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Abstract 

Small molecule identification is a crucial task in analytical chemistry and life sciences. One of the most commonly 
used technologies to elucidate small molecule structures is mass spectrometry. Spectral library search of product ion 
spectra (MS/MS) is a popular strategy to identify or find structural analogues. This approach relies on the assumption 
that spectral similarity and structural similarity are correlated. However, popular spectral similarity measures, usu‑
ally calculated based on identical fragment matches between the MS/MS spectra, do not always accurately reflect 
the structural similarity. In this study, we propose TransExION, a Transformer based Explainable similarity metric 
for IONS. TransExION detects related fragments between MS/MS spectra through their mass difference and uses these 
to estimate spectral similarity. These related fragments can be nearly identical, but can also share a substructure. 
TransExION also provides a post‑hoc explanation of its estimation, which can be used to support scientists in evaluat‑
ing the spectral library search results and thus in structure elucidation of unknown molecules. Our model has a Trans‑
former based architecture and it is trained on the data derived from GNPS MS/MS libraries. The experimental results 
show that it improves existing spectral similarity measures in searching and interpreting structural analogues as well 
as in molecular networking.

Scientific Contribution  
We propose a transformer‑based spectral similarity metrics that improves the comparison of small molecule tandem 
mass spectra. We provide a post hoc explanation that can serve as a good starting point for unknown spectra annota‑
tion based on database spectra.

Keywords Tandem mass spectrometry, Small molecule identification, Spectral similarity, Structural similarity, 
Explainable deep neural network

Introduction
Tandem mass spectrometry (MS/MS) is a technique in 
which selected ions or precursor ions, obtained from 

chemical compounds, are fragmented into smaller prod-
uct ions. The mass-to-charge ratio (m/z) and intensities 
of these product ions are recorded in a MS/MS spectrum, 
which reveals insights into the chemical structure of the 
precursor ion. MS/MS spectra are widely used for small 
molecule identification in modern analytical chemistry. 
Several MS/MS spectral libraries have been published, 
including GNPS [1], HMDB [2], METLIN [3], and Mass-
Bank [4].

Along with the growth of MS/MS libraries, 
computational methods for small molecule structure 
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prediction from MS/MS spectra have emerged. In 
general, we can categorize these methods into three 
main approaches, namely spectral library search, 
structure database search, and database free approaches 
[5]. Spectral library searching compares query spectra 
against a spectral library based on a similarity measure, 
while structure database searching compares the query 
spectra against compounds in a structure database using 
intermediate representation. Different intermediate 
representation methods have been proposed for the 
latter, including transforming MS/MS spectra into 
molecular fingerprints [6–10], generating in silico MS/
MS spectra from reference compounds [11–19], and 
matching spectra and reference compound embeddings 
[20]. The database free methods, such as MassGenie [21] 
and MSNovelist [5], require neither spectral libraries nor 
compound structure databases for structure prediction. 
Instead, they generate SMILES strings, a specified 
notation for describing compound structures, directly 
from an unknown spectrum using machine learning.

Spectral library searching is usually the first method 
considered for small molecule identification tasks. 
Its major limitation is that spectral libraries contain a 
finite amount of structures, making the identification 
of completely new structures challenging. On the 
other hand, searching for similar structures (structure 
analogues) that have one or more substructures in 
common with the query compound can offer a good 
starting point for structural annotation. Several spectral 
similarity measures dedicated to analogue searching 
have been proposed, including classical measures and 
machine learning based measures. Classical similarity 
measures, such as Cosine, Modified Cosine and Neutral 
Loss Matching [22], are computed based on identical 
matches of fragment ions and neutral losses. The MS/
MS spectra of similar small molecules can however 
appear very different as minor functional group changes 
of a matched substructure can drastically affect the 
fragmentation behavior. Even MS/MS spectra of the 
same molecule can vary profoundly as fragmentation 
depends on several parameters such as the type of mass 
analyzer used, the applied collision gas and energy, etc 
[23]. The measures based on identical matches are of 
limited use in searching structural analogues. Therefore, 
recent studies have explored other information for MS/
MS spectrum alignment, attempting to improve the 
correlation between the spectral similarity and structural 
similarity.

SIMILE [24] uses all m/z differences amongst a MS/
MS spectrum pair to estimate spectral similarity. It starts 
by transforming the matrix of m/z difference counts 
into a substitution matrix using Laplacian Embedding. 
The substitution matrix allows spectral alignment thus 

spectral similarity estimation in a similar fashion as 
protein sequence alignment. Although SIMILE considers 
m/z difference for the alignment of a single spectrum 
pair, it does not measure the importance of such 
difference throughout the spectral library, which can be 
done using machine learning. In fact, SIMILE should be 
complemented with classical measures when searching a 
spectral library for compound identification.

Meanwhile, the fast growing AI frameworks and the 
expansion of public MS/MS spectral libraries available 
for model training have enabled machine learning-
driven spectral similarity prediction. Spec2Vec [25], 
an unsupervised method, adapts the language model 
Word2Vec [26] to describe the co-occurrences of 
fragments across large spectral data-sets. Furthermore, 
several supervised deep learning approaches, such 
as DeepMass [23] and MS2DeepScore [27], estimate 
spectral similarity that can directly reflect the structural 
similarity. In their training phase, both approaches start 
by pairing reference spectra from a spectral library before 
feeding the pairs into a deep neural network to predict 
the underlying structure similarity. While DeepMass 
uses the concatenated vectors of m/z, intensity, and 
other features of the spectral pair as input of fully-
connected neural network layers, MS2DeepScore adopts 
a Siamese architecture to learn the structure similarity 
directly from binned spectra pairs. The Siamese network 
encodes each spectrum of the pair separately before 
calculating the Cosine similarity of two embeddings. 
Although the machine learning based methods can 
improve spectral library search by outperforming the 
classical measures, MS2DeepScore has demonstrated 
a higher prediction accuracy and implement-ability, 
especially since no additional meta-data or library data 
is required. In fact, MS2DeepScore has been used as a 
key measure in MS2Query [28], a tool for finding both 
structural analogues and exact matches from large scale 
spectral libraries. However, one major limitation of 
MS2DeepScore is the discrimination between highly 
similar structural analogues (Tanimoto scores say 0.8–
0.9) and a near-complete chemical match (Tanimoto 
scores > 0.9 ). Moreover, none of existing machine 
learning based methods, to our knowledge, provide an 
explainability assessment on the important spectral 
features used for model output.

Here, we present TransExION, a Transformer based 
Explainable similarity metric for ions observed in tan-
dem mass spectrometry. Our main goal is to improve 
spectral library searching, especially in finding structural 
analogues. Hence, we have designed and trained a super-
vised deep learning model to predict MS/MS spectral 
similarity that accurately reflects the structural similarity. 
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TransExION adopts a Transformer architecture and 
offers a post hoc explanation feature.

The major novelty of TransExION is that, in addition 
to aligned product ions and neutral losses, the mass 
difference between query and reference fragments 
are also considered for spectral similarity scoring. 
Undoubtedly, using mass differences extends the scope 
of spectral alignment from exact substructure matching 
towards finding substructures with minor modifications. 
TransExION receives mass difference matrices as input 
and returns a spectral similarity score. The interpret-
ability analysis of such model focuses on the importance 
of mass difference between each pair of product ions/
neutral losses (one from each spectrum). We observe that 
the mass difference of paired (one from each spectrum) 
product ions/neutral losses can imply not only small 
substructure differences but can also be exploited to infer 
a potential structural relationship.

The spectral similarity prediction by TransExION, 
along with its post hoc explanation, can greatly enhance 
the structure elucidation of unknown analytes by experts. 
The experimental results demonstrate that TransExION 
outperforms existing methods in retrieving structure 
analogues from the spectral library. Furthermore, the 
post hoc algorithm unravels the substructure links 
between unknown product ions and reference spectra of 
retrieved analogues.

Methods
Model architecture
We have built a deep neural network to estimate the 
spectral similarity between two MS/MS spectra, which 
can be used later as a proxy for structural similarity. 
Figure 1 presents an overview of the training phase and 
query/testing phase of our method. To create training 
data, we randomly sample pairs of spectra from a spec-
tral library and calculate the corresponding structure 
similarity scores. These spectrum pairs and their struc-
ture similarity scores are used as the model input and 
output labels, respectively. During the testing phase, 
the query spectrum is paired with each reference spec-
trum in the spectral library so that the model can pre-
dict similarity scores for structure candidates one after 
another. Structural analogues are retrieved by select-
ing reference compounds with the highest predicted 
scores.

Figure  2 illustrates the network workflow. For model 
training, we assign one MS/MS spectrum of the training 
pair as “query” and another one as “reference”. Given a 
query spectrum ( sq fragments) and a reference spectrum 
( sr fragments), the model first computes their mass 
difference matrix (MDM). This matrix consists of sq 
rows and sr columns, and the values indicate the absolute 
mass difference between query and reference fragments. 
Structural similarity can be revealed by fragmentation 
patterns observed in the MDM. In the case of a minor 

Fig. 1 The training phase and query/testing phase of TransExION
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substructure difference (e.g., one chemical moiety extra 
in the query compound), the substructures of product 
ions in sq can either match exactly with sr , leading to 
zeros in the MDM, or contain the mass difference for 
that additional chemical moiety. In the latter case, 
one particular value (e.g., 16 Da for oxygen) can be 
observed at least once in the MDM, indicating a minor 
substructure modification.

The MDM is then transformed into an aligned matrix 
that also gathers, for each query fragment, all observed 
mass differences. At first, the mass difference values are 
split into the integral and fraction parts, referred to as 
nominal mass and mass defect, respectively. This new 
matrix has n rows and m columns. The number of rows 
corresponds to the size of the query spectrum ( n = sq ), 
while the columns represent nominal masses of mass 
difference values ( 0, 1, 2, . . . ,m− 1 ). We fix here a cut-
off of m = 300 to consider only the mass differences 

below 300 Da. The choice of this cut-off is motivated 
by a focus on minor substructure modifications and 
the need to control the computational cost. The matrix 
is then filled with rounded mass defects 0–99 (rounded 
to two decimal places then multiplied by one hundred). 
If a nominal mass does not appear in the MDM, that 
gap is filled with a “pad” value. By doing this, the query 
fragments are aligned with each other according to the 
nominal mass, which facilitates the model in detection of 
the recurrence of a mass difference value. Furthermore, 
a special entry named CLS is added at the beginning of 
the aligned matrix. It is used to accumulate all similarity 
information from all the query fragments though the 
self-attention mechanism in the Transformer. Figure  3 
demonstrates the transformation of the mass difference 
matrix into the aligned matrix.

In parallel, each spectrum of the training pair is 
converted into a hypothetical neutral loss spectrum (by 

Fig. 2 An overview of TransExION model: given a query MS/MS spectrum and a reference MS/MS spectrum as input, we compute the mass 
difference and neutral loss difference matrices. We then align the rows of these matrices according to their nominal mass, and forward these 
into a deep neural network. The network encodes the these matrices into feature vectors (or embeddings) and joins them at the end to estimate 
the similarity of two spectra, ysim

Fig. 3 An example of transformation from matrix difference matrix to an aligned matrix



Page 5 of 14Bui‑Thi et al. Journal of Cheminformatics           (2024) 16:61  

calculating the difference between the precursor ion and 
its respective fragment ions). After that, a neutral loss-
based MDM and aligned matrix are generated for each 
pair by repeating the procedures above. In recent studies 
on spectral library searching, the mirrored neutral loss 
spectra have demonstrated rich structure similarity 
information that is complementary to the original spectra 
[22, 29].

TransExION is composed of two independent 
Transformer-based networks (one for original and 
another for neutral loss spectrum) and a fully connected 
network. The Transformer-based network generates an 
embedding (a single vector) from input aligned matrix. 
Two vectors from original and neutral loss spectra are 
concatenated, which is followed by the fully connected 
network to predict the final output: a numeric value 
which indicates the spectral similarity.

Two Transformer-based networks follow the same 
architecture: a row encoder layer followed by a 
transformer encoder. For the row encoder, the same 
transformation is applied to each row of the aligned 
matrix, resulting in a single feature vector that contains 
all information about that row. In the case of original 
spectrum, the mass differences between the query 
fragment and every reference fragment are encoded. 
The row encoder for neutral loss encodes the same 
information for neutral loss.

The output of the row encoders then become the 
input of the transformer encoder. Thanks to the self-
attention mechanism in Transformer architecture, each 
row vector is able to attend to all row vectors, including 
itself. In other words, each fragment (or neutral loss) can 
interact with all fragments (or neutral losses) in the same 
query spectrum to collect information. The Transformer 
architecture allows the model to put more emphasis on 
product ion (or neutral loss) matches and recurring mass 
differences between multiple query-reference product 
ions (or neutral losses).

Figure  4 presents the architecture of a row encoder. 
It is composed of an embedding layer for mass defects, 
a flatten operator, a stack of N blocks and a fully con-
nected layer. The embedding layer maps each mass 
defect into a single vector, generating a 3D matrix from 

the aligned matrix. We implemented the embedding for 
mass defect values of mass differences because of their 
underlying structural information. The flatten operator 
then reshapes the 3D matrix into a 2D one with each row 
still representing a query fragment or a neutral loss. By 
doing so, the information of original mass differences is 
reconstituted through the integration of nominal masses 
and the embedded mass defects. Next, the stack of N 
blocks project each row in the 2D matrix separately and 
identically to a single vector of d dimensions. Each block 
is composed of a dropout, a fully connected layer and a 
flatten operator. Before a block is applied, each row is 
split into k parts with same length, named as heads. The 
dropout and the fully connected layer are applied to these 
heads, learning local features within the heads. The flat-
ten operator is used to reshape the heads back to rows. 
After the stack of N blocks, the fully connected layer is 
applied to generate the row embedding. The transformer 
encoder has the same architecture proposed by Vas-
wani et  al. [30]. All the settings and hyper-parameters 
of TransExION are summarized in Table  1. At the end, 
the embedding of the special entry CLS is retained as the 
output.

The TransExION model is supplemented with a post 
hoc analysis of explainability. The goal is to estimate 
the pairwise relevance between query and reference 
product ions based on the contribution of each pair to 
the model output (spectral similarity). This approach was 
inspired by the Layer-wise Relevance Propagation (LRP) 
method proposed by Chefer et  al. [31]. Basically, we 
propagated the relevance and gradients corresponding to 
the pairs that are predicted “highly similar” in structure 
from layer to layer following the generic Deep Taylor 
Decomposition. The output of model explainability after 
spectral similarity estimation is a heat map which reveals, 
for each query fragment, the most k relevant product 
ions in the reference spectrum.

Data preparation
Experiments were performed on two data sets that 
were derived from GNPS [1] and included only positive 
ion mode spectra. One data set consisted of 11,000 MS/
MS spectra of unique compounds. To obtain this data 
set, “duplicated” spectra of the same molecular struc-
ture were merged, by recognition of the identical first 
layer of InChIKey. Parallel experiments were run with 
another GNPS-derived data set as recommended by 
Huber B. et al. [27]. This data set contains 107,734 MS/
MS spectra associated with 15,062 different molecular 
structures (“duplicated” spectra unmerged). For sim-
plicity, we named the two data sets as mergedGNPS 
and GNPS, respectively. Spectra from both data sets 
were randomly split into testing ( n = 500 ), validation Fig. 4 The architecture of a fragment/neutral loss encoder
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( n = 500 ) and training sets (the remaining spectra) 
according to their underlying structures. Validation 
sets were used to fine-tune the key hyper-parameters of 
the model, including the learning rate and the weight 
decay. Our random data splitting procedure prevents 
close structural and spectral analogs between testing 
and training/validation thus information leakage. We 
observed that very few training data contain structural 
and spectral information that were both identical to 
testing data (Fig. A1).

All spectra in this study were pre-processed as 
follows: the m/z values of the fragments were rounded 
to two decimal places, and peak intensities were 
replaced by relative abundance ( % ) in relation to the 
highest peak. All fragments with intensities less than 
0.1% or with m/z less than 10 Da or larger than 1000 
Da were removed. We observed, in some training 
spectra, regions crowded with lower intensity peaks 
surrounding a large peak. These minor peaks are 
probably isotope peaks or chemical noise that can 
lengthen the input spectrum and affect the model 
output. Therefore, input spectra were denoised by 
keeping only the highest peak within a 3-Da sliding 
window.

During the training phase, all training spectra are 
paired and their structural similarity score is com-
puted. The Tanimoto score on Daylight fingerprints 
[32] is used to compute the structural similarity. How-
ever, proceeding with all spectrum pairs is problematic 
since the training set becomes enormous and heavily 
imbalanced towards low Tanimoto similarity scores. 

To tackle this problem, a procedure is used to generate 
a much smaller and better balanced set. Basically, we 
defined an equal width binning, dividing the structural 
similarity values into B = 10 equal width bins between 
0.0 and 1.0. In each training epoch, each spectrum was 
scanned over these bins and paired randomly with a 
different spectrum in each bin.

For model evaluation, we matched every spectrum 
in both independent test sets with all spectra in their 
corresponding training sets (mergedGNPS or GNPS) to 
mimic spectral library search. To create a balanced and 
fair-sized testing set, we also applied the equal width 
binning on structure similarity, choosing randomly 
utmost k = 3 pairs in each bin for each testing spectrum. 
This procedure enables unbiased model evaluation 
through homogeneous sampling of lower and higher 
structure similarity query-reference spectrum pairs. It 
generated 11,425 and 98,625 spectrum pairs as testing 
data in the mergedGNPS and GNPS data, respectively.

Results
TransExION identifies correct structure analogues
To mimic spectral library search and for unbiased 
evaluation of our model, each spectrum from 
independent test sets (mergedGNPS or GNPS) was 
paired with a selected subset of reference spectra used 
for TransExION training (“Data preparation” section). 
Spectral similarity was predicted by TransExION, and the 
same pairs of spectra were evaluated by popular spectral 
similarity metrics, namely Cosine [33] and Modified 
Cosine [34]), along with state-of-the-art models, 

Table 1 Hyper‑parameters and their values were used in TransExION model

Component: fragment and neutral loss encoders

Dimension of embedding layer 32

Number of blocks 2

Number of heads 100 and 20

Hidden dimension 128

Dropout 0.1

Component: transformer encoders

Number of encoder layers 2

Number of attention heads 4

FFN inner hidden size 256

Hidden dimension 128

Dropout 0.1

Others

Learning rate 1e−4

Weight decay 0.0

Batch size 64
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including Spec2Vec [25] and MS2DeepScore [27]. The 
experimental results obtained for mergedGNPS are 
displayed in Figs. 5, 6, and 7 while the data for GNPS can 
be retrieved in the supplemental information.

The precision-recall curves in Fig.  5 compare the 
ability of our model to retrieve structural analogues 
from spectrum pairs against other similarity metrics 
in mergedGNPS data. It is generally agreed that two 
compounds are chemically-related analogues if their 
Tanimoto score is higher than a fixed threshold [27]. 

To enable rigorous comparison, we applied four differ-
ent Tanimoto similarity cut-offs ranging from 0.6 to 0.9. 
TransExION achieves a notably better precision/recall 
combination than other similarity measures, making 
itself as an attractive similarity measure for identification 
of structural analogues in large spectral libraries (10,000 
reference spectra used here for evaluation). Moreover, by 
applying a higher structure similarity threshold, TransEx-
ION still maintained a high level of precision/recall. This 
means that TransExION retrieves structure analogues 

Fig. 5 Precision recall curves of several methods to predict high structural similarity between pairs of spectra in the mergedGNPS testing data. 
High structural similarity is defined using four different cut‑offs for Tanimoto score, ranging from > 0.6 to > 0.9 . The curves illustrate the trade‑off 
between higher precision and higher recall by varying the spectral similarity threshold. TransExION provides a better overall precision/recall 
combination in the mergedGNPS dataset

Fig. 6 Squared error distribution of different methods on 10 equal width bins of Tanimoto score on mergedGNPS dataset. The blue markers 
indicate MSE values. The prediction error of TransExION is low with minimal variation on different bins while Cosine, Modified Cosine and Spec2Vec 
increase with higher Tanimoto score and show higher variability
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displaying minor modifications (i.e., very high Tanimoto 
scores) in an accurate and comprehensive manner, if such 
analogues are present in the spectral library.

TransExION prediction aligns with Tanimoto scores
Compared to other algorithms, the shape of TransExION 
precision-recall curves remains nearly unchanged when 
different cut-off values are applied (Fig.  5). We hypoth-
esized that the consistency of the curves could be due to 
good alignment between TransExION spectral similar-
ity score and Tanimoto structure similarity. To evaluate 
this hypothesis, we applied the same equal width bin-
ning for structure similarity (“Data preparation” sec-
tion), then computed the squared error (SE), which is the 
distance between predicted score and Tanimoto score) 
for each query-reference spectrum pair. The box-plots 
in Fig. 6 reveal the SE distribution of different methods 
in every structure similarity bin. The blue markers on 
the box plots indicate the mean squared error (MSE) 
values. In general, the prediction error of TransExION 
remained low with minimal variation on different bins 
for mergedGNPS data. Meanwhile, Cosine, Modified 
Cosine and Spec2Vec increased with higher Tanimoto 
score and showed higher variability, especially on the 
bins representing highly similar structures. In fact, the 

performance of these measures appeared highly unstable 
when Tanimoto scores were greater than 0.5. Moreover, 
our method was comparable to MS2DeepScore in most 
bins in terms of overall prediction error and stability.

Using all spectrum pairs in the mergedGNPS testing 
data, Fig. 7 presents the spectral similarity predicted by 
different methods against the ground-truth—structural 
similarity measured by Tanimoto score. Meanwhile, the 
Pearson correlation coefficient r was calculated between 
the ground-truth and the prediction for each method. 
Based on the overall shape of point cloud and r, we con-
clude a weak correlation between structural similarity 
and Cosine/Modified cosine score ( r = 0.489 and 0.538, 
respectively). Both measures rely on comparing intensi-
ties of matching peaks (plus neutral losses for Modified 
cosine), and their values are spread out between 0 and 
1 except when there is a clear structure difference (e.g., 
Tanimoto distance < 0.2 ). With a stronger overall corre-
lation ( r = 0.557 ), Spec2Vec displays a quite homogene-
ous distribution between − 0.2 and 0.2 for spectrum pairs 
with lower Tanimoto scores (0–0.6). However, the pre-
diction is spread out in the 0.6–1 Tanimoto score range, 
probably because Spec2Vec, as an unsupervised method, 
explores relationships between product ions without 
using structural information. In contrary, MS2DeepScore 

Fig. 7 The relationship between the spectral similarity predicted by different methods and the structural similarity measured by Tanimoto score 
on mergedGNPS testing data
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and TransExION are both supervised models trained 
with structural similarity as ground truth, hence they 
both reveal a strong correlation with the ground-truth 
( r = 0.755 and r = 0.811 , respectively). Although a 
perfect correlation was not achieved, both models are 
highly reliable in separating high (e.g., Tanimoto dis-
tance 0.6–1), mid (0.4–0.6), and low structural similarity 
pairs ( < 0.2 ). The slight out-performance of TransExION 
(higher correlation coefficient r, less widespread point 
cloud) can be linked to the explicit encoding of product 
ion mass differences into the model. These mass differ-
ences can also facilitate the post hoc explanation for the 
model’s outcome, which is presented in the next section.

TransExION allows model explainability
In this section, model explainability analysis, which 
was described in “Model architecture” section, was 
performed on the testing data of mergedGNPS. For 
each query spectrum, we first extracted the top q = 20 
product ions based on their overall contribution to the 
structure analog prediction. Next, each product ion was 
evaluated against the top k = 3 most associated product 
ions in the corresponding reference spectrum. The 
relevance matrix was then visualized in a heatmap as the 
output of model explainability, and is explained in Fig. 8a. 
Two examples displayed in Figs.  8 and 9 demonstrate 
the structural relatedness of highly associated query and 
reference product ions revealed by the relevance matrix.

In the first example, TransExION similarity between 
DL-beta-Homophenylalanine (Spectrum ID: splash10-
00xr-0900000000-e86eefea78d902b2e731) and its 
best matched reference spectrum (splash10-001r-
1900000000-f5b35a51eb71bdd8a479) was 0.74. With a 
Tanimoto similarity of 0.83, the matched reference is a 
clear structure analog of DL-beta-Homophenylalanine 
as it corresponds to the para-hydroxylated form of this 
amino acid. Although the two compounds only differ 
by one hydroxyl group on the aromatic ring, Cosine 
and Spec2Vec similarity fell below 0.15 likely due to the 
lack of common product ions. Meanwhile, Modified 
Cosine was able to detect structural similarity correctly, 
0.84 thanks to shared neutral losses. TransExION was 
also able to predict the overall structural similarity 
correctly and provided the relevance matrix to explain 
the similarity via the different product ion pairs 
(Fig. 8b). A clear shift of +15.99Da is observed between 
several product ions in the query and reference spectra 
which originated from the difference of one oxygen in 
the elemental composition in the reference structure 
(  m/z = 163.06 → m/z = 179.03,m/z = 145.06 → m/z = 161.05 
and m/z = 120.06 → m/z = 136.04 ), displayed in 
Fig.  8c. These +15.99Da shifts are also evident in the 

relevance matrix for this match (Fig.  8b). Moreover, 
the transition with highest relevance in the matrix was 
a −  2.01 Da shift ( m/z = 163.06 → m/z = 161.05 ) 
which can be readily explained by the difference of 
one additional oxygen ( +15.99Da ) between DL-beta-
Homophenylalanine (query) and its hydroxylated 
counterpart (reference), combined with a neutral loss of 
H2O from the hydroxybenzyl moiety ( −  18.01 Da) in a 
fragmentation reaction similar to that explained in Chai 
et al. [35].

In the second example, the query spectrum of a 
cyclic lipodepsipeptide (Spectrum ID: splash10-
0udi-2014761900-e58065981f99435865cd) was 
correctly matched with the reference spectrum of its 
analog Scopularide F (splash10-00vi-5126930200-
7b2b1b2440dcd21ad598), differing in two functional 
groups. Despite the presence of many product ions in 
both spectra, the number of shared product ions or 
neutral losses was relatively low, and no other metrics 
scored the spectral similarity high enough to reflect their 
structural similarity. Cosine, Modified Cosine, Spec2Vec, 
and MS2DeepScore estimated the similarity 0.29, 
0.54, 0.74, and 0.74, respectively. Again, TransExION 
assigned a high similarity score of 0.92 for the spectrum 
pair. As apparent from a selection of the relevance 
matrix (Fig.  9a, the full relevance matrix can be found 
in Supplementary Fig. C5), TransExION prediction was 
predominantly explained by the identical matches of 
several peaks. Interpretation of the reference spectrum 
identified these product ions as related to amino acid 
residues such as Leucine ( m/z = 112.07 ), Phenylalanine 
( m/z = 120.08,m/z = 166.08 ) or dipeptide fragments 
(Val-Leu, m/z = 213.16 ). Furthermore, the TransExION 
relevance matrix assigned several pairs of associated 
query-reference product ions with a −  14.02 Da offset 
(Fig.  9b), suggesting a difference of a methylene group 
( CH2 ) from Scopularide F. Since the two molecules differ 
by 28.03 Da, we suspected that the query compound 
corresponds to the loss of methylene groups at two 
distinct locations. The product ions observed in the 
query reference spectrum (Fig. 9b) and displayed in the 
relevance matrix, helped to annotate the query structure 
(Fig.  9c): the m/z = 157.13 → m/z = 171.15 transition 
(red) indicated a valine instead of 2-aminobutyric acid 
residue, while the m/z = 351.26 → m/z = 365.29 
transition (green) (in combination with the unchanged 
Val-Leu product ion at m/z = 213.16 , blue) localized 
the additional methyl on the lipid moiety. This is further 
confirmed by the m/z = 270.20 → m/z = 284.23 
transition (grey) that does not include the valine residue.

Both examples clearly show how the explainability 
obtained through the relevance matrix assists in the MS-
based structure elucidation of analogous compounds and 
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helps to pinpoint both the chemical nature and sites of 
modification of unknowns, compared to their spectral 
library match.

Molecular networking using TransExION as similarity 
metric
Since TransExION spectral similarity strongly aligns 
with the structural similarity ground-truth (correla-
tion coefficient r = 0.811 ), it is powerful in separating 

Fig. 8 First example of model explainability. a Annotation of the values in the heatmap. b Heatmap generated by model explanability analysis.
The darker the cell is, the more important it contributes to the similarity score. c Visualization of query and reference structures by highlighting 
the modified substructure
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high, mid and low structural similarity pairs. Such 
property suggests the potential of our method in sepa-
rating experimental spectra of complex chemical mix-
tures) into clusters representing different compound 
classes, which is frequently achieved by GNPS molecu-
lar networks built from heuristic similarity measures 
such as Modified Cosine [1]. Recently, alternative algo-
rithms such as SNAP-MS were developed for improved 
molecular networking (MN) [36]. To assess the poten-
tial of TransExION as an alternative spectral similarity 
measure to be used in MN, we reproduced a SNAP-MS 
derived molecular network obtained from a 925-sample, 
marine bacteria extract library [36]. The pairwise spectral 

similarity was computed in TransExION for 2161 spectra 
and the obtained values were imported into meRgeION 
for molecular networking [37]. Edges were filtered to 
have a TransExION score above 0.6 without the require-
ment for minimum matched peaks (arbitrarily set at 6 in 
many GNPS networks). All other network parameters, 
such as topK and the maximum size of a molecular fam-
ily, were kept the same as in the original manuscript. In 
addition, all experimental spectra (nodes) were annotated 
through analogue search against the mergedGNPS spec-
tral library (by computing the TransExION spectral simi-
larity against all reference spectra). We kept the top three 
structure analogues for each node if the similarity score 

Fig. 9 Second example of model explainability. We display here filtered a heatmaps that only contain query‑reference product ion pairs used 
for structure elucidation: exact matches or with a 14 Da offset. These associations are highlighted in b by the arrows between query (upper plot) 
and reference spectrum (lower plot). In c, while the exact matches ( m/z = 166.08 and 213.16) confirm the amino acid composition of the query 
spectrum, the two 14 Da offsets indicate methylene loss on the 171.15 and 365.281 substructures
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was above 0.6. Encouragingly, the molecular network, 
using TransExION as similarity metric, captured all 
seven sub-networks that were assigned confidently with 
compound families by SNAP-MS in the original paper 
(Figure D7). However, a difference in network topol-
ogy for some clusters was detected. For instance, a large 
52-node component in the GNPS network, was divided 
into three smaller clusters of 14(a), 17(b) and 14(c) nodes, 
respectively in the TransExION-meRgeION network (see 
Fig.  10). This division potentially indicates the presence 
of sub-families within the same network component. 
Interestingly, half of the nodes in cluster were annotated 
as Desferrioxamine by TransExION, with other top hits 
obtained for the clusters b and c. So, while the entire MN 
component was proposed as Desferrioxamine-related by 
SNAP-MS, TransExION assigned the same compound 
family to a smaller set of spectra. As such, the current 
example shows that by embedding TransExION into MN 
workflows, meaningful networks can be obtained. The 
difference in network topology and analog search results 
could provide an alternative explanation of existing MS/
MS data.

Conclusions
Identification of small molecule structure from MS/
MS spectra plays a crucial role in modern life sciences 
and bio-analytical research. In this study, we tackled 
a difficulty of using spectral library search to assign 
structure analogues to unknowns and developed a deep 
learning based method to confidently predict spectral 
similarity via structure similarity approximation. 
Our approach explores the latent links between mass 
differences of product ions and structural relatedness, 
which elegantly covers minor substructure modifications 
in addition to exact substructure matches. Furthermore, 
previous studies demonstrated that metabolites often 
share substructures, resulting in similar patterns in their 
MS/MS spectra [37, 38]. The attention mechanism in 
our transformer-based networks enables the detection 
of both co-occurring product ions (or neutral losses) and 
recurring substructure modifications.

We first evaluated how accurately TransExION 
retrieves structure analogs from a large spectral library 
using two independent test sets. Experimental results 
show that TransExION outperforms simple, heuristic 
similarity measures, such as Cosine and Modified 

Fig. 10 Using TransExION as an alternative spectral similarity metrics for molecular networking: A A large sub‑network in the GNPS 
molecular network of marine bacteria extract, annotated as Desferrioxamine‑related analogs by SNAP‑MS, B three sub‑networks found 
by TransExION‑meRgeION showed a strong node overlap with the GNPS sub‑network. Analogue search by TransExION linked each sub‑network 
to a different compound family based on the most frequent annotations
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Cosine, and the unsupervised Spec2Vec model. It also 
outperforms the deep-learning model MS2DeepScore in 
both test sets, especially when nearly-identical structure 
matching is desired (high Tanimoto distance cut-off). 
Another advantage of TransExION is its overall low 
prediction error and high stability throughout the entire 
structure similarity range. Based on that, we can imagine 
using TransExION as a spectral similarity alternative in 
complex mixture analysis. Using the pair-wise spectral 
similarities computed by TransExION, we built a 
molecular network of bacteria extracts and retrieved sub-
networks representing confidently-identified chemical 
families[36].

Compared to other deep learning models for structure 
elucidation, the TransExION framework is built with a 
unique post hoc explanation module. The explanation of 
query product ions is achieved based on the contribution 
of query-reference product ion associations to spectral 
similarity prediction. According to experts’ evaluation, 
most of the important product ion pairs found by 
TransExION correctly reflect the chemical relatedness, 
that is, either an exact substructure match or a minor 
modification. Moreover, the TransExION model can 
explain simultaneous modifications of distinct functional 
groups from the reference compound. In practice, 
the post hoc explanation module can provide a good 
starting point of the structure elucidation of unknowns 
by linking query with reference product ions, since 
the substructures of the latter can be easily assigned by 
analyzing the fragmentation mechanism of the reference 
compound.

Next to spectral library search, structure database 
search is another popular method in identifying small 
molecule structure from MS/MS spectra. Although 
structure databases usually contain a much larger fraction 
of compounds than current spectral libraries, both 
approaches are intrinsically restricted to compounds in 
the database. Recently, a database-free approach emerged 
in which the structures are generated directly from MS/
MS spectra via deep generative models [5, 21]. For all 
approaches above, finding good spectra embedding is 
the key to performance improvement of machine or deep 
learning models. In this regard, the intermediate spectra 
representation generated by TransExION can be used 
seamlessly by other models to further enhance unknown 
structure elucidation.
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