
model for atom mapping: Our proposed model 
processes molecular graphs directly. This graph-
based representation harnesses the structural char-
acteristics of molecules, including atom and bond 
properties, making it well-suited for the analysis of 
chemical reactions.

• Enhancement of atom mapping accuracy through 
symmetry detection: We adapt the Weisfeiler-
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Lehman test to improve the accuracy of predicted 
atom mapping by incorporating molecular symme-
try detection. This approach reduces the number of 
possible mappings, leading to enhanced accuracy 
and efficiency in atom mapping.

• Fully mapped atom mapping model by consider-
ing the whole atoms in reactions: Our proposed 
method maps the entire reaction, not just the main 
components in the reactant or product.

• Reduced computational complexity: Through the 
integration of efficient graph matching techniques 
and symmetry consideration strategies, our model 
mitigates the computational complexities typically 
associated with atom mapping.

Atom mapping through deep graph matching
Atom mapping problem
Atom mapping of chemical reactions refers to the 
process of tracking and assigning direct connections 
between atoms in the reactant molecules and their 
corresponding atoms in the product molecules. This 
one-to-one correspondence provided by atom map-
ping enables us to precisely determine which atoms in 
the reactants are transformed into specific atoms in the 
products during a chemical reaction.

Graph representation of molecules is a natural way to 
represent molecules. Figure  1a represents a chemical 
reaction, and Fig. 1b shows its corresponding graphical 
representation of the atom mapped reaction.

To construct graphs from molecules, we represent 
each atom in the molecule as a node, and two nodes 
are connected if exist chemical bonds between these 
atoms. Each graph G(V, A, X, E) is composed of a set of 
atoms V, an adjacency matrix A ∈ {0, 1}|V |×|V | , an atom 
feature matrix X ∈ R|V |×|NF | , and a bond feature matrix 
E ∈ R|V |2×|EF | ; where the length of the atom feature and 
bond feature are denoted by |NF | and |EF | , respectively.

To establish a precise correspondence between atoms 
in the reactant and product molecules, we define a 
mapping function M that assigns a unique label to 
each atom in the reactant molecules GR(VR,AR,XR,ER) , 
such that the corresponding atom in the product mol-
ecules GP(VP ,AP ,XP ,EP) receives the same label, 
M : VR → VP . This mapping function M ensures 
that each atom in the reactant molecules is uniquely 
mapped to a corresponding atom in the product mol-
ecules, preserving connectivity and atom types. We 
represent this mapping using a binary correspondence 
matrix denoted as M ∈ {0, 1}|VR|×|VP | , where M[i, i′] = 1 
if node i in the reactant graph corresponds to node i′ in 
the product graph and 0 otherwise.

However, many molecules are symmetric, leading 
to the possibility of multiple valid atom mappings for a 
single reaction. Identifying atoms with the same chemi-
cal environment and identical properties is essential for 
atom mapping tasks. Essentially, the presence of these 
atoms, known as topologically equivalent atoms, intro-
duces additional complexity to atom mapping tasks when 
multiple valid mappings are possible. For example, in 
Fig. 1, the carbon atoms 1 and 5, as well as 2 and 4 are 
topologically equivalent. As a result, four distinct possi-
ble atom mappings can be derived: 

 i. 1 → 1, 2 → 2, 4 → 4, 5 → 5

 ii. 1 → 5, 2 → 2, 4 → 4, 5 → 1

 iii. 1 → 1, 2 → 4, 4 → 2, 5 → 5

 iv. 1 → 5, 2 → 4, 4 → 2, 5 → 1

In this example, mappings ii and iii are less favorable 
than mappings i and iv since they introduce additional 
bond edits. However, the challenge arises from the fact 
that no atom mapping method can definitively determine 
whether to map 1 → 1 or 1 → 5 (i and iv), leading to 
ambiguity in selecting the correct mapping.

Fig. 1 a A reaction example; b Graphical representation of one possible atom mappings. All hydrogen atoms connected to carbon atoms are 
omitted to simplify the figure
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Learning graph matching
Learning graph matching involves the process of devel-
oping models that can predict matches between pairs of 
nodes in two graphs based on data. These models utilize 
node features to extract relevant information for match-
ing and apply learned knowledge to new graph matching 
problems.

In the context of deep graph matching methods, the 
core concept revolves around creating an end-to-end 
learning model. This model aims to extract meaningful 
affinities from graphs using differentiable optimization 
techniques. A key tool in achieving this goal is the uti-
lization of Graph Neural Networks (GNNs), well-suited 
for handling graph-structured data and capturing intri-
cate relationships between nodes [32]. GNNs empower 
us to efficiently determine the mapping between reac-
tant and product atoms, thereby facilitating precise 
atom mapping in chemical reactions.

GNNs are a class of neural networks designed spe-
cifically for learning from graph-structured data. Unlike 
traditional neural networks that operate on fixed-dimen-
sional data such as images and sequences, GNNs can 
handle data represented in the form of graphs. The power 
of GNNs lies in their ability to capture complex relation-
ships and dependencies between nodes in a graph.

In GNNs, neighboring nodes interact and exchange 
information iteratively through message passing. This 
information typically includes node features, edge features, 
and the adjacency matrix. Node features are gathered in a 
matrix containing features representing each node in the 
graph. In the context of molecular graphs, these features 
could include information about the atom type and atomic 
properties. Similarly, the edge features matrix contains fea-
tures representing the edges in the graph. These features 
could include information about bond properties such as 
bond type, bond length, etc. The adjacency matrix, on the 
other hand, is a binary matrix representing the connec-
tions between nodes (atoms) in the graph. The entry (i, j) 
in the adjacency matrix is 1 if there is an edge between 
node i and node j and 0 otherwise.

The message passing process in GNNs involves updat-
ing node features at each step by aggregating informa-
tion from each node i and its neighbors, denoted by j, as 
shown in Eq. 1:

where h(0)i  and e0ij are the initial node feature and edge 
feature, respectively. Index j belongs to the set of neigh-
bors of the node i. The update is a differentiable function, 
and aggregate is a permutation invariant operator. Vari-
ous aggregation and updating functions can be applied, 
including mean, max, and sum.

(1)
h
(t)
i = update(h

(t−1)
i , aggregate(h

(t−1)
i , h

(t−1)
j , e

(t−1)
ij )),

By repeatedly applying the message passing process 
for several steps, GNNs effectively learn to encode both 
the graph structure and node features into meaningful 
embeddings. Therefore, these node embeddings encap-
sulate valuable structural and semantic information, 
making them highly effective for graph comparison and 
matching tasks based on their learned representations.

Various neural architectures have been proposed to 
address the task of graph matching and graph similarity 
by learning from data. Some methods focus on compar-
ing whole graphs to identify graph similarity such as [28, 
33, 34]. On the other hand, some methods are designed 
to work by matching nodes, mainly for the purpose of 
graph matching, like what’s discussed in references such 
as [26, 35, 36].

Identifying topologically equivalent atoms 
with Weisfeiler‑Lehman test
Topologically equivalent atoms are atoms within a mol-
ecule that have the same chemical environment and 
exhibit identical properties in a given chemical context. 
In other words, topologically equivalent atoms share 
the same connectivity and bond arrangement with their 
neighboring atoms, leading to similar chemical behav-
iors. By recognizing these topologically equivalent atoms, 
we can overcome atom mapping ambiguities and ensure 
accurate correspondence between reactants and prod-
ucts, particularly in complex reactions involving large, 
symmetric molecules.

In this study, we utilize an adaptation of the Weisfeiler-
Lehman (WL) test for identifying topologically equiva-
lent atoms within a molecule. The WL test is an algorithm 
used for graph isomorphism testing [37]. The WL algo-
rithm works by iteratively refining the labels of the nodes 
in the graph based on the neighborhoods of each node. 
During each iteration, the algorithm computes a hash of 
each node’s neighborhood and assigns the hash as a new 
label to that node. This process is repeated for a predeter-
mined number of iterations. The final labelings for both 
graphs are then compared, and if they are identical, it 
indicates that the graphs are likely isomorphic.

We consider two atoms to be topologically equivalent 
if they have the same atomic symbol and their three hop 
neighbors are the same. In contrast to [24], topologically 
equivalent atoms are defined as those of the same ele-
ment, connected to the same atom, and not connected to 
any other atom. Further details of this identification pro-
cess are available in Appendix A.

Figure 2 illustrates the process of identifying molecular 
symmetry using the WL test. In the initial step ( I = 0 ), 
atoms have their actual atomic symbols. Subsequently, in 
step I = 1 , neighbor atomic symbols are augmented for 
each atom. In the subsequent iteration, denoted as I = 2 , 
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the process is further illustrated in the figure. This itera-
tion represents the next step in the WL test, where node 
labels are refined based on the augmented information 
from the neighborhoods. In this example, after one itera-
tion, topologically equivalent atoms can be identified. 
Figure 2 bottom visually represents the successful detec-
tion of topologically equivalent atoms by our proposed 
WL test. In Fig. 2b, carbon atoms sharing the same color 
are topologically equivalent, and Fig.  3c shows that our 
adapted WL test provides the same atom mapping num-
ber for topologically equivalent atoms.

After applying the Weisfeiler-Lehman test and detect-
ing topologically equivalent atoms within the molecular 
graph, we organize this information into sets to leverage 
it during the network training process. Each set repre-
sents a group of topologically equivalent atoms within 
the molecule. Specifically, a set will contain at least one 
element if there are no other topologically equivalent 
atoms present in the molecule. On the other hand, if 
there are multiple topologically equivalent atoms in the 
molecule, the set will include more than one element.

Atom matching network
In order to find a correspondence between two molecular 
graphs, we proposed a graph-based neural network archi-
tecture. This model, which we named Atom Matching 

Network (AMNet), aimed to provide efficient atom map-
ping solutions. Figure 3 illustrates the workflow of AMNet. 
The process consists of multiple steps involving graph gen-
eration, symmetry identification, and feature matching.

The initial step involves transforming molecular struc-
tures into graphs, incorporating atom and bond features 
that encapsulate their distinctive attributes. The molecular 
graph is then processed by Graph Isomorphism Networks 
(GIN) [38]. GINs are a type of graph neural network that 
is particularly effective in capturing complex relationships 
between nodes. GIN enables the transformation of each 
node within the input molecular graph into an embedding 
space. These node embeddings capture both the topologi-
cal structure of the nodes and their features.

To achieve this embedding, a shared weight neural net-
work, represented by GNN in Fig.  3, takes as input the 
adjacency matrices of both molecular graphs ( AR and 
AP ), as well as their node features ( XR and XP ) and edge 
features ( ER and EP ). Subsequently, this GNN generates 
node embedding representations of each graph ( HR and 
HP for the reactant molecular graph and the product 
molecular graph, respectively).

(2)
HR = GNN(AR,XR,ER),

HP = GNN(AP ,XP ,EP).

Fig. 2 Top: three iterations of the adapted WL test, showcasing the progressive augmentation of node labels. Bottom: a An example of a molecule 
with symmetry in which carbon atoms colored with the same color are topologically equivalent; b Detected topologically equivalent atoms by our 
proposed WL test
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This process brings both molecular graphs into the same 
space; therefore, pairwise matching scores can be com-
puted between the nodes of GR and GP using a similarity 
function (e.g., dot product), which takes as input the fea-
tures of two vectors, and its output is a scalar similarity 
score. These pairwise matching scores are stored in the 
initial correspondence matrix M̂ . Each element M̂i,i′ of 
the matrix corresponds to the matching score between 
the i − th node in GR and the i′ − th node in GP.

Then, to obtain the pairwise matching probabilities, 
we normalize the matrix M̂ row-wise. The normalized 
matrix M̃ has entries given by:

where i ∈ VR and i′ ∈ VP.
In other words, the matrix M̃ can be interpreted as a 

correspondence matrix that assigns a probability to each 
pair of nodes in GR and GP , indicating the likelihood of 
each node in GR being matched with each node in GP.

Then, to avoid penalizing the model for failing to dis-
tinguish between topologically equivalent atoms, we take 
advantage of molecular symmetry information explained 
in Sect. 2.3. We apply the WL test to M̃ to obtain M. This 
approach recognizes the inherent symmetry and allows 
the model to focus on distinguishing between non-top-
ologically equivalent atoms, resulting in a more efficient 
and accurate atom mapping process.

We train the model using ground truth correspond-
ence matrices, which are matrices indicating that atom 

(3)M̂ = �HR,HP�.

(4)M̃i,i′ =
exp(M̂i,i′)∑|vR|
k=1 exp(M̂k ,i′)

,

index i in the reactant corresponds to atom index i in the 
product. This ground truth matrix is referred to as πgt(·) . 
Throughout the training process, our objective is to mini-
mize the negative log-likelihood of correct correspond-
ence scores, as depicted by Eq. 5.

Experiments
Setup
Data: To determine how well our proposed model can 
identify the atom correspondence between reactants and 
products, we analyzed 15,000 reaction examples obtained 
from [1]. This dataset was sourced from the United States 
Patent and Trademark Office (USPTO) reaction data [39]. 
Each line in the dataset includes the reaction SMILES 
string and four types of reaction edits (atoms that lost 
hydrogen, atoms that obtained hydrogen, deleted bonds, 
and added bonds). The model was trained, validated, and 
tested using 70%, 10%, and 20% split of the data, respec-
tively. We aim to compute the atom mappings for all non-
hydrogen atoms.

In this dataset, on the product side, reagents and cata-
lyzers are excluded. To balance reactions, meaning that 
the number and types of atoms on the reactant side are 
identical to those on the product side, we construct prod-
ucts by applying reaction edits to the reactants. Reac-
tion edits involve modifying the structure of the reactant 
graphs to create product graphs. After constructing the 
products, we first validate them by checking for valence 
constraints and then compare the main components of 

(5)L = −
∑

i∈VR

log(Mi,πgt(i)).

Fig. 3 Workflow of AMNet for atom mapping: AMNet utilizes a combination of feature matching, molecular symmetry identification, 
and correspondence refinement to establish correspondences between atoms in the reactant graph and product graph. The process involves: (i) 
Transforming molecular structures into graphs and generating node embeddings to capture structure and features. (ii) Pairwise matching scores are 
computed between reactant and product embedded graphs, (iii) yielding the initial correspondence matrix. (iv) Normalizing this matrix provides 
matching probabilities. (v) Symmetry identification by the Weisfeiler-Lehman test
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the generated products with the original products from 
the dataset. As a result, atom indices within the reactants 
and products are aligned with their corresponding atom 
mapping numbers within the dataset. This characteristic 
potentially leads to predictions being overly optimistic 
due to their reliance on atom positions. To mitigate this 
issue, we remapped reactions in the dataset to eliminate 
atom position dependence. Further details of this process 
are available in Appendix B.

Feature extraction In order to generate graphs from the 
molecules, a wide range of atom and bond features are 
used. These features are computed using the RDKit open-
source package and are represented as one-hot encod-
ings. These one-hot encoded features are concatenated to 
create a comprehensive representation of the molecular 
structure. This concatenated feature vector encapsulates 
detailed information about the atoms and bonds present 
in the molecule, allowing the model to capture and ana-
lyze the intricate characteristics of the molecular struc-
ture effectively. Tables  1 and  2 detail the atom features 
and bond features, respectively. The “Size” column in 
Tables 1 and 2 represents the dimensionality of each one-
hot encoded feature vector.

Evaluation To evaluate the performance of the model, 
we report the percentages of correctly mapped reactions 
at the top@1, top@3, top@5, and top@10 and the aver-
age accuracy of the prediction on the test dataset. Top@k 
indicates the number of reactions correctly mapped when 
the mapped atom is correct in the first top k prediction. 
The average accuracy of atom mapping is calculated by 
summing up the accuracy of the predicted atom mapping 
of each reaction and then dividing it by the total number 
of reactions in the test set. We assess AMNet across vari-
ous tasks. In our initial task, our primary objective was 
to evaluate the effect of identifying molecular symmetry 
on atom mapping predictions. This experiment involves 
comparing models that incorporate the identification of 

molecular symmetry with those that do not. Our sec-
ond task explores understanding the influence of feature 
selection on the performance of the AMNet. This step 
is crucial in understanding how the choice of features 
impacts the accuracy and overall quality of our atom 
mapping predictions. For our final evaluation, we employ 
a subset of the Golden dataset [19], which is widely rec-
ognized in the assessment of different atom mapping 
approaches, to ensure a fair comparison with RXNMap-
per [20]. The decision not to directly compare AMNet 
and RXNMapper on the USPTO dataset stems from 
RXNMapper’s training process, which involved training 
on the USPTO dataset itself. Given that we partitioned 
the USPTO dataset into distinct training and testing sets 
for AMNet, there is uncertainty about whether the sub-
set we used for testing overlapped with RXNMapper’s 
training data.

Implementation Our model is implemented in PyTorch, 
utilizing the PyTorch Geometric [40] libraries. The imple-
mentation process is conducted in parallel on GPUs within 
a high-performance computing environment. To optimize 
the model’s performance, we examined various hyper-
parameter settings. The results indicate an embedding 
dimension of 512, along with a total of 3 message pass-
ing layers, yielded the most favorable outcome. Through-
out all experiments, to create a standardized benchmark 
for comparison, we ensured the hyperparameter settings 
remained consistent. Optimization is achieved using the 
ADAM optimizer with a fixed learning rate of 0.0001. To 

Table 1 Atom Features

Feature Description Size

Atom Type Atom type 64

# Heavy Neighbors 0, 1, 2, 3, 4, More than four 6

Formal Charge -3, -2, -1, 0, 1, 2, 3, Extreme 8

Hybridization s, sp, sp2, sp3, sp3d, sp3d2, Other 7

Explicit Valence 1, 2, 3, 4, 5, 6 6

Is In Ring Whether atom is part of a ring 1

Aromaticity Whether atom is part of an aromatic group 1

Atomic Mass Scaled Normalized atom mass 1

VDW Radius Scaled Normalized van der waals radius 1

Covalent Radius Scaled Normalized covalent radius

Chirality Type Unspecified, Tetrahedral CW, Tetrahedral CCW, Other 4

# Hydrogen 0, 1, 2, 3, 4, More than four 6

Table 2 Bond Features

Feature Description Size

Bond Type Single, double, triple, or aromatic 4

Conjugated Whether the bond is conjugated 1

In Ring Whether the bond is part of a ring 1
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prevent overfitting of the model, we applied the early stop-
ping method to our training process. We employ a strategy 
known as Jumping Knowledge [41], which is the concat-
enation of node embeddings from each iteration of the 
message-passing layer.

Effect of molecule symmetry identification
In this experiment, we investigated how the identification 
of molecular symmetry affects atom mapping prediction 
by comparing models with and without the identification 
of molecular symmetry.

Table  3 presents the performance evaluation of two 
models on the USPTO-15k test dataset. The result high-
lights that the incorporation of molecule symmetry iden-
tification significantly enhances the performance of the 
AMNet model for atom mapping. When symmetry is con-
sidered, the model exhibits an average accuracy of 97.3% 
and predicts 99.7% of reactions correctly when the correct 
mapped atom is on top@10 of the predicted atoms.

To enhance our comprehension of how our model pre-
dicts atom correspondence, we provide an illustrative 
example in Fig. 4. This example illustrates a mapped reac-
tion along with the corresponding predicted matrices. 
Without considering symmetry, the model struggles to 
distinguish between potential mappings. However, with 
symmetry identification, the model resolves ambiguity 
by recognizing equivalent atoms and selecting one cor-
rect mapping from two possibilities. As can be seen from 
this example, it becomes evident that the correspondence 
matrix predicted without symmetry identification exhib-
its some degree of uncertainty in its predictions (Carbon 
5,6 in reactant and Carbon 4,5 in product).

Investigation of feature selection impact
In the second experiment, we examined how various 
atom and bond features affect the performance of the 
model. Specifically, we aimed to determine how distinct 
combinations of atom and bond features can impact the 
atom correspondence prediction. We selected various 
atom features from Table  1, coupled with the option of 
including or excluding certain bond features.

For each configuration, we trained and assessed the 
model’s performance using the same set of chosen features. 

Surprisingly, our findings indicate that the presence or 
absence of bond features does not have a significant influ-
ence on prediction accuracy. One plausible explanation 
for this observation lies in the architecture of the model 
itself. Our model utilizes message passing networks, which 
inherently consider information about neighboring nodes 
during the prediction process. In doing so, they implic-
itly incorporate bond information as well. This means 
that even when bond features are excluded, the model is 
still capable of capturing some bond-related information 
through its consideration of neighboring atoms.

The results of experiments on various choices of atom 
features when excluding bond features are summarized in 
Table 4. Remarkably, by choosing selected atom features 
to the “whole” atom features from Table  1, the predic-
tion consistently emerges as the most effective predictor 
across performance metrics. Notably, excluding essential 
features, like atom type, severely impacts the model’s per-
formance. The table highlights the significance of specific 
features. For instance, considering the whole atom fea-
tures but excluding explicit valence information results 
in a noticeable drop in accuracy, emphasizing the impor-
tance of this feature. Similarly, evaluating atom type 
along with aromaticity, explicit valence, and chirality type 
collectively enhances performance.

Evaluation on the golden dataset subset
To compare the performance of our proposed model 
with RXNMapper [20], we used the Golden dataset [19], 
which was originally collected with the aim of bench-
marking atom mapping tools. The full dataset consists 
of 1851 annotated reaction SMILES, for which manu-
ally curated atom maps are provided. Our comparison 
specifically concentrated on a subset of the dataset that 
contains balanced reactions. Therefore, any conclusions 
we obtain are specific to this particular atom mapping 
objective.

RXNMapper initially maps product atoms to reactant 
atoms, which results in an unwanted permutation of the 
order of atoms in reactants and products. To compare 
the predictions by RXNMapper with manually curated 
data, we standardized the output to remove the effect of 
this permutation. Further detail of this standardization 
are available in Appendix C.

We assessed the accuracy of a method in predicting 
atom mappings for a reaction by evaluating the com-
plete alignment of its predicted atom mappings with the 
ground truth mapped reaction. In other words, a method 
is considered accurate when the predicted pair atom cor-
respondence can be found in ground truth atom corre-
spondences. Our proposed model achieved an accuracy 
of 83.3% in atom mapping predictions. The percentage of 
correctly mapped reactions when the correct atom was 

Table 3 Performance of the AMNet with and without molecule 
symmetry identification

The highest average accuracy and Top@k are highlighted in bold font

Symmetry Avg. Acc. %Top@1 %Top@3 %Top@5 %Top@10
(%)± std (%)± std (%)± std (%)± std (%)± std

Yes 97.3± 0.1 66.2± 0.1 96.6± 0.0 99.3± 0.0 99.7± 0.0

No 83.7± 0.2 43.8± 0.2 79.9± 0.1 96.2± 0.0 98.7± 0.0
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mapped by RXNMapper was 79.5%. Figure 5 showcases 
a scenario where RXNMapper incorrectly predicts atom 
mapping, while AMNet makes the correct prediction.

Efficiency assessment and computational complexity
A comparative analysis with existing models highlights 
notable advantages in terms of training times and hard-
ware requirements. To illustrate, the Graphormermapper, 

Fig. 4 a A chemical reaction example, numbers determine atom indices. b Predicted correspondence matrix without considering molecular 
symmetry; c Predicted correspondence matrix with considering molecular symmetry. If two atoms are in correspondence, the heat map color 
is red (the maximum value is one); otherwise, the color is blue (the minimum value is zero). If the model cannot make a decision, it predicts values 
between 0 and 1. For example, in the case of topologically equivalent atoms, the predictions are orange (atoms 5 and 6 in the reactant)

Table 4 Performance of the AMNet using various choices of features on USPTO-15k test set

The highest average accuracy and Top@k are highlighted in bold font

Selected Avg. Acc. %Top@1 %Top@3 %Top@5 %Top@10
Atom feature (%)± std (%)± std (%)± std (%)± std (%)± std

Whole 97.3± 0.1 66.2± 0.1 96.6± 0.0 99.3± 0.0 99.7± 0.0

Whole - Atom type 47.3± 0.5 0.6± 0.4 4.5± 0.7 12.9± 0.7 27.4± 0.6

Whole - # heavy neighbors 97.2± 0.1 60.4± 0.1 92.2± 0.0 98.1± 0.0 99.6± 0.0

Whole - Formal charge 97.1± 0.1 58.1± 0.1 93.0± 0.0 98.2± 0.0 99.5± 0.0

Whole - hybridization 97.1± 0.1 59.5± 0.1 93.1± 0.0 97.8± 0.0 99.6± 0.0

Whole - explicit valence 69.8± 0.3 1.5± 0.3 20.8± 0.2 46.0± 0.1 77.8± 0.0

Whole - is in ring 97.2± 0.1 58.9± 0.1 93.1± 0.0 98.2± 0.0 99.6± 0.0

Whole - aromaticity 93.0± 0.2 35.8± 0.2 72.1± 0.1 83.2± 0.1 90.8± 0.1

Whole - atomic mass scaled 97.2± 0.1 60.8± 0.1 93.5± 0.0 98.1± 0.0 99.6± 0.0

Whole - VDW radius scaled 97.2± 0.1 60.3± 0.1 93.5± 0.0 97.8± 0.0 99.7± 0.0

Whole - covalent radius scaled 97.1± 0.1 58.1± 0.1 93.0± 0.0 98.2± 0.0 99.5± 0.0

Whole - chirality type 40.3± 0.4 0.4± 0.1 2.4± 0.4 8.1± 0.4 25.7± 0.3

Atom type 95.3± 0.1 35.5± 0.1 87.7± 0.0 94.8± 0.0 98.9± 0.0

Atom type + aromaticity + explicit 
valence+ chirality type

96.4± 0.1 61.3± 0.1 94.1 ± 0.0 98.5 ± 0.0 99.5 ±0.0
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detailed in [23], demanded an extensive 36-hour train-
ing period, relying on a sophisticated configuration 
with 8 NVIDIA A100 GPUs, 40 CPU cores, and 100 GB 
of RAM. Similarly, Rxnmapper, utilizing the ALBERT 
model as outlined in [20], required a substantial 48-hour 
training duration, utilizing a single Nvidia P100 GPU.In 
contrast, our model demonstrates remarkable efficiency, 
completing training in just two to three hours using a sin-
gle GPU and requiring only 20 GB of RAM.

Conclusion
In this work, we have presented a novel approach to 
addressing the atom mapping problem in chemical 
reactions by casting it as a graph matching problem. 
Our model processes molecular graphs directly, which 
makes it possible to take advantage of the inherent 
characteristics of molecules, such as atom and bond 
properties. The model’s incorporation of symmetry 
awareness leads to improved accuracy and efficiency in 
atom mapping. Its end-to-end architecture eliminates 
the need for prior chemistry expertise, making pre-
dictions without any heuristic techniques or post-pro-
cessing steps. Additionally, the model’s integration of 
efficient graph matching techniques and deep learning 
strategies enhances computational efficiency, address-
ing a common challenge in atom mapping.

In experiments, we systematically explored the 
effect of molecular symmetry identification and vari-
ous choices of atom and bond features on model per-
formance. This investigation allowed us to uncover the 
intricate relationship between feature selection and 
prediction accuracy. These insights contribute not only 
to refining our model but also to advancing our com-
prehension of how specific molecular attributes influ-
ence prediction accuracy.

Future work in this research area holds exciting pos-
sibilities. Firstly, exploring the application of our model 
with other datasets beyond the current one will help val-
idate its performance across diverse chemical reactions, 
potentially uncovering new insights and challenges. 
Additionally, investigating more complex similarity 
metrics, such as nonlinear similarity measures, can fur-
ther refine the model’s ability to identify atom corre-
spondences with higher precision and accuracy.

Appendix A
We utilized an adapted version of the Weisfeiler-Lehman 
test to identify topologically equivalent atoms within a mol-
ecule. The criterion for considering two atoms as topologi-
cally equivalent is that they have the same atomic symbol 
and identical three-hop neighbors. Algorithm  1 outlines 
the process of identifying topologically equivalent atoms.

Fig. 5 Comparison of a sample reaction where AMNet prediction is matched with ground truth and RXNMapper predicts wrong. Blue circles show 
the atoms are correctly mapped and the red circle shows the mis-mapping
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Algorithm 1 Equivalent atoms identification

Algorithm 2 describes the adapted version of the Weis-
feiler-Lehman test in one molecular graph. In this algo-
rithm, we initiate the process by initializing atom labels 
with their corresponding atomic symbols. Subsequently, 
we iteratively update these labels based on the atomic 
symbols of their neighbors. This iterative process contin-
ues for a predefined number of iterations.

Algorithm 2 Weisfeiler-Lehman algorithm in one molecule

Appendix B
The dataset is unbalanced as reagents and catalysts are 
excluded from the product side. Furthermore, atom 
mapping information is obtained through reaction 
edits. To guarantee balanced reactions and establish 
mapping numbers for product atoms, we engaged in 
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the modification of reactants using reaction edits. Dur-
ing this phase, atom indices align with atom mapping 
numbers. However, this alignment introduces the risk 
of overly optimistic predictions due to reliance on atom 
positions, prompting the necessity for a subsequent 
remapping of reactions to eliminate such dependency. 
This iterative process ensures a more robust and unbi-
ased representation for predictive modeling. Figure  6 
provides a visual representation of an exemplary reac-
tion extracted from the dataset, showcasing the process 
of product generation through reaction edits and subse-
quent remapping.

Appendix C
To compare the prediction by RXNMapper with manu-
ally curated data, since RXNMapper permutes the order 
of atoms in reactants and products, we standardized the 

output. Figure 7 illustrates an example of a mapped reac-
tion from the Golden dataset and its corresponding atom 
mapped by RXNMapper. As the reactant and product 
graphs are isomorphic (depicted as R with R′ and also P 
with P′ in Fig. 7), an exact mapping of atoms in R → R′ 
and P → P′ is achievable. We denote these mappings as 
MRR′ and MPP′.

The predicted mappings by RXNMapper and 
the ground truth mappings are denoted as M∗ and 
MGT  , respectively. For each atom pair i in R and i′ in 
R′ , and for each pair of atoms j in P and j′ in P′ , we 
establish the relationships: j → MGT [i] , j′ → M∗[i′] , 
i′ → MRR′ [i] , and j′ → MPP′ [j] . Additionally, we ensure 
MRR′ [i] → MPP′ [MGT [i]].

It should be noted that, due to molecule symmetry, 
there can be several matchings from R to R′ and P to P′ . 
To consider these possible matches, we define a set of 
all valid matches in MRR′ and MPP′.

Fig. 6 Illustration of an example reaction extracted from the dataset, including the product generation and remapping processes. (a) Original 
reactant from the dataset; (b) Original product from the dataset, (c) Generated product using reaction edits; (d) Rearranged product. The small 
numbers in the molecules represent the atom index, while larger numbers show atom mapping index
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