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Abstract 

Generative models are undergoing rapid research and application to de novo drug design. To facilitate their applica-
tion and evaluation, we present MolScore. MolScore already contains many drug-design-relevant scoring functions 
commonly used in benchmarks such as, molecular similarity, molecular docking, predictive models, synthesiz-
ability, and more. In addition, providing performance metrics to evaluate generative model performance based 
on the chemistry generated. With this unification of functionality, MolScore re-implements commonly used bench-
marks in the field (such as GuacaMol, MOSES, and MolOpt). Moreover, new benchmarks can be created trivially. We 
demonstrate this by testing a chemical language model with reinforcement learning on three new tasks of increasing 
complexity related to the design of 5-HT2a ligands that utilise either molecular descriptors, 266 pre-trained QSAR 
models, or dual molecular docking. Lastly, MolScore can be integrated into an existing Python script with just three 
lines of code. This framework is a step towards unifying generative model application and evaluation as applied 
to drug design for both practitioners and researchers. The framework can be found on GitHub and downloaded 
directly from the Python Package Index.

Scientific Contribution
MolScore is an open-source platform to facilitate generative molecular design and evaluation thereof for applica-
tion in drug design. This platform takes important steps towards unifying existing benchmarks, providing a plat-
form to share new benchmarks, and improves customisation, flexibility and usability for practitioners over existing 
solutions.
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Graphical Abstract

Introduction
The influx of modern, distribution-learning based 
generative models applied to de novo drug design [1, 
2] is both exciting and frustrating. It is exciting in the 
sense that complex objectives can be optimised [3] 
and de novo designed molecules are beginning to be 
prospectively validated [4–6]. It is also frustrating in 
the sense that there is often a lack of consideration for 
the type of chemistry generated [7], many models are 
still applied to irrelevant objectives (such as rediscov-
ery of a specific molecule [8] or penalised logP [9]), 
and scientific significance with respect to the novelty 
of proposed de novo designs is often overlooked [10]. 
However, due to the sheer number of approaches not 
all models can be prospectively validated. Therefore, 

simple, easy-to-implement objectives are pre-
ferred, and benchmarks are still needed to compare 
approaches. However, these should relate to the real-
world challenges of drug discovery as much as possible 
[11].

We propose MolScore, which addresses these frustra-
tions by providing a simple, flexible, and drug-design-
relevant Python framework for generative models (as 
opposed to more generic workflows like Knime or Pipe-
linePilot [12]). MolScore can be used to design multi-
parameter objectives for use in real-world drug design 
and be coupled with a generative model of choice. 
Furthermore, it can be used to benchmark generative 
models by sharing standardised objectives. In addition, 
MolScore contains two graphical user interfaces (GUIs) 
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to aid both writing configuration files and analysing 
generated de novo molecules.

Comparison to related works
Table  1 shows a high-level comparison of MolScore to 
existing software/benchmarking solutions. GuacaMol 
[8] was the seminal benchmark, which provided a stand-
ardised training dataset and a suite of 20 objectives for 
generative models to optimise. These tasks all meas-
ure the similarity to one or more reference compounds. 
However, the authors stated that the tasks did not ade-
quately separate top-performing generative models 
(~ 15/20 tasks are easily solved by generative models). 
Furthermore, to create a custom task not included in the 
benchmark, modification of the code is required. More 
recently, Gao et al. introduced MolOpt [3], adapted this 
benchmark focusing on sample efficiency (i.e., how many 
molecules are required to optimise the objective), signifi-
cantly extending the evaluation of generative models to 
25 approaches. However, an appropriate evaluation of the 
type of chemistry generated was lacking [7]. Both Guaca-
Mol and MolOpt are re-implemented in MolScore. Fur-
thermore, new tasks can be defined and added to these 
benchmarks without requiring any coding.

The MOSES [13] benchmark introduced another 
standardised training set and comparison between gener-
ative models. Although this was not applicable to molec-
ular optimisation and only aimed at distribution-learning 
(i.e., how representative de novo molecules are of the 
respective training molecules), this benchmark proposed 
a useful suite of performance metrics to evaluate de novo 
molecules, all of which are integrated into MolScore.

Docking benchmarks such as the smina-docking-
benchmark [14] (against four protein targets), DOCK-
STRING (against three targets) [15] and a docking 
benchmark in the Therapeutic Data Commons [16] 
(against one protein target) have also emerged. Con-
sidering that generative models can exploit non-holis-
tic (i.e., the objective does not perfectly describe the 
desired chemical space) objectives [17, 18], caution 
should be used when using docking score alone to rank 
generative models, which can be particularly suscepti-
ble. As optimising docking score can lead to large and/
or greasy molecules being generated which are not desir-
able in a medicinal chemistry context, as observed in the 
DOCKSTRING single docking task. Thus, this dock-
ing benchmark will rank highly generative models that 
are unregularised or can generate out-of-domain mol-
ecules, instead of those useful in practice, perhaps more 
so than other benchmarks. Moreover, none of the dock-
ing benchmarks conduct full ligand preparation which 
should consist of protonating molecules at a biologically 
relevant pH, enumerating unspecified stereoisomers and 

enumerating tautomers. MolScore contains functional-
ity to conduct docking via interaction with a variety of 
docking software, but crucially also contains appropri-
ate ligand preparation protocols that handle stereoiso-
mer numeration, tautomer enumeration and protonation 
states.

There exists other software for objective design used in 
conjunction with generative models. REINVENT [19–
22], implements a suite of configurable scoring functions 
for use with its generative model architecture. However, 
the package is integrated with only the REINVENT 
provided generative models and it is not trivial or obvi-
ous how to use functionality available interchangeably 
with other generative models for standardised compari-
son. This contrasts with MolScore which is designed to 
plug-and-play with different generative models. Another 
framework, the Therapeutic Data Commons (TDC) 
platform [16], reimplements the GuacaMol suite (with 
customizable reference molecules) and provides several 
additional capabilities such as docking, synthetic acces-
sibility scores, molecular descriptors and pre-trained 
activity models. However, not all scoring functions are 
customizable and score transformation or aggregation 
for use in a multi-parameter setting must be manually 
coded. This introduces a problem with standardization 
and reproducibility across users. On the other hand, 
MolScore contains more scoring functions which are also 
more configurable, as well as an interface with 2337 activ-
ity models compared to the 3 available in TDC. Multi-
parameter configuration is handled via the configuration 
file thereby standardising transformation and aggrega-
tion. It should be noted that MolScore is focussed on de 
novo design while the TDC has a much broader scope.

Implementation
MolScore is an open-source software written in Python 
3, published under an MIT licence and distributed via 
GitHub and Python Package Index. It depends on several 
packages such as RDKit [23], PyTorch [24], Streamlit, as 
well as integrating published works in the field such as 
RAscore [25], AiZynthFinder [26] and ChemProp [27]. 
MolScore is split into two sub-packages: (1) molscore 
for scoring de novo molecules proposed by a generative 
model, and (2) moleval for post-hoc evaluation using a 
suite of evaluation metrics. The structure of the python 
package can be seen in Fig. 1. The following sections pro-
vide details of each sub-package.

Molecule scoring
The sub-package, molscore, handles the scoring of 
de novo molecules. It is a collection of scoring func-
tions, diversity filters, transformation functions and 
aggregation functions that can be used interchangeably, 
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all managed by a python class MolScore found in the 
module manager.py (see Fig. 1). MolScore is initial-
ised with a JSON configuration file that specifies exactly 
which functionality to use to score molecules. Once ini-
tialised, it takes as input a list of molecules (in SMILES 
representation) and returns a list of their respective 
scores as output, designed to be repeated in an iterative 
fashion (e.g., steps/epochs) over the course of a gen-
erative model optimisation run. During each iteration, 
there are several intermediate steps. First, molecules 
are parsed to check for validity (by parsing with RDKit), 
their SMILES are canonicalized and intra-batch unique-
ness is checked. Inter-batch molecule uniqueness is then 

cross-referenced with previously generated molecules 
within the run and if the molecule was previously gener-
ated its previous score is reused. This can save valuable 
time if compute–intensive scoring functions are used 
and if a generative model is susceptible to generating the 
same molecules multiple times. User-specified scoring 
function (s) are run only for valid and unique molecules 
with invalid molecules being assigned scores of 0. Each 
score is transformed into a value between 0 and 1 by 
choosing a transformation function available. Then, these 
standardised scores are aggregated according to a chosen 
aggregation function available to result in a final desir-
ability score between 0 and 1 that can represent multiple 

Fig. 1 Design of the molscore and moleval sub-packages. The main elements of molscore include the manager.py module 
that interacts with a generative model and manages scoring of the molecules according to the objective. The gui folder contains the scripts to set 
write configuration files or monitor de novo molecules. The scoring_functions folder contains modules for individual scoring functions, 
the folder scaffold_memory contains code that defines the diversity filters [25], and the utils folder contains code for the transformation 
and aggregation functions. The main elements of the moleval package are the metrics.py module that computes evaluation metrics 
and the statistics_by_n.py script that computes the evaluation metrics to a molscore output file every n-steps or n-samples
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parameters/objectives. The final desirability score can 
be further modified in two ways. Optionally diversity fil-
ters can be applied to penalise the score of non-diverse 
molecules, or, any scoring function can be used as a ‘fil-
ter’ i.e., the transformed score returned from this func-
tion is used to multiply the desirability score. The final 
results are added to the run record. In addition, a CSV 
file is output for each iteration in the run, allowing a GUI 
to analyse intermediate results during the course of a run. 
Finally, when the run has concluded, a CSV file is writ-
ten to the output directory with a full record of molecules 
generated and their scores.

A broad array of functionality is available to define 
an objective, as outlined in Table 2. The suite of scoring 
functions includes physicochemical descriptors, 2D and 
3D molecular similarity to reference molecules, substruc-
ture matching, use of Scikit-Learn [28] models includ-
ing bioactivity models on 2,337 ChEMBL31 [29] targets 
with PIDGINv5 [30], interfacing with eight docking soft-
ware coupled with four ligand preparation protocols, and 
finally three synthetic accessibility measures.

To accelerate computation of scoring functions, most 
are parallelisable using Python’s built-in multiproc-
essing module, while longer running scoring func-
tions such as docking and ligand preparation can be 
distributed over multiple compute nodes using Dask 
, to allow parallelisation over a whole compute cluster. 
Details on each method can be found in the Supplemen-
tary Information.

Molecule evaluation
The moleval sub-package is largely an extension of 
the MOSES [13] suite of evaluation metrics computed 
for de novo molecules given a set (or sets) of refer-
ence molecules. The main element of this sub-package 
is the GetMetrics class found in the metrics.py 

module. This is initialised by optionally specifying 
some reference datasets (for example, train and test 
sets used for the measurement of extrinsic properties), 
and it then takes as input a list of de novo molecules 
and outputs the respective calculated metrics. Addi-
tionally, the CSV output file written by molscore can 
be provided to the statistics_by_n.py script, 
which computes evaluation metrics and basic statis-
tics (mean, median and standard deviation) per n mol-
ecules or n column values (e.g., per 100 steps).

Table  3 highlights all the evaluation metrics available 
in moleval split into intrinsic properties (based solely 
on de novo molecules) and extrinsic properties (in refer-
ence to an external dataset). Some additional metrics not 
found in MOSES for intrinsic properties include sphere 
exclusion diversity (SEDiv) [11], scaffold uniqueness, 
scaffold diversity, functional group and ring system diver-
sity [54] and a measure of purchasability in the ZINC20 
in-stock catalogue using molbloom [55, 56]. Additional 
metrics for extrinsic properties include analogue similar-
ity [52] and coverage, functional group and ring system 
similarity [54] and average fraction of outlier bits (a.k.a. 
‘Silliness’ [57]) i.e., the average ratio of ECFP4 fingerprint 
bits not found in the reference dataset indicating idiosyn-
cratic atomic environments. For a more detailed descrip-
tion of each metric see the Supplementary Information.

Benchmarking
Given the broad functionality available in MolScore, 
it is trivial to define new or re-implement existing 
benchmarks. Therefore, a benchmark mode has been 
implemented via the MolScoreBenchmark class in 
manager.py. This takes a list of JSON configura-
tion files and provides an iterator over the singular 
MolScore class for each objective, and computes 

Table 1 Comparison between different software and benchmarks for de novo molecule generation

a Configurable without having to write code to design the objective
b Easily implementable for most generative models

Fixed/configurable a Optimisation 
objectives

Evaluation 
metrics

Generative model 
 agnosticb

Graphical 
user 
interface

GuacaMol Fixed ✔ ✔ ✔
MOSES Fixed ✔ ✔
MolOpt Fixed ✔ ✔
Smina-docking Fixed ✔ ✔
TDC Fixed ✔ ✔
DOCKSTRING Fixed ✔ ✔
REINVENT (+ DockStream) Configurable ✔ ✔
MolScore Configurable ✔ ✔ ✔ ✔
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Table 2 Functionality available within the molscore sub-package

License 
key 
required

References

Scoring functions Descriptors RDKit Descriptors No [23]

Linker Descriptors No [32]

Penalised logP No [9]

Maximum number of consecutive rotatable bonds No

Similarity Isomer similarity No [8]

Fingerprint similarity No [8]

Molecular substructure match No [8, 19]

Molecular substructure filters No [19]

ROCS Yes [33]

Open 3D Align No [34]

Applicability domain Maximum similarity No [35]

Feature range No [35]

Physchem range No [35]

Predictive models Scikit-learn models No [28]

PIDGINv5 No [30, 36]

ChemProp No [27]

ADMET-AI No [37]

Docking Glide Yes [38]

PLANTS Yes [39]

GOLD Yes [40]

OEDock Yes [41]

Smina No [42]

Gnina No [43]

Vina No [44]

rDock No [45]

Synthesizability SA score No [46]

RA Score No [25]

AiZynthFinder No [26]

Reaction filters No [47]

Scoring function utilities Fingerprints ECFP (Morgan), Atom-pair, Topological-torsions, MACCS keys, 
RDKit, Avalon, Pharm2D

No [23]

Similarity measure Tanimoto, All bit, Asymmetric, Braun Blanquet, Cosine, McCon-
naughey, Dice, Kulczynski, Russel, On bit, Rogot Goldberg, Sokal

No [23]

Molecule preparation pipelines GypsumDL No [48]

Ligprep Yes [49]

Epik Yes [50]

Moka Yes [51]

Diversity filters Unique No

Occurrence No

IdenticalMurckoScaffold No [52]

IdenticalTopologicalScaffold No [52]

CompoundSimilarity No [52]

ScaffoldSimilarityAtomPair No [52]

ScaffoldSimilarityECFP No

Transformation functions Normalise No

Linear threshold No [8]

Gaussian threshold No [8]

Step threshold No
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evaluation metrics for comparison upon exit. A series 
of presets are already present including GuacaMol and 
MolOpt, where benchmark-specific metrics are com-
puted. Or a user can include/exclude objectives from 
these or specify their own list of configuration files for 
use a benchmark.

Implementation challenges
A particular challenge when combining a variety of scor-
ing functions and software from published methods is 
conflicting library dependencies. Furthermore, predic-
tive models should use the same version of a respective 
library (e.g., Scikit-Learn) during prediction as was used 
during training where possible, as there may be subtle 
changes to the source code affecting the prediction. In 
order to tackle this, scoring functions that require spe-
cific library versions that must be consistent with those 
used during training are run as a local server from their 
respective fixed environment, as specified by the authors. 
This currently includes AiZynthFinder [26], RAscore 
[25], PIDGINv5 [30], ChemProp [27], ADMET-AI [37] 
and some legacy QSAR models used in benchmarks such 
as DRD2, GSK3β and JNK3 bioactivity prediction mod-
els. To automate this process as much as possible, mols-
core will check for these separate conda environments 
and if not present, attempt to create them automatically 
when the scoring function is used for the first time. One 
caveat to this approach is the assumption of the use of 
conda (or mamba) for environment management. Overall 
this approach allows integration of different scoring com-
ponents with conflicting dependencies and avoids re-
loading of python environments and predictive models 
at every iteration which improves computational perfor-
mance. Should any further challenges arise, tutorials can 
be found on the GitHub page and issues can be raised on 
the GitHub contributing to further improvement of the 
software.

Results and discussion
The core components of MolScore were used to facili-
tate scoring and evaluation in our previous work [59, 
62]. Here we describe its user interface, demonstrate its 
use to design difficult, drug design relevant objectives, 

Table 2 (continued)

License 
key 
required

References

Aggregation functions Weighted sum No

Auto-weighted sum No [53]

Product No

Weighted Product No

Auto-weighted product No [53]

Geometric Mean No

Arithmetic Mean No

Pareto front No [53]

Table 3 Evaluation metrics available in the moleval sub-
package. No metrics require a license

References

Intrinsic properties Validity [8, 13]

Uniqueness [8, 13]

Scaffold uniqueness

Internal diversity (1 & 2) [13, 58]

Sphere exclusion diversity [59]

Solow Polasky diversity [60]

Scaffold diversity

Functional group diversity [54]

Ring system diversity [54]

Filters (MCF & PAINS) [13]

Purchasability [55]

Extrinsic properties Novelty [8, 13]

FCD [61]

Analogue similarity [52]

Analogue coverage

Functional group similarity

Ring system similarity

Single nearest neighbour similarity [13]

Fragment similarity [13]

Scaffold similarity [13]

Outlier bits (Silliness) [57]

Wasserstein distance (LogP, SA 
Score, NP score, QED, Weight)

[13]
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and show how it can be used to quickly evaluate de novo 
molecules.

User interface
Installation
Installation instructions can be found on the GitHub 
repository, alternatively, it can be installed in an exist-
ing environment via the Python Package Index with pip 
install molscore.

Integration into a generative model
MolScore can then be implemented into a generative 
model optimisation scheme in just three lines of code, 
as shown in Fig. 2. Alternatively, MolScore can be run in 
benchmark mode by providing a preset benchmark, as 
shown in Fig. 3, or a list of configuration files.

Examples of generative models with MolScore already 
integrated can be found on GitHub (https:// github. 
com/ Morga nCTho mas/ MolSc ore_ examp les), including 
SMILES-RNN [63], CReM [64], and GraphGA [65].

Writing a configuration file
Full specification of logging, scoring functions, score 
transformation, score aggregation, diversity filters or 
scoring filters is defined in a JSON configuration file. To 
streamline and document this process, a Streamlit app is 
provided to easily write configuration files interactively 
with documentation and default parameters (see Fig. 4). 
The app can be run via command molscore_config 
that loads the GUI in a web browser. This facilitates con-
figuration writing and automatically parses the options 

specified into a correctly formatted JSON configuration 
file. This is done by docstring and typing interpretation 
to provide descriptions and widgets automatically, such 
that if a user implements a custom scoring function (as 
described in Supplementary Information), it will be auto-
matically parsed and available to specify in the GUI.

Monitoring de novo molecules
A Streamlit app to monitor de novo molecule genera-
tion ‘live’ or analyse results post-hoc is also provided (see 
Fig. 5). This is useful to gain quick insights into generative 
model behaviour with respect to chemistry generated, 
without needing to wait until the end of optimisation 
(especially in the case of computationally expensive scor-
ing functions). This is run automatically during optimi-
sation if specified in the configuration file, alternatively, 
it can be run manually at any time via the command 
molscore_monitor. The app loads a graphical user 
interface in a web browser and contains functionality to 
check any variable scored including validity and unique-
ness, select and visualise 2D molecular graphs, assess 
clusters identified by an appropriate diversity filter, and 
export selected or top k molecules. In addition, if a scor-
ing function is used that results in 3D coordinate files and 
PyMol [66] is installed, PyMol will be loaded and selected 
molecules can be exported directly into PyMol. Lastly, 
other pre-existing molscore de novo molecule genera-
tion results can be loaded for quick comparison between 
runs. 

Molscore case study: designing 5‑HT2a receptor ligands
Here we demonstrate the application of molscore for the 
design of different, drug discovery relevant objectives, 

from molscore import MolScore
ms = MolScore(model_name="my_model", task_config="my_task.json")
scores = ms.score(SMILES)

Fig. 2 Integration of MolScore into a python module, including initialisation with a model name and path to a configuration file, followed 
by scoring of an arbitrary list of SMILES that require scoring (which would be repeated for generative model optimisation). An explicit step number 
can be provided during scoring, if not, it will iteratively count up from one

from molscore import MolScoreBenchmark 
msb = MolScoreBenchmark(model_name='my_model', benchmark='GuacaMol', budget=10000)
for task in msb:

while not task.finished:
scores = task.score(SMILES)

Fig. 3 Integration of MolScore benchmark mode into a python module, including initialisation with a specific pre-existing benchmark 
and budget. Existing benchmarks are stored in MolScoreBenchmark.presets. The budget specifies a number of molecules to be evaluated 
before task.finished is set to True. Upon exit, benchmark metrics will be automatically calculated and written to CSV in the output directories

https://github.com/MorganCThomas/MolScore_examples
https://github.com/MorganCThomas/MolScore_examples
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with a focus on the generation of de novo Serotonin 
5-HT2a receptor ligands as a case study. This is a relevant 
therapeutic target indicated in psychosis and substance-
abuse with numerous antagonistic drugs marketed for 
their use as atypical antipsychotics—with the most recent 
being Lumateperone [67] approved in 2019 by the FDA. 
For the purpose of this demonstration, we use a SMILES-
based recurrent neural network generative model trained 
on ChEMBL compounds in combination with Aug-
mented Hill-Climb [62] for molecular optimisation.

To start, with we use the functionality available in 
molscore to design the following first set of objectives:

5-HT2A—We use a pre-trained random forest clas-
sification model with the PIDGINv5 scoring func-
tion to score molecules by their predicted probability 
of activity at a 1 µM concentration by supplying the 
5-HT2A uniprot accession.

5-HT2A & Synth—To include a measure of synthesiz-
ability which is needed in a real-world drug discovery 
campaign, we additionally score molecules by run-
ning the RAscore [25] pre-trained models and com-
pute the arithmetic mean of this score together with 
the predicted probability of 5-HT2A activity as before.
5-HT2A & BBB—Due to the therapeutic targets prev-
alence and disease relevance in the central nervous 
system, we run molecular descriptors and specify 
certain property ranges that increase the probably of 
blood brain barrier (BBB) permeability. The property 
ranges were influenced by Pajouhesh et al. [68]: topo-
logical polar surface area below 70, number of hydro-
gen bond donors below 2, logP between 2 and 4, and 
molecular weight below 400  Da. Each molecules 
property value is transformed into the range 0–1 (see 
Figure S4) and combined by arithmetic mean with 
the predicted probability of 5-HT2A activity as before.

Fig. 4 a Example configuration file reimplementing the Albuterol Similarity GuacaMol task. b Streamlit app to aid the creation of new configuration 
files and avoid manual writing of JSON files. The app annotates options available to the user and automatically parses it into the required JSON 
format
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5-HT2A & BBB & Synth—This a combination of all 
three of the above objectives by arithmetic mean.

Each objective was optimised by the generative model 
in combination with a diversity filter to penalise exploi-
tation and hence, encourage exploration. As shown in 
Fig.  6, each of these objectives can be improved during 

Fig. 5 Streamlit app that can be run during or after goal-directed generative model optimisation (here showing optimisation of 5-HT2A predicted 
probability of activity). This is the main page used to plot training progress and select, visualise, and export molecules. Further pages are shown 
in Figures S1–S3

Fig. 6 De novo optimisation of the first set of objectives designed by molscore by number of optimisation steps (left) with the equivalent score 
distribution for 3771 real 5-HT2A ligands (right). The dashed line represents the mean of the real ligand distribution and solid lines plus/minus one 
standard deviation from the mean. a The predicted probability of 5-HT2A activity at a concentration of 1 µM. b The first objective a combined 
with predicted synthesizability by RAscore. c The first objective a combined with property ranges increasing the probability of BBB. d All three 
objectives a–c combined
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generative model optimisation. For reference, 3771 real 
compounds with bioactivity values against 5-HT2A were 
extracted from ChEMBL31 [69] and their respective 
scores based on the first set of objectives are also shown. 
Surprisingly, the most difficult objective appears to be 
simple optimisation of the 5-HT2A predicted probability 
of activity; however, we suspect this is largely due to the 
effect of the diversity filter more heavily penalising simi-
lar molecules for this relatively ‘easy’ task. This is corrob-
orated by running the objective without a diversity filter 
(see Figure S5) which results in quick maximisation of 
this objective, but exploitative mode collapse shortly fol-
lowing (which the use of a diversity filter circumvents). 
Overall, it appears these objectives are relatively easy to 
optimise numerically.

As with many drug discovery campaigns, a key chal-
lenge for 5-HT2A ligands is minimising off-target bioac-
tivity and achieving pharmacological selectivity. In this 
case, particularly against dopaminergic receptors (espe-
cially the Dopamine  D2 receptor, from here on just  D2) 
bound by typical antipsychotics) which leads to extrapy-
ramidal symptoms as serious side-effects [70, 71]. As a 
proxy for desirable selectivity profiles, we design a sec-
ond set of objectives with molscore particularly utilising 
PIDGINv5 functionality (as with the first set of objectives 
a diversity filter is also used):

5-HT2A—As before, we use a pre-trained random 
forest classification model from PIDGINv5 to score 
molecules by their predicted probability of activity at 
a 1 µM concentration i.e., no selectivity proxy is used.
5-HT2A vs Membrane—As a proxy for a generic off-
target assay, a random forest classification model at 
a 10 µM concentration for every Class A GPCR tar-
gets with sufficient bioactivity data in ChEMBL31 
is run (266 out of a possible 312). The prediction is 
classified into active or inactive (as opposed to tak-
ing the predicted probability) for each receptor and 
the ratio of active predictions is returned as the score. 
This ratio is transformed so that low ratios have a 
high score, therefore minimising this parameter. The 
arithmetic mean is taken in combination with the 
predicted probability of activity against 5-HT2A.
5-HT2A vs  D2—The predicted probability of  D2 bio-
activity at a concentration of 10 µM is minimised in 
addition to maximising the predicted probability of 
activity against 5-HT2A.
5-HT2A vs Dopamine—The average predicted prob-
ability of bioactivity against each dopaminergic target 
at a concentration of 10 µM is minimised in addition 
to maximising the predicted probability of activity 
against 5-HT2A.

5-HT2A vs Serotonin—The average predicted prob-
ability of bioactivity against each serotonin target 
(excluding 5-HT2A) at a concentration of 10  µM is 
minimised in addition to maximising the predicted 
probability of activity against 5-HT2A.
5-HT2A vs Dopamine & Serotonin—The average pre-
dicted probability of bioactivity against each dopa-
mine and serotonin target (excluding 5-HT2A) at a 
concentration of 10  µM is minimised in addition 
to maximising the predicted probability of activity 
against 5-HT2A.

In contrast to the first set of objectives, this second set 
of objectives was more difficult for the generative model 
to optimise, as shown in Fig.  7. The easiest objectives 
with respect to achieving similar scores to real 5-HT2A 
ligands were selectivity versus membrane and selectivity 
versus  D2. The former likely due to the number of models 
run leading to low overall ratios of predicted off-targets. 
However, as more models are added, as in the dopamine 
and serotonin families, the objective becomes increas-
ingly difficult to optimise to the standard of real 5-HT2A 
ligands. With the final objective of selectivity versus 
dopamine and serotonin barely being improved through-
out optimisation. It is worth noting the caveat that real 
5-HT2A ligands are likely contained in the training data 
of the PIDGINv5 models used in these objectives, and so 
will receive inflated scores compared to ‘active’ unseen 
molecules (of which most de novo molecules are unseen). 
Although we can’t know how accurate these models are 
prospectively, or the maximum score achievable, the 
scores on real 5-HT2A ligands at least provide a minimal 
benchmark. Moreover, the models are able to at least 
distinguish 95 of 126 5-HT2A molecules with selectivity 
over  D2, despite the fact that 124 molecules have a  D2 
pChEMBL value of 5 or above and therefore, 93 correctly 
predicted selective are actually false negative predictions 
with respect to the  D2 model at 10  µM threshold (see 
Figure S6), which is somewhat advantageous behaviour 
in this case for distinguishing selective compounds. For 
comparison to real 5-HT2A ligands selective over  D2, we 
extracted the de novo nearest neighbours to the five most 
selective 5-HT2A ligands (see Fig.  8). Analogues were 
found in the 0.3–0.6 Tanimoto similarity range, although 
the identified analogues tend to be a ‘simpler’ version i.e., 
smaller with fewer heteroatoms and functional groups, 
indicating that either the objective or the generative 
model needs to more appropriately account for medicinal 
chemistry principles. However, the de novo compounds 
did possess similar predicted off-target profiles to the 
real 5-HT2A ligands. Overall, this second set of selectivity 
objectives is a more challenging optimisation problem.
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The use of ligand-based predictive models as scoring 
functions for de novo molecule optimisation can how-
ever lead to sub-optimal behaviour. Predictive models 
must have a broad enough applicability domain to per-
form expectedly given the broad scope of initial de novo 
molecules [19], and generative model optimisation can 
lead to exploitation of predictive model limitations [17, 
18]. In contrast, structure-based scoring functions have 
been shown to improve de novo molecule diversity, and 
coverage of bioactive chemical space [59]. Therefore, we 
design a third set of objectives utilising structure-based 
principles (as with the other objectives a diversity filter is 
also used):

5-HT2A—As a proxy for on-target binding affinity, 
de novo molecules are docked into the 5-HT2A co-
crystal structure bound to Risperidone (PDB: 6A93) 
using GlideSP [38] and the docking score is mini-
mised. Molecules first undergo ligand preparation 
via LigPrep [49] enumerating stereoisomers, tau-

tomers and protonation states. The prepared ligand 
variant with the best (lowest) docking score is taken 
as the final docking score. The final docking score 
is transformed by max min normalisation based on 
the maximum and minimum values updated during 
optimisation—such that low (good) docking scores 
are given a score close to one. To inject knowledge 
of aminergic binding interactions, a further docking 
constraint is applied to ensure that a docked pose 
contains a  D1553x32 polar interaction, the molecule is 
also scored to encourage a formal charge of 0 or 1. To 
help prevent exploitation of docking score limitations 
the molecule is scored to encourage the maximum 
number of consecutive rotatable bonds to be three or 
below. Thus, this is a multi-parameter optimisation 
problem (MPO) where final reward is computed as 
the arithmetic mean of all parameters.
5-HT2A vs  D2—As a proxy for selective binding affin-
ity compared to a closely related off-target, the dock-
ing score of 5-HT2A is improved (i.e., minimised) 

Fig. 7 De novo optimisation of the second set of objectives designed by molscore by number of optimisation steps (left) with the equivalent 
score distribution for 3771 real 5-HT2A ligands (right). The dashed line represents the mean of the real ligand distribution and solid lines plus/minus 
one standard deviation from the mean. a The predicted probability of 5-HT2A activity at a concentration of 1 µM. b The first objective a combined 
with predicted selectivity versus membrane receptors. c The first objective a combined with predicted selectivity versus  D2. d The first objective a 
combined with predicted selectivity versus dopamine receptors. e The first objective a combined with predicted selectivity versus other serotonin 
sub-types. f The first objective a combined with selectivity versus other serotonin sub-types and dopamine receptors
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as described above and the docking score of  D2 is 
worsened (i.e., maximised) using the same protocol 
as above but using the  D2 co-crystal structure also 
bound to Risperidone (PDB: 6CM4). Th  D2 docking 
score is transformed by max min normalisation based 
on the maximum and minimum values updated 
during optimisationsuch that high (bad) docking 
scores are given a score close to one and therefore 
rewarded. The same extra parameters are specified as 
in the multi-parameter objective as described above, 
except that the final score is the weighted sum of 
parameters, with the 5-HT2A docking score assigned 
a weight of 2 and all others assigned a weight of 1 to 
reflect that optimising 5-HT2A docking score is most 
important.

While the docking score of de novo molecules can be 
optimised to approximately the mean of known 5-HT2A 
ligands within just 200 steps (see Fig. 9a,c), optimising for 

divergent docking scores of 5-HT2A and  D2 is much more 
difficult achieving only slight separation of docking dis-
tributions relative to the beginning of optimisation (see 
Fig. 9d). This will be in large part due to the close simi-
larity between the binding pockets and binding mode of 
Risperidone. In fact, the 3771 real 5-HT2A ligands show 
very limited differences in their docking score distribu-
tions between 5-HT2A and  D2. In this example, the mols-
core GUI (Fig. 10a) was then used to select and visualise 
the best de novo molecules generated. Aggregate scores 
were re-computed (as the fully range of docking score 
is now known) but with the additional QED parameter 
with a weight of 1. For example, the top molecule has 
been exported via a clickable button to PyMol for visu-
alisation (Fig. 10b) in comparison to the reference pose of 
Risperidone (Fig. 10c). In this case, the de novo molecule 
has a cationic piperazine making the required interaction 
with the  D1553x32 residue conserved in aminergic recep-
tors [72, 73], but containing a novel cyclo-propane core 

Fig. 8 Example nearest neighbour de novo molecules to real 5-HT2A selective ligands (w.r.t  D2 binding) a The five most 5-HT2A selective ligands 
with respect to  D2 binding identified in ChEMBL31 that contain a  D2 pChEMBL value above 4, respective pChEMBL values are shown. b Nearest 
neighbour de novo molecules to each molecule in a, identified during the 5-HT2A vs  D2 task with respective Tanimoto similarity (Tc) and objective 
score. c Predicted probabilities of class A GPCR off-targets for real and de novo ligand counterparts using PIDGINv5. d Predicted class A GPCR targets 
mapped onto a GPCRome tree [62], shared predicted targets are shown in red, predicted only for the real ligand in blue, and predicted only for the 
de novo ligand in orange
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with two benzene substituents, one in the deep orthos-
teric pocket and one towards helix 6. Upon searching 
known 5-HT2A ligands, a precedence is found for such a 
di-aryl substructure linked by an  sp3 hybridised carbon. 
To further exemplify the potential benefits of more dif-
ficult scoring functions such as this, the protein–ligand 
interaction fingerprints were computed for the predicted 
poses of the top 10 5-HT2A de novo molecules and top 
10 5-HT2A vs  D2 using ProLIF [74]. Fig.  11 displays the 
resulting fingerprints in comparison to the reference 
ligand, highlighting key areas of the binding pocket 
avoided by de novo molecules optimised for selectivity, 
for example,  S1312x60, Y139,  I2064x56,  S2074x57,  P2094x60, 
 I2104x61,  L3627x34,  N3637x35. Interestingly, the top10 de 
novo molecules optimised for selectivity mostly inter-
act with  D1553x32 via polar interactions and not cati-
onic interactions, which may reflect an attempt to avoid 
increasing  D2 docking score (targeting cationic interac-
tions to this residue was a key observation in previous 
work to optimise the  D2 docking score [59]). Overall, 
this represents a much more challenging objective for de 
novo design, however, despite poor numerical divergence 
of docking scores we have shown that this still impacts de 
novo chemistry obtained and therefore still has utility in 
practice.

All of these objectives can be re-run as benchmarks 
in MolScore benchmark mode by specifying the bench-
mark keywords ‘5HT2A_PhysChem’, ‘5HT2A_Selectivity’, 

‘5HT2A_Docking’ as the benchmark parameter shown in 
Fig. 3.

Moleval case study: evaluating fine‑tuning epochs
The suite of performance metrics does not necessarily 
need to be run on a molscore output (for example, Fig-
ures  S7–10). Instead, it can be used to assess arbitrary 
datasets for quick comparison to reference datasets. For 
example, evaluating progress during generative model 
fine-tuning. In this case study, we use a SMILES-based 
RNN pre-trained on ChEMBL compounds and fine-tune 
it (via transfer learning) using a set of known Adenosine 
 A2A receptor (from here on  A2A) ligands to bias de novo 
molecule generation towards  A2A-bioactive-like chemo-
types. This just requires two lines of Python to instantiate 
the GetMetrics class specifying any reference datasets 
and calling calculate to calculate the metrics (in this 
case, repeated for sampled de novo molecules after each 
epoch of fine-tuning).

Figure  12 shows the resulting changes in metric val-
ues during fine-tuning where Epoch-0 represents the 
generative model before fine-tuning began. It is quickly 
possible to assess that some intrinsic properties (Fig. 12a) 
like novelty and diversity decrease with increasing fine-
tuning epochs, while validity has an initial drop that is 
recovered with further fine-tuning epochs as it adjusts 
to new chemotypes. Meanwhile, similarity to the initial 
pre-training dataset (ChEMBL compounds) decreases as 

Fig. 9 De novo optimisation of the third set of objectives designed by molscore by number of optimisation steps (left) with the equivalent score 
distribution for 3771 real 5-HT2A ligands (right). The dashed line represents the mean of the real ligand distribution and solid lines plus/minus one 
standard deviation from the mean. a The optimisation of the MPO score for 5-HT2A docking. b The optimisation of the MPO score for 5-HT2A vs  D2. 
c, d The docking scores obtained during optimisation seen in (a) and (b) respectively. Note that due to the ‘moving goal post’ nature of max min 
normalisation, the ‘Score’ is not representative of underlying parameter optimisation and so docking score is also shown
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shown by an increase in Fréchet ChemNet Distance [61] 
and decrease in analogue coverage (Fig. 12b). Note that 
metrics that measure the presence of only a single simi-
lar molecule, like analogue similarity and single nearest 
neighbour increase, as the initial ChEMBL training data-
set will likely already contain  A2A-like chemotypes. Con-
versely, similarity to the fine-tuning set of  A2A ligands 
increases especially noticeable by analogue similarity and 
coverage (Fig.  12c), while novelty also slowly decreases 

with respect to this fine-tuning set. This overview of 
property changes allows for interpretation on how many 
fine-tuning epochs are required. In this case, arguably, 
just one or two epochs are needed which quickly leads 
to an increased similarity to the fine-tuning set with 
marginal improvements with any further epochs; how-
ever, further epochs do lead to an undesirable decrease 
in novelty and diversity. The required balance will vary 

Fig. 10 Analysis of molecules generated during the ‘5-HT2A vs D2’ task via the molscore GUI. a (left) The multi-parameter page of the GUI enabling 
the identification of top k compounds according to user-specified parameters with the ability to redefine how scores are aggregated. b An example 
molecule exported to PyMol via the ‘Send2PyMol’ button. c The reference co-crystal ligand Risperidone bound to 5-HT2A
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Fig. 11 Analysis of protein–ligand ligand interaction in differences in 5-HT2A between top 10 de novo molecules optimised for 5-HT2A docking 
score, or top 10 molecules optimised for 5-HT2A vs  D2 docking scores. a Protein–ligand interaction fingerprints of the reference co-crystallised ligand 
Risperidone, 5-HT2A docking objective, and 5-HT2A vs  D2. b, c Example docked pose of one of the top 10 molecules from the above objectives 
respectively
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depending on user and use case, however, quickly assess-
ing changes is always useful.

Future developments
Several improvements for MolScore are planned for the 
future. Further scoring functions and performance evalu-
ation functionality, for example, structure interaction fin-
gerprint rescoring for docked poses. Accepting molecules 

with 3D conformations as inputs, particularly for 
structure-based scoring functions such as docking and 
shape alignment. This will become more useful follow-
ing the increase in 3D structure-based generative mod-
els [75, 76]. Integrating dynamic configuration files that 
can be updated during the course of optimisation for 
use in curriculum learning [77]. There still exists many 

Fig. 12 Moleval metrics computed on different fine-tuning epochs. Epoch-0 represents the generative model before fine-tuning. Intrinsic 
properties a and extrinsic properties in reference to a test set (sample of the training set) b and the set of A2A ligands used for fine-tuning c are 
shown
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opportunities for improvement depending on com-
munity uptake which we will continually endeavour to 
pursue.

Conclusion
MolScore is an open-source Python framework for the 
flexible design of drug design relevant objectives for 
de novo molecule scoring and evaluation. This frame-
work takes a more flexible approach to generative model 
benchmarking, acknowledging that benchmarks will 
never be relevant to all situations. Instead, users can 
make use of the available functionality, contribute cus-
tom scoring functions and share their proposed bench-
mark objectives in a standardised way. In addition, this 
framework contains two GUIs to facilitate ease of use 
and accessibility. We believe this framework combines 
the best elements of current benchmarks with additional 
flexibility, leading to an overall improved platform. Lastly, 
we demonstrate the use of MolScore to design drug 
design relevant objectives and how it can be used to also 
evaluate de novo molecules (and therefore differences 
between generative model hyperparameters, architec-
tures and objective functions).
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