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Abstract   
Among the various molecular properties and their combinations, it is a costly process to obtain the desired 
molecular properties through theory or experiment. Using machine learning to analyze molecular structure 
features and to predict molecular properties is a potentially efficient alternative for accelerating the predic-
tion of molecular properties. In this study, we analyze molecular properties through the molecular structure 
from the perspective of machine learning. We use SMILES sequences as inputs to an artificial neural network 
in extracting molecular structural features and predicting molecular properties. A SMILES sequence com-
prises symbols representing molecular structures. To address the problem that a SMILES sequence is dif-
ferent from actual molecular structural data, we propose a pretraining model for a SMILES sequence based 
on the BERT model, which is widely used in natural language processing, such that the model learns to extract 
the molecular structural information contained in the SMILES sequence. In an experiment, we first pretrain 
the proposed model with 100,000 SMILES sequences and then use the pretrained model to predict molecular 
properties on 22 data sets and the odor characteristics of molecules (98 types of odor descriptor). The experi-
mental results show that our proposed pretraining model effectively improves the performance of molecular 
property prediction

Scientific contribution   
The 2-encoder pretraining is proposed by focusing on the lower dependency of symbols to the contextual environ-
ment in a SMILES than one in a natural language sentence and the corresponding of one compound to multiple 
SMILES sequences. The model pretrained with 2-encoder shows higher robustness in tasks of molecular properties 
prediction compared to BERT which is adept at natural language.
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Introduction
Molecules as microscopic units constitute macroscopic 
matter, and their properties directly affect the application 
of substances in our daily lives. Depending on the direc-
tion of application, we require different chemical and 
physical properties of molecules, including simple prop-
erties such as hydrophilicity and complex properties such 
as protein binding. The factors that affect these proper-
ties can be traced back to deeper physical principles, but 
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the computational cost is huge for multi-particle systems. 
It takes a long time to obtain complex molecular prop-
erties by adopting either experimental or computational 
chemistry methods. Obtaining molecular properties 
through machine learning is thus being considered.

Machine learning methods have been widely applied 
in chemistry, biology, and material informatics. Machine 
learning approaches have been proposed for the predic-
tion of chemical properties [1, 2], the synthesis of com-
pounds [3, 4], and the prediction of chemical reaction 
products [5]. Although molecular properties are diverse, 
the factors that determine their properties often depend 
on some common key factors such as the hydrophilicity 
of the molecule, whether it contains certain functional 
groups, etc. These common key factors of molecules can 
be quickly calculated, consequently, models such as ran-
dom forest (RF) with inputs of molecular fingerprints 
and molecular descriptors often perform well in pre-
dicting molecular properties (even when the data size is 
small) as shown in [6]. In addition to using feature-based 
methods to infer unknown molecular properties, peo-
ple also attempt to directly summarize features from 
molecular structures with artificial neural networks to 
infer molecular properties. We can roughly divided these 
feature-free methods of extracting features of molecu-
lar structures and predicting molecular properties using 
artificial neural networks into three categories according 
to the type of inputs to the model. The first category uses 
a SMILES (simplified molecular-input line-entry system) 
sequence as the input to the model. A SMILES sequence 
comprises symbols representing the molecular structure. 
The atoms that appear in a molecule are expressed by the 
symbol of their atom type, the substructure of a branch 
chain is represented in brackets ’()’, and the ring structure 
is represented by adding the same number after the start 
atom and end atom of the ring. A SMILES sequence can 
also represent stereo structures using ’ \ ’ and ’/’ for the 
isomers due to double bonds and using ’@’ and ’@@’ for 
optical isomers. As SMILES sequences can be regarded 
as having the same data structure as a sentence, most 
works deal with SMILES sequences using a model devel-
oped for natural language. [7] proposed a model based on 
long short-term memory to predict molecular properties 
and interpreted the results with an attention mechanism. 
[8–11] applied the BERT model [12] to pretrain and pre-
dict molecular properties. [13] used fingerprints con-
verted according to SMILES as inputs and pretrained the 
model with BERT. In addition, models can be pretrained 
with SMILES sequences in a language translation fashion 
by leveraging the fact that different SMILES sequences 
can represent the same molecular structure. [5, 14] 
pretrained a model by translating a SMILES sequence 

to a different SMILES sequence (where the SMILES 
sequences represent the same molecule) with a trans-
former model. The second category uses graph data as 
input to the model. Atoms in a molecule are represented 
as nodes, and chemical bonds are represented as edges. 
The models using graph data as input are mostly graph 
neural network models. Nodes in a graph pass informa-
tion through edges, and the graph neural network [1, 15–
17] can be used to learn the representation of individual 
nodes as well as the representation of the whole graph. 
The third category uses the three-dimensional (3D) geo-
metric structure of molecules as the input of the model 
[18–20]. The inputs of the model include atom types, 
distances between atoms, and angular relationships. This 
type of model is usually used in a manner similar to the 
methods used in computational chemistry and is often 
used to predict more fundamental molecular properties, 
such as the potential energy.

In evaluating the performance of the proposed pre-
training model, we predict 22 molecular properties in 22 
therapeutic datasets by finetuning the pretrained model 
in the experimental part of this study. In addition to the 
22 molecular properties, we are particularly interested in 
the odor characteristics of molecules. Unlike the case for 
other senses, such as vision and hearing, the mechanism 
of olfaction has not been elucidated. We expect to obtain 
the representation of the odor properties of molecules 
that predict odor descriptors (ODs) manually labeled 
to them using artificial neural networks. Studies using a 
molecular structure to predict ODs [21–23] predicted 
few (no more than 20) ODs using feature-based methods, 
such as the support vector machine and random forest 
methods. [24] combined two data sets to predict 138 ODs 
with a graph neural network and achieved an F1 value of 
0.38, and they clustered ODs with the previous layer of the 
output layer. Our previous study [25] used one data set to 
predict 98 ODs with a transformer model and achieved an 
F1 value of 0.36. However, the model in [25] was designed 
to obtain the representation for each OD individually in 
interpreting the substructures that affect it, which does 
not provide a representation of overall odor properties.

This paper focuses on the pretraining embeddings of 
molecules that predict various molecular properties. We 
believe that a simple application of the masked language 
model (MLM) BERT, which is a pretraining model used 
in natural language processing, is insufficient. The contri-
butions of this research are

•	 the proposal of a model for pretraining embeddings 
of SMILES representation,
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•	 the prediction of molecular properties in 22 data sets 
to evaluate the effectiveness of the proposed pre-
training model, and

•	 obtaining the odor representation of molecules by 
predicting 98 kinds of OD.

Method and experiment
Method
In this study, we used SMILES sequences as representa-
tions of molecular structures for model input. Compared 
with inputs in the form of a graph and 3D geometric 
structure, a SMILES sequence does not express the rela-
tionship between atoms as straightforwardly as adja-
cency and distance matrices. It is thus necessary for the 
model to learn the structural information implied in the 
SMILES sequence. Fortunately, this can be done through 
unsupervised learning without manually labeled data. As 
we mentioned in the Introduction, a SMILES sequence 
can represent stereoisomers explicitly with the symbols 
’/’, ’ \ ’, ’@’, and ’@@’. Specifically, the trans and cis isomers 
caused by double bonds can be identified by the direc-
tions of symbols ’/’ and ’ \ ’, and the chirality of optical iso-
mers can be identified by ’@’ and ’@@’. On the contrary, 
identifying stereoisomers is more complicate with adja-
cency and distance matrices. Adjacency matrices can-
not identify stereoisomers at all. Although the difference 
in stereo structure is reflected in the distance between 
atoms, it requires positional relationships between at 
least three atoms, and the interference between atoms 
decays rapidly with increasing distance. Therefore, it may 
be more difficult to make the model learn the difference 
between stereoisomers by distance. At this point, using 
a SMILES sequence as the input of the model can be 
regarded as better than representing stereoisomers using 
adjacency matrices and distance matrices.

SMILES sequences can be treated as sentences in natu-
ral language. In recent years, the transformer model has 
been used in natural language processing with great suc-
cess. The original transformer model [26] was used for 
machine translation. The final tasks for natural language, 
such as semantic analysis and dialogue generation, are 
varied. However, regardless of the specific task, the gram-
mar and meaning of the words remain the same, and 
learning this invariant knowledge in a language through 
pretraining is thus of great help to specific tasks such 
as prediction and generation. The BERT model [12] is 
one of the pretraining models based on the transformer 
model. In this paper, we propose a model for pretraining 
embeddings of SMILES representation that improves on 
the BERT model, and we then fine-tune the pretrained 
model to predict molecular properties.

In the paper of BERT [12], the model was pretrained 
on two tasks, namely the next sentence prediction (NSP) 

and MLM tasks. The NSP task is to predict whether two 
sentences are consecutive. As there is no consecutive 
relationship between two SMILES sequences, we did not 
pretrain our model on the NSP task. The MLM task is to 
recover the words that are masked randomly in the input 
sentence. As shown in Fig. 1, [8] applied the BERT MLM 
to SMILES sequences directly. It is possible for the BERT 
MLM to recover partial symbols of masked SMILES by 
learning the grammar implied in the SMILES sequence, 

Fig. 1  BERT MLM pretraining model

Fig. 2  2-encoder pretraining model
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such as the equal numbers of ’(’ and ’)’ and the possible 
number of branches of an atom type. However, some of 
the atoms or substructures in a molecule are not defi-
nitely related to the remaining part of the molecule. For 
example, an atom bonded to a carbon atom can be any of 
multiple types of atom instead of being limited to a cer-
tain type of atom, and the BERT MLM tends to recover 
the symbol corresponding to the atom most frequently 
occurring, such as ’C’. It is thus impossible for the BERT 
MLM to recover masked SMILES sequences exactly. 
Moreover, it is difficult to recover masked SMILES 
sequences when the masking rate is set higher than 10% 
~20%, which limits the benefits of pretraining.

To solve the above problem, in this paper, we propose 
a pretraining model as shown in Fig. 2. The model com-
prises two encoders. We refer to the proposed model as 
the 2-encoder model in the remainder of the paper. The 
inputs of the first encoder are the canonical SMILES 
sequence and a special character called ’cls’. Through the 
first encoder, the output corresponding to ’cls’ is regarded 
as the molecular embedding, and it is one of the inputs to 
the second encoder. In addition to molecular embedding, 
a SMILES sequence (which represents the same molecule 
corresponding to the SMILES input to the first encoder) 
masked randomly is input to the second encoder, and 
the output of the second encoder is the recovered 
SMILES sequence corresponding to the masked SMILES 
sequence. For the 2-encoder model, as the input SMILES 
sequence to the first encoder is not masked, we assume 
that the molecular embedding contains the exact infor-
mation of the entire SMILES sequence and has the ability 
to recover the masked SMILES sequence input to the sec-
ond encoder accurately. A molecule can be represented 
by different SMILES sequences; e.g., CC(=O)C and 
C(=O)CC represent the same molecular structure. To 
avoid the molecular embedding obtained from the first 
encoder memorizing only the input SMILES sequence 
rather than the molecular structural information, approx-
imately 80% of the SMILES sequence input to the second 
encoder is different from the SMILES sequence input to 
the first encoder. By avoiding the problem in the BERT 
MLM that the masked symbol cannot be fully recovered, 
the molecular embedding obtained using the 2-encoder 
pretraining model is expected to contain the whole 
molecular structure implied in the SMILES sequence.

In the stage of predicting molecular properties, only 
the first encoder in the 2-encoder model is kept; i.e., we 
add a fully connected neural network after the molecular 
embedding to predict molecular properties as shown in 
Fig. 3.

Our proposed 2-encoder model differs from the BERT 
model [8–11] in two main points.

•	 In the second encoder, masked symbols can be 
uniquely determined since molecular embeddings 
are one of inputs which already include information 
of canonical SMILES representing the same mol-
ecule. And the mask rate of 2-encoder model is 50% 
compared with 15% of the BERT model in pretrain-
ing model with MLM task.

•	 A meaningful molecular embedding is achieved in 
the pretraining stage by using 2-encoder model, and 
this may thus reduce the burden of summarizing 
molecular embeddings during the finetuning stage.

Experiment
In evaluating the performance of the 2-encoder pre-
training model, we first pretrained the model by recov-
ering the masked symbols in the SMILES sequence and 
then used the pretrained model to predict molecular 
properties.

In the pretraining stage, we trained the BERT MLM 
shown in Fig.  1 and our proposed 2-encoder model 
shown in Fig.  2. (More specifically, the model structure 
of BERT MLM we used should be the same as that of 
[8, 10, 11], but the tokens for inputs of encoder are dif-
ferent from [10, 11]. As shown in Fig. 1, the tokens used 
for our BERT MLM and [8] are each symbol appearing 
in a SMILES, whereas [10, 11] generated tokens with 

Fig. 3  Model used to predict molecular properties with the input 
of the SMILES sequence
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Byte-Pair Encoder. ) Although the model structures of 
the BERT MLM and 2-encoder are different in the pre-
training stage, they are the same in the fine-tuning stage 
because the 2-encoder model only keeps the first encoder 
to predict molecular properties. In addition, to evaluate 
the effectiveness of pretraining, we trained the model 
shown in Fig. 3 directly to predict the molecular proper-
ties. We refer to this model as the non-pretrained model 
in this paper. We used RDKit to compute the inputs of 
models including converting the canonical SMILES 
sequence to different SMILES sequences expressing the 
same molecular for the 2-encoder model.

The data set used in the pretraining stage was a SMILES 
data set of 100,000 molecules collected from ChEMBL 
[27] (with the SMILES sequence length not exceeding 
100). Table  1 gives the hyperparameter settings that we 
used in the pretraining stage.

In this study, we evaluated the performance of our 
model on data sets provided by Therapeutics Data Com-
mons (TDC) [28]. TDC provides a variety of data sets 
for machine learning, including molecular property pre-
diction, pairwise molecular reaction prediction, and 
compound generation. In addition to data sets, TDC 
also provides leaderboards, where people can upload 
experimental results of their own models to facilitate 
comparison of different models. We predicted molecu-
lar properties of the benchmark group of the ADMET 
properties (absorption, distribution, metabolism, excre-
tion and toxicity properties) in the leaderboards.The 
ADMET group contains 22 datasets (6 datasets of 
absorption properties namely caco2_wang, bioavail-
ability_ma, lipophilicity_astrazeneca, solubility_aqsoldb, 
hia_hou and pgp_broccatelli; 3 datasets of distribution 
properties namely bbb_martins, ppbr_az and vdss_lom-
bardo; 6 datasets of metabolism namely cyp2c9_veith, 
cyp2d6_veith, cyp3a4_veith, cyp2c9_substrate_carbon-
mangels, cyp2d6_substrate_carbonmangels and cyp3a4_
substrate_carbonmangels; 3 datasets of excretion namely 
half_life_obach, clearance_hepatocyte_az and clearance_
microsome_az; 4 datasets of toxicity namely ld50_zhu, 
herg, ames and dili). We loaded datasets and evaluated 
prediction results with functions provided by TDC so 

that the obtained results can be directly compared with 
the results recorded on the leaderboards. Since our pre-
trained model requires that the length of SMILES does 
not exceed 100 due to the size of GPU we used, we sim-
ply truncated the first 100 symbols and used truncated 
SMILES as the inputs of the model. The details of num-
ber of SMILES that length exceed 100 for 22 datasets can 
be found in Table  2. Symbols that do not appear in the 
data set of pretraining are replaced with the ID of the 
mask.

In addition, we predicted the odor characteristics of 
molecules; i.e., ODs. It is difficult to compare different 
models on predicting ODs since there is no free and 
publicly available dataset for hundreds of odor charac-
teristics of molecules. Nevertheless, since molecular 
odor properties may depend on a variety of complex fac-
tors such as local substructure, overall molecular shape, 
etc., we think it is worth reporting the performance of 
the proposed model in predicting ODs in this paper. 
We used the same data set as used in our previous study 
[25], which was provided by TheGoodScentsCompany 
[29]. This data set had 4365 samples, and each mole-
cule was manually labeled with ODs, such as the terms 
fruity and sweet. For most ODs, only a small number of 

Table 1  Hyperparameter settings of pretraining

BERT MLM 2-encoder

Number of encoder layers 8, 10 8, 10

Number of heads 8, 16 8, 16

Dimension of molecular embedding 128, 256 128, 256

Mask rate 0.1 0.5

Learning rate 0.0003 0.0003

dropout rate 0.1 0.1

Table 2  Number of SMILES with a length of exceeding 100

Sample size Number of 
exceeding 
100

ames 7278 28

bbb_martins 2030 98

bioavailability_ma 640 35

caco2_wang 910 89

clearance_hepatocyte_az 1213 17

clearance_microsome_az 1102 3

cyp2c9_substrate_carbonmangels 669 36

cyp2c9_veith 12092 259

cyp2d6_substrate_carbonmangels 667 36

cyp2d6_veith 13130 256

cyp3a4_substrate_carbonmangels 670 38

cyp3a4_veith 12328 232

dili 475 15

half_life_obach 667 76

herg 655 17

hia_hou 578 26

ld50_zhu 7385 23

lipophilicity_astrazeneca 4200 11

pgp_broccatelli 1218 39

ppbr_az 2790 26

solubility_aqsoldb 9982 225

vdss_lombardo 1130 94
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samples were labeled positive in the data set. There were 
nine ODs with more than 400 positive samples, namely 
fruity, sweet, green, floral, woody, herbaceous, fresh, 
fatty, and spicy. We predicted 98 ODs with more than 
50 positive samples in the experiment.

In the experiment on the prediction of molecular prop-
erties, we adopted a cross-validation approach and took 
the average results for comparison of the different models. 
For the pretrained BERT MLM and 2-encoder models, we 
tried three ways to fine-tune them for predicting specific 
molecular properties: training only the last two encoder 
layers and the last fully connected layer, training only the 
last encoder layer and the last fully connected layer, and 
training only the last fully connected layer. The learning 
rate was set at 0.001, 0.0007, and 0.0001 respectively.

Results and discussion
Results of pretraining
For both the BERT MLM and the 2-encoder model, the 
best accuracy of symbol recovery was achieved when 
setting hyperparameters of the dimension of molecular 
embedding to 256, and the accuracy is hardly affected 
by the hyperparameters of the number of encoder layers 
and the number of heads. The accuracy achieved by the 
2-encoder model was 0.98 and that achieved by the BERT 
MLM was 0.92. The results show that even though the 
mask rate set for the 2-encoder model was higher than 
that set for the BERT MLM, the 2-encoder model still 
achieved a better accuracy of recovery.

To compare embedding obtained by these two kinds 
of pretrained model, 5000 canonical SMILES are cho-
sen randomly and their corresponding outputs of the 
first encoder in the 2-encoder model and the encoder in 
the BERT MLM model are visualized in two-dimensional 
space with T-distributed Stochastic Neighbor Embedding 
(t-SNE). Figure 4 shows embedding for different symbols, 
we can see that the embedding obtained by the 2-encoder 
tended to merge symbols have similar meaning together 
compared to BERT MLM (for example, the embedding 

of ’1’, ’2’, ’3’, ’4’, ’5’ are overlapped together for 2-encoder 
model, whereas BERT MLM divided these symbols into 
parts; embedding of ’s’ and ’o’ are closer to each other for 
2-encoder compared to BERT MLM; for symbols used 
to indicate stereo structure, ’ \ ’ and ’/’ are more closer for 
2-encoder model compared to BERT MLM, ’@’ and ’@@’ 
are overlapped with ’H’ for 2-encoder while BERT MLM 
separated them into parts). Then molecular embedding 
which is the output of the first encoder corresponding to 
’cls’ for the 2-encoder model and the results of average 
pooling symbol embedding for BERT MLM are visualized 
as shown in Fig.  5. We can see the 2-dimensional distri-
bution of molecular embedding obtained by BERT MLM 
is clearly dominated by the number of benzene rings and 
the molecular weight. (From top to bottom the number 
of benzene rings in the molecule increases, and from left 
to right the molecular weight increases.) And the visuali-
zation of molecular embedding for the 2-encoder model 
shows that the 2-encoder model enables molecules with-
out benzene rings to cluster together, however, it does not 
show significant distribution trend in the 2D visualization 
according to the number of benzene rings and molecu-
lar weight in general. The molecular embedding obtained 
from pretrained model dominated by certain features of 
molecules (the number of benzene rings and molecular 
weight in the BERT MLM case) may have a positive or 
negative impact depending on the task of transfer learning.

Results of molecular property prediction
For both the BERT MLM and 2-encoder model, fine-
tuning only the parameters of the last encoder layer and 
using two fully connected layers as the classifier layer 
provided the best predictions of molecular properties.

The prediction results for the 22 data sets are shown in 
Table  3, and the results corresponding to more metrics 
and the current ranking based on the leaderboard pro-
vided by TDC can be found in the additional file. Among 
three models of 2-encoder, BERT MLM and non-pretrain, 
2-encoder achieves the best results on 14 data sets, BERT 

Fig. 4  Comparison of symbol embedding
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MLM achieves the best results on 6 data sets, non-pretrain 
achieves the best results on 2 data sets. And for most of the 
tasks, the pretrained model achieved better results than 
non-pretrain. Moreover, there are three notable observa-
tions in the comparison of the three models. (1) For data 
sets of ’clearance_microsome_az’, ‘clearance_hepatocyte_
az’, ‘cyp2d6_substrate_carbonmangels’, ‘ld50_zhu’ and 
‘cyp3a4_substrate_carbonmangels’, the results of 2-encoder 
are ranked in top 3 on the leaderboards. And for the first 
three data sets in these four data sets, the 2-encoder can 
achieve apparently better results than BERT MLM and 
non-pretrain. For ‘ld50_zhu’, BERT MLM is worse than 
non-pretrain. (2) For the data set ‘bioavailability_ma’, 
BERT MLM achieved much better results (was ranked first 
according to the leaderboards) and 2-encoder was ranked 
last. The results on data set ‘half_life_obach’ also show a 
similar tendency. (3) For the data sets ‘cyp2c9_substrate_
carbonmangels’ and ‘herg’, non-pretrain achieved the best 
results among three models, and 2-encoder was ranked 
last for the data set ‘cyp2c9_substrate_carbonmangels’.

The observations of results show that the benefits 
of two kinds of pretraining strategies are not consist-
ent with different tasks. As mentioned in [17], the pre-
training model focusing on node-level and graph-level 
will have different effects according to tasks of transfer 

learning, and even sometimes pretraining can have nega-
tive effects since the tasks for pretraining and transfer 
learning are unrelated. Our experimental results show a 
similar phenomenon. The visualization of symbol embed-
ding (Fig.  4) shows that symbol embedding with similar 
meaning in SMILES are closer even overlapped together 
for the 2-encoder model, which can be considered as the 
pretraining of the 2-encoder model introduced more bias 
induction to symbols. And the visualization of molecule 
embedding (Fig.  5) shows that the pretraining of BERT 
MLM introduced more bias induction of properties such 
as molecular weight to molecular embedding compared 
to the 2-encoder. However, these bias induction may not 
necessarily be associated with the task of transfer learning. 
For example, the visualization of symbol embedding for 
the 2-encoder model (Fig. 4) shows that the symbol ’H’ is 
mixed with ’@’ and ’@@’ together since ’H’ appears simul-
taneous with ’@’ frequently, however, in the actual molec-
ular structure, hydrogen atoms are not highly associated 
with chiral atoms. We assumed it is possible to introduce 
an incorrect bias induction to the pretrained model since 
the limitation of BERT MLM(the surrounding symbols of 
masked symbols can’t determine the masked symbols).

In addition, prediction results recorded on the TDC lead-
erboards show that models based on random forest with 

Table 3  Prediction results of 22 ADMET data sets

Numbers in bold indicate the best results among the three models

Task type Sample size Metric 2-encoder BERT MLM non-pretrain

ames Classification 7278 AUROC 0.829 0.818 0.754

bbb_martins Classification 1975 AUROC 0.881 0.875 0.846

bioavailability_ma Classification 640 AUROC 0.605 0.749 0.669

caco2_wang Regression 910 MAE 0.348 0.372 0.423

clearance_hepatocyte_az Regression 1213 Spearman 0.435 0.396 0.363

clearance_microsome_az Regression 1102 Spearman 0.633 0.518 0.375

cyp2c9_substrate_carbonmangels Classification 669 AUPRC 0.336 0.377 0.38
cyp2c9_veith Classification 12092 AUPRC 0.758 0.739 0.68

cyp2d6_substrate_carbonmangels Classification 667 AUPRC 0.722 0.608 0.581

cyp2d6_veith Classification 13130 AUPRC 0.656 0.631 0.584

cyp3a4_substrate_carbonmangels Classification 670 AUROC 0.655 0.645 0.575

cyp3a4_veith Classification 12328 AUPRC 0.843 0.847 0.78

dili Classification 475 AUROC 0.872 0.838 0.852

half_life_obach Regression 667 Spearman 0.088 0.405 0.149

herg Classification 655 AUROC 0.793 0.775 0.836
hia_hou Classification 578 AUROC 0.98 0.984 0.98

ld50_zhu Regression 7385 MAE 0.583 0.683 0.635

lipophilicity_astrazeneca Regression 4200 MAE 0.586 0.613 0.802

pgp_broccatelli Classification 1218 AUROC 0.929 0.885 0.903

ppbr_az Regression 2790 MAE 8.578 8.697 9.081

solubility_aqsoldb Regression 9982 MAE 0.899 0.838 0.907

vdss_lombardo Regression 1130 Spearman 0.505 0.545 0.478
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inputs of molecular fingerprints and 200 molecular prop-
erties computed by RDKit can achieve better results than 
2-encoder, BERT MLM and non-pretrain on most data sets. 
This may be due to the stronger correlation between inputs 
and the 22 ADMET tasks, which open our eyes to the pos-
sibility of improving the bias induction introduced by pre-
training to be more comprehensive by pretraining model 
with fingerprints and 200 molecular properties.

The prediction results for 98 ODs are given in Table 4. 
As a complex and comprehensive task of predicting 
98 kinds of OD simultaneously, the pretrained model 
achieved better results than non-pretrain, and the pre-
trained by the 2-encoder model can achieve better results 
than BERT MLM.

In summary, even though the benefits of pretraining 
vary according to different tasks, the 2-encoder pretrain-
ing model achieves better results than BERT MLM and 
non-pretrain in more than half of tasks, which can show 
that the pretraining model with a 2-encoder structure is 
more robust than the widely used BERT MLM.

Conclusion
We proposed a pretraining model for predicting molec-
ular properties using SMILES sequences which can 
fully represent the molecular structure. On the basis of 
the pretraining model BERT used in natural language 
processing, we proposed an unsupervised pretraining 
model for learning the molecular structural informa-
tion included in the SMILES sequence before predict-
ing the specific molecular properties. In an experiment, 
we pretrained the proposed model and then predicted 
22 molecular properties and 98 ODs. The visualiza-
tion of embedding obtained through the pretraining 
model with 2-encoder and BERT MLM shows the dif-
ferent bias induction on the symbol level and SMILES 
level. Even these inductive bias effect transfer learning 

Fig. 5  Comparison of molecular embedding of the 2-encoder and BERT MLM

Table 4  F1 results of 98 ODS predictions

Macro F1 Micro F1

non-pretrain 0.242 0.340

BERT MLM 0.260 0.357

2-encoder 0.294 0.390
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differently according to tasks, the proposed 2-encoder 
model outperformed the non-pretrained model and the 
BERT MLM on more than half of tasks.

Abbreviations
SMILES	� Simplified molecular-input line-entry system
OD	� Odor descriptor
NSP	� Next sentence prediction
MLM	� MLM masked language model
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