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Abstract 

Identification of interactions between chemical compounds and proteins is crucial for various applications, includ‑
ing drug discovery, target identification, network pharmacology, and elucidation of protein functions. Deep neural 
network-based approaches are becoming increasingly popular in efficiently identifying compound-protein interac‑
tions with high-throughput capabilities, narrowing down the scope of candidates for traditional labor-intensive, 
time-consuming and expensive experimental techniques. In this study, we proposed an end-to-end approach 
termed SPVec-SGCN-CPI, which utilized simplified graph convolutional network (SGCN) model with low-dimensional 
and continuous features generated from our previously developed model SPVec and graph topology informa‑
tion to predict compound-protein interactions. The SGCN technique, dividing the local neighborhood aggregation 
and nonlinearity layer-wise propagation steps, effectively aggregates K-order neighbor information while avoid‑
ing neighbor explosion and expediting training. The performance of the SPVec-SGCN-CPI method was assessed 
across three datasets and compared against four machine learning- and deep learning-based methods, as well as six 
state-of-the-art methods. Experimental results revealed that SPVec-SGCN-CPI outperformed all these competing 
methods, particularly excelling in unbalanced data scenarios. By propagating node features and topological informa‑
tion to the feature space, SPVec-SGCN-CPI effectively incorporates interactions between compounds and proteins, 
enabling the fusion of heterogeneity. Furthermore, our method scored all unlabeled data in ChEMBL, confirming 
the top five ranked compound-protein interactions through molecular docking and existing evidence. These findings 
suggest that our model can reliably uncover compound-protein interactions within unlabeled compound-protein 
pairs, carrying substantial implications for drug re-profiling and discovery. In summary, SPVec-SGCN demonstrates its 
efficacy in accurately predicting compound-protein interactions, showcasing potential to enhance target identifica‑
tion and streamline drug discovery processes.
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Scientific contributions
The methodology presented in this work not only enables the comparatively accurate prediction of compound-pro‑
tein interactions but also, for the first time, take sample imbalance which is very common in real world and computa‑
tion efficiency into consideration simultaneously, accelerating the target identification and drug discovery process.
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Introduction
Identification of interactions between compounds and 
proteins holds immense importance in various realms. 
Specifically, discovering new drugs is globally significant, 
both in academic research and commercial endeavors. 
The exploration of compound-protein interactions (CPIs) 
is pivotal in identifying compounds that interact with 
specific molecular targets. This process is fundamental 
for various purposes such as drug discovery, target iden-
tification, network pharmacology, comprehending pro-
tein functionalities, and more [1, 2]. However, the task of 
identifying new compounds along with their correspond-
ing protein targets remains a formidable challenge, pri-
marily due to the limited comprehension of the intricate 
relationships between the chemical space and proteomic 
space. Wet experimental tests are crucial methods uti-
lized to assess the safety and effectiveness of novel drugs 
or treatment strategies. Nonetheless, these methods are 
often proven to be costly and time-consuming, demand-
ing substantial resources. The evaluation process involves 
in  vivo testing, which examines the effects of a drug or 
treatment within a living organism. However, this can be 
intricate and problematic due to ethical concerns and the 
inherent variability of biological systems. Alternatively, 
in vitro testing investigates the effects of drugs or treat-
ments in a controlled laboratory setting outside a living 
organism, which also tends to be time-consuming and 
expensive due to the requirement for specialized equip-
ment and expertise [3].

Recently, the use of machine learning (ML) and deep 
learning (DL) algorithms like Random Forest (RF) [4], 
Support Vector Machine (SVM) [5], Deep Neural Net-
work (DNN) [6], Gradient Boosting Decision Tree 
(GBDT) [7] has speeded up the CPI identification pro-
cess by enabling the development of novel compounds 
candidates with enhanced efficiency, efficacy, and quality 
[8]. Chen et al. [9] proposed TransformerCPI to improve 
compound-protein interaction prediction by sequence-
based deep learning with self-attention mechanism. Li 
et  al. [10] developed MONN, a multi-objective neural 
network capable of accurately predicting binding affini-
ties between compounds and proteins. Additionally, 
MONN effectively captures the non-covalent interactions 
between compounds and proteins. DEEPScreen [11] uti-
lized convolutional neural networks with 2-D structural 

compound representations. These techniques have been 
used to discover targets that are more specific and effec-
tive, and to identify novel compounds that can be fur-
ther optimized for therapeutic use. By leveraging large 
datasets and computational models, ML and DL algo-
rithms can predict the interactions between compounds 
and their targets, analyze the pharmacological proper-
ties of candidate compounds, and optimize the chemical 
structures of molecules to improve their potency, selec-
tivity, and safety profiles. Moreover, these techniques 
can significantly shorten time and costs associated with 
traditional drug discovery methods, which rely on trial-
and-error experiments and animal testing. Overall, the 
integration of ML and DL algorithms into CPIs predic-
tion holds great promise for the development of safer, 
more effective, and more affordable treatments for a wide 
range of diseases. However, fewer methods based on ML 
and DL for predicting CPIs use end-to-end representa-
tion learning. Instead, they relied on hand-extracted and 
well-designed compounds and protein features as input 
to the neural network. Using molecular fingerprints and 
protein structures as input features requires some prior 
knowledge about the data and involves hand-crafted fea-
tures. While end-to-end learning has proven to be an 
effective method for feature representation, it is not com-
monly used in biological problems. In the case of the CPI 
problem, compounds or proteins can be represented as 
sequences where each character represents an atom or 
amino acid which were similar with ‘sentences’ in the 
natural language processing. Therefore, there are a lot of 
potentials for considering end-to-end learning of CPI fea-
ture representations based on these assumptions. Various 
protein language models and compound language mod-
els have been proposed for feature representation. Exam-
ples include ProtVec [12] and SMILES2Vec [13] based on 
word2vec [14] methodology model, ProteinBERT [15] 
and Knowledge-based BERT [16] for compounds, as well 
as large language models like ESM-1b [17].

Graph convolutional networks (GCN) [18] have 
achieved significant advancement in processing network 
or data with graph-structure and are deemed a promising 
solution to the CPIs problems. GCN plays a vital role in 
investigating intricate biological systems, which are rep-
resented as graphs made up of nodes (i.e., biomolecules) 
and edges (i.e., connections between biomolecules), such 
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as CPIs analyzed in this study. Previous studies demon-
strated that biomolecules, such as small molecules and 
proteins, carry out their functions not only individually 
but also through interactions with other biomolecules. 
As a result, network topology should be considered to 
predict interactions among biomolecules. To date, GCN 
has been extensively applied in numerous real-world 
tasks, yielding satisfactory results in drug-target interac-
tion or affinity prediction [19–22], drug-drug interaction 
prediction [23, 24], disease-gene association recognition 
[25–27], and so on. In biological tasks like CPIs, the num-
ber of pertinent entities (e.g., genes, compounds, pro-
teins, etc.) is typically enormous. The most typical hurdle 
is the “neighbor explosion” phenomenon encountered 
when dealing with complex large graphs (the complexity 
of node representation and stochastic gradient calcula-
tion will exponentially increase with the increasing num-
ber of message passing layers), and the over-smoothing 
or overfitting issues caused by stacking multiple layers 
of GCN (as the neural network goes deeper, nodes tend 
to have similar representations after aggregation opera-
tions). Researchers have proposed various graph sam-
pling techniques to reduce the number of nodes involved 
in message passing, thereby lowering training costs. The 
most common techniques include node sampling (such 
as GraphSAGE [28], PinSage [29], VRGCN [30]), layer 
sampling (such as FastGCN [31], ASGCN [32]) and edge 
sampling [28]. In addition to training complexity issues, 
there are still challenges on accuracy and scalability [33, 
34].

In real-world scenarios, the number of observed CPIs 
is often significantly lower than the potential interac-
tions that could exist. Therefore, using unbalanced data-
sets more accurately reflects the natural distribution of 
positive and negative samples in CPI prediction tasks. 
However, many existing methods for CPI prediction 
are trained and evaluated using balanced datasets, as 
observed in [35–37]. In balanced datasets, models might 
achieve artificially high accuracy due to being prone to 
predicting the majority class. This can be misleading and 
does not provide an accurate assessment of a model’s per-
formance. Therefore, it becomes imperative to address 
the challenge posed by natural imbalanced data, even 
though training models on imbalanced datasets remain a 
significant hurdle for machine learning techniques [38]. 
Unbalanced datasets force models to learn the underlying 
patterns of interactions, leading to more reliable evalu-
ations. Imbalanced datasets can improve a model’s sen-
sitivity to true positive predictions. Sensitivity is crucial 
in CPI prediction, as accurately identifying existing CPIs 
is essential for drug development and repurposing. Suc-
cessfully predicting interactions in an imbalanced setting 

indicates better generalization and robustness of the 
model when applied to real-world situations.

In this study, we proposed an end-to-end approach 
called SPVec-SGCN-CPI utilizing a simplified homog-
enous GCN model by concatenating compounds and 
protein features derived from the SPVec [39] model. Fig-
ure  1 illustrated the whole pipeline for CPI prediction. 
There are three steps for CPI prediction task: (i) feature 
representation via SPVec method, (ii) graph construction 
based on feature concatenation and feature similarity 
and (iii) simplified GCN model with K-layers. The SGCN 
technique separates the local neighborhood aggregation 
and nonlinearity layer-wise propagation steps, effec-
tively aggregating K-order neighbor information while 
preventing neighbor explosion and speeding up training 
[40]. This makes the training process more efficient and 
allows the algorithm to handle larger graphs. The SPVec-
SGCN-CPI method’s performance was evaluated across 
three datasets, comparing it against four ML- and DL-
based methods and four state-of-the-art methods. Exper-
imental results demonstrated that SPVec-SGCN-CPI 
outperformed ML, DL and state-of-art methods, par-
ticularly excelling in unbalanced datasets. In sum, SPVec-
SGCN demonstrates its capacity in reliably predicting 
CPIs, exhibiting potential to enhance target identification 
and streamline drug discovery processes.

Method
Datasets
ChEMBL [41], BindingDB [42] and PubChem [43] are 
commonly used and frequently reported databases of 
chemical molecules and their biological activities. Affin-
ity data for protein–ligand complexes are curated from 
published literature in major medicinal chemistry jour-
nals, and the data have been manually annotated to 
ensure the reliability. Supplementary Table  S1 shows 
the numbers of compounds, target and their interac-
tions obtained from three data source mentioned above 
as of October 2023. While many types of assays (IC50, 
AC50, EC50, Ki , Kd ) has been widely used to quantify 
the potency of compounds in inhibiting the activity of 
a biological target, IC50 is most commonly reported in 
experimental studies because determination process of 
Ki/Kd is slightly cumbersome. Either a low IC50 value or 
a low Ki/Kd value indicates high binding affinity [44]. In 
order to maximize the utilization of our collected data, 
we selected IC50 as the primary quantitative measure. 
We firstly got rid of compound-protein pairs that had 
missing IC50 values and inorganic compounds because 
of low drugability. By following the activity threshold dis-
cussion in [45, 46], compound-protein pairs with IC50 
values < 100  nM were selected as positive samples and 
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compound-protein pairs with IC50 values > 10000  nM 
were selected as negative samples. It is worth noting that 
this threshold is variable. It can adjust the IC50 value 
[47–49] or classify positive and negative samples based 
on Ki or Kd values [50–53]. Table  S2 lists the different 
criteria adopted by researchers, with related analyses 
following Table  S2. According to data source, we used 
ChEMBL dataset as training data and the other two 

datasets as test data. Table 1 shows the final numbers of 
entries in three datasets obtained from ChEMBL, Bind-
ingDB and PubChem, respectively. Unlike the ChEMBL 
and BindingDB datasets, where the positive and negative 
sample quantities are relatively close, the ratio of positive 
to negative samples in the PubChem dataset is approxi-
mately 1:81, indicating a highly imbalanced distribution. 
This is in line with real-world phenomena because most 

Fig. 1  The whole pipeline for CPI prediction. There are three steps for CPI prediction task: (i) feature representation via SPVec method, (ii) graph 
construction based on feature concatenation and feature similarity and (iii) simplified GCN model with K-layers
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compound-protein pairs are unmarked data or nega-
tive samples. The PubChem dataset addresses the sam-
ple imbalance issue, which many other studies have not 
considered. Figure  2 shows the numbers of compounds 
(Fig. 2a) and protein targets (Fig. 2b) that are unique or 
common in the ChEMBL, BindingDB and PubChem 
datasets. Each CPI entry in the three datasets is unique 
with   no overlap.  It can be observed that the overlap of 
samples (compounds or targets) among the three data-
sets is very low.  BindingDB and PubChem are suitable 
for use as test sets.

Feature representations
In our previous study, we proposed SPVec [39] method 
to learn feature representation of small compounds 
(SMILES format) and target proteins sequences. SPVec, 
which was inspired by word2vec, uses the Skip-gram [54] 
model. The Skip-gram model is a type of neural network 
architecture that is used to predict the context words sur-
rounding a target word in a sentence or text. The basic 

idea is to learn a set of distributed representations (vec-
tors) for each word in the vocabulary, such that simi-
lar words have similar vectors. The Skip-gram model is 
trained on a large corpus of text data, and it learns to 
predict the probability of observing a context word given 
a target word. One of the advantages of using the skip-
gram method is its ability to capture the semantic rela-
tionships between words. Negative-sampling method is 
used to train SPVec model, which helps to reduce com-
putational complexity and to enhance simultaneously 
the quality of word vectors and to accelerate the train-
ing speed. Given a subset NEG(w)(NEG(w)  = ∅ ) and 
∀w̃ ∈ D , the probability of word vector is

where Lw(w̃) is the label of wordw , σ(•) is sigmoid func-
tion, θ are parameters of latent word vectors. The follow-
ing function is maximized for sample(w,Context(w)):

(1)
p
(
u
∣∣w̃

)
=

[
σ

(
V
(
w̃
)T

θu
)]Lw(u)
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[
1− σ
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V
(
w̃
)T

θu
)]1−Lw(u)

Table 1  Numbers of entries in three datasets obtained from ChEMBL, BindingDB and PubChem, respectively

Datasets Compounds Targets Positive samples Negative samples Total samples

Training set ChEMBL 273652 3451 256590 169642 426232

Test sets BindingDB 33916 1131 14265 14191 28456

PubChem 27307 224 449 36581 37030

Fig. 2  Numbers of compounds (a) and protein targets (b) that are unique or common in the ChEMBL, BindingDB and PubChem datasets. Numbers 
in parentheses indicate the inclusion relationship of different groups, 1 means containment, 0 means non-containment, and position indicates 
the group in which it is located
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where NEGw̃(w) denotes as a subset generated from neg-
ative samples during processing words w̃ . The following 
objective loss function L is maximized by the stochastic 
gradient descent (SGD) method:

SPVec learned distributed representations (vectors) 
for each category instead of one-hot encoding. To repre-
sent drug molecules, we treated SMILES as “sentences” 
and each atom as a “word”. For protein sequences, we 
regarded them as “sentences” and every three amino 
acids that not overlap to each other as a “word”. Since 
SMILES strings have different representations for the 
same chemical structure, we converted the original 
SMILES in datasets to canonical SMILES to ensure the 
consistency and quality of the generated features. Our 
previous work has demonstrated that SPVec is superior 
to the features of manual design and SPVec can avoid the 
sparseness problem and reduce the number of bit colli-
sions. And we discuss the performance of different word 
vector dimensions and context window size for word vec-
tors. However, previously, the influence of different cor-
pus on word2vec was ignored. Here, we designed three 
corpuses to explore the sensitivity of word2vec to corpus 
quality: (1) Corpus_1 only contains ~ 273  K compounds 
and 3451 proteins in training phase; (2) Corpus_2 con-
tains ~ 335  K compounds and 4806 proteins in all three 
datasets (i.e. ChEMBL, BindingDB and PubChem); (3) 
Corpus_3 contains ~ 2.4  M compounds and ~ 15  K pro-
teins in ChEMBL. That is, SPVec was pre-trained by 
external data. We proposed two methods to explicitly 
address the limitations associated with word2vec. Han-
dling Out-Of-Vocabulary (OOV) words is a significant 
obstacle for small corpus size (corpus_1). One common 
solution is assigning random vectors to OOV words. 
Here we replace random vectors with averaged vectors 
of ‘words’ (i.e. compounds and protein segments). Large 
corpus (corpus_3) may contain noisy data, we filtered 
molecules with Tanimoto similarity > 80% and proteins 
with sequence similarity > 80%. The improved corpus 
based on methods mentioned above are named as cor-
pus_1_imp and corpus_3_imp, respectively. Besides, to 
make sure no data about new protein or a new SMILES or 
both was leaked in pre-trained and training process, Cor-
pus_3_only were constructed by removing proteins and 
compounds in testsets (i.e. BindingDB and PubChem).

According to Tomas [55], improving the range can 
enhance the quality of word vectors, but it comes 
at the cost of increased computational complexity. 

(2)g(w) =
∏

w̃∈Context(w)

∏

w∈{u}∪NEGw̃(w)

p
(
u|w̃

)

(3)L = logG = log
∏

w∈C

g(w)

The training complexity of Skip-gram model can be 
expressed as:

Here, C represents the maximum distance between 
words, V represents real value vector V (w) for any word 
in dictionary D.

Simplified graph convolutional networks
GCN is one type of neural network specifically developed 
to handle data with graph structure. In convolutional 
neural networks (CNN), convolution operation works 
by sliding a filter over the input image and applying a dot 
product between the filter and the input at each location 
[56]. This operation can be extended to graph data by 
defining a filter as a weight matrix that is shared across all 
nodes in the graph. The output of the convolution opera-
tion is then calculated by taking the dot product between 
the weight matrix and a node feature matrix, where the 
node feature matrix contains feature vectors for all nodes 
in the graph.

A particular graph-based neural network model is the-
oretically motivated by the layer-wise back propagation 
rule below. Define

Here, Ã = A+ IN , where IN is the identity matrix and 
A is adjacency matrix of graph G. D̃ is the degree matrix 
of Ã.

The representation updating rule of the k-th layer is:

The weight matrix �(k) is specific and trainable to each 
layer. H(k) ∈ R

N×D is the matrix of activations in the hth 
layer.

For binary classification, the predicted class Ŷ in a k-
layer GCN can be expressed as:

where sigmoid(x) = 1
1+e−x acts as a normalizer among 

two classes.
For traditional multilayer perceptron (MLP), greater 

depth enhances expressivity by enabling the formation 
of feature hierarchies. For instance, features in the next 
layer build upon those of the first layer. Feature propa-
gation is the key factor that sets a GCN apart from a 
MLP. In GCNs, layers serve an additional crucial role: at 
each layer, hidden node representations are obtained by 
average among neighbors situated one hop away. Con-
sequently, after k layers, a node incorporates feature 

(4)Q = C ×
(
D + D × log2(V )

)

(5)S = D̃− 1
2 ÃD̃− 1

2

(6)H(k) ← ReLU
(
SH (k−1)�(k)

)

(7)ŶGCN = sigmoid
(
SH (k−1)�(k)

)
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information from all nodes located k-hops away in the 
graph. This effect resembles CNN, where depth expands 
the receptive field of inner node features [57]. While con-
volutional networks significantly benefit from increased 
depth [58], MLPs typically derive little advantage beyond 
4 or 5 layers.

Our hypothesis suggests that GCN performs well on 
graph data for two key reasons. (1) local neighborhood 
aggregation: GCN can effectively capture the local neigh-
borhood information of each node. By using the features of 
a node and its immediate neighbors for convolution, GCN 
aggregates information from surrounding nodes, incor-
porating their information into the representation of each 
node. (2) nonlinearity layer-wise propagation: GCN mod-
els typically employ nonlinearity layer-wise propagation, 
where each layer depends on the output of the previous 
layer. This layer-wise propagation effectively preserves and 
propagates information through the layers, allowing the 
model to gradually capture more extensive graph structural 
information and complex nonlinear relationships in the 
input data. These two parts can be executed separately. Fig-
ure 3 shows a schematic layout comparison between GCN 
and Simplified GCN (SGCN). SGCN eliminates the non-
linear transition functions in each layer, retaining only the 
final sigmoid to generate probabilistic outputs in a range of 
0–1. The resultant model is linear, yet maintains the same 

increased receptive field characteristic of a k-layer GCN 
and can be freely combined with nonlinearity layer-wise 
propagation.

The predicted class Ŷ in a k-layer SGCN can be written 
as:

Equation 8 yields a straightforward and intuitive under-
standing of SGCN. By delineating between feature repre-
sentation and classification, SGCN comprises a fixed and 
parameter-free feature smoothing component X̂ = SkX , 
succeeded by a linear logistic regression classifier 
Ŷ = sigmoid

(
X̂�

)
 . As the computation of X̂ involves no 

weights � , it is basically equivalent to feature transforma-
tion. Consequently, the entire model training process 
simplifies to binary logistic regression on the trans-
formed features X̂ . SGCN inherently scales well to very 
large graph sizes, making the training of SGCN signifi-
cantly faster compared to GCNs. For a n-layer GCN, we 
use 1 or 2 layer nonlinearity propagation to capture com-
plex nonlinear relationships and the other can directly 
execute k-layer local neighborhood aggregation by 
SGCN.

To construct the graph we need for our task, we use 
compound-protein pairs as nodes. The nodes have 200 

(8)ŶSGCN = sigmoid
(
SkX�

)

Fig. 3  Schematic layout comparison between GCN and SGCN. In the left, the GCN iteratively transforms feature vectors across K  layers 
before employing a linear classifier on the ultimate representation. In contrast, the right showcases the SGCN, which simplifies the entire process 
to a single step of K-hop feature propagation
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dimensions of features obtained using SPVec. The adja-
cency matrix is obtained from the similarity among 
vectors of nodes representation. The label of each node 
indicates whether there is an interaction between the 
compounds and proteins. Table  S3 showed detailed 
information about hyperparameters and architectures of 
SGCN model.

Model evaluation
The evaluation process serves as an important step 
in determining the overall effectiveness of the model 
and ensuring its future applicability. The metrics for 
evaluating the model performance include accuracy, 
precision, recall, F1 score, area under receiver oper-
ating characteristic curve (AUC) and area under the 
precision-recall curve (AUPR). Each metric provides 
unique insights into different aspects of a model’s 
performance: (1) Accuracy is the proportion of cor-
rectly classified instances among the total predictions. 
It is simple and easy to interpret but may not reflect 
class-specific performance and could overemphasize 
the majority class for imbalanced datasets. (2) Preci-
sion is useful when minimizing false positives is cru-
cial; however, it ignores false negatives and thus not 
provide a complete model performance. (3) Recall 
emphasizes capturing all positive instances. There 
is a trade-off between recall and precision: increas-
ing recall may decrease precision, and vice versa. (4) 
F1-score balances precision and recall and it is useful 
when both are important. It assumes equal importance 
of precision and recall and may not be suitable for all 
scenarios. (5) AUC is an important metric for binary 

classification and it assesses model performance 
across various decision thresholds. (6) AUPR is par-
ticularly useful in cases where the positive class (or the 
class of interest) is rare, making precision and recall 
more informative than accuracy but it may not be as 
interpretable as AUC. In order to ensure the stability 
of our proposed model, fivefold cross-validation (CV) 
was performed 10 times for CPIs task.

Results and discussion
Performance of SPVec‑SGCN‑CPI model using six corpuses
Figure  4 shows classification performance of SPVec-
SGCN-CPI model averaged over 10 runs on two test 
sets. Although the model evaluation metrics achieved 
similar results using three corpuses on the training set 
(see Supplementary Figure S1), while increasing the size 
of the Corpus_1 to Corpus_2, SPVec-SGCN-CPI model 
achieved better performance on two test sets. Corpus_2 
is larger encompassing a broader “vocabulary” and a 
more diverse range of “language” (i.e., protein sequences 
and SMILES) contexts, allowing the model to learn richer 
and more specific feature representations. Besides, larger 
corpus provides more contextual information, enabling 
the model to better understand the meanings of words in 
different contexts. This helps in generating word embed-
dings that are more contextually sensitive and enhance 
the model’s generalizability. Test sets contained new 
‘words’ not able to be represented by SPVec model and 
handling out-of-vocabulary “words” contributes to the 
descending prediction ability of the model. Compared 
to Corpus_1, replacing random vectors with averaged 
vectors of ‘words’ in Corpus_1_imp has improved the 

Fig. 4  Classification performance of SPVec-SGCN-CPI model using six corpuses averaged over 10 runs on the BindingDB test set and PubChem test 
set
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model performance, indicating that this approach is one 
of the measures to address the OOV problem. However, 
it’s essential to note that the improvement in model per-
formance is not always linear with the increase in cor-
pus size. SPVec-SGCN-CPI model on Corpus_2 and 
Corpus_3 achieved roughly equivalent performance. 
This indicates that beyond a certain point, the marginal 
benefits of enlarging the corpus may diminish, while the 
computational requirements and training time increase. 
Moreover, Corpus_3 may contain noise or low-quality 
text, which could negatively impact the model. Cor-
pus_3_imp after removing redundant data related to 
compounds and proteins did not experience a decline in 
model performance. This provides an option for remov-
ing noisy data associated with biological data. Corpus_3 
and Corpus_3_only both achieved excellent model per-
formance with no significant difference. The embeddings 
of proteins or compounds are obtained by summing and 
averaging each “word” (protein sequences and SMILES 
segments). We found that Corpus_3_only doesn’t contain 
any new “words”. SPVec has learned the optimized vec-
tor representation of each “word” even though not using 
new protein or new SMILES. Therefore, the inclusion of 
test set data in pre-training process by SPVec will not 

artificially inflate the model’s performance and generali-
zation capability.

Performance of SPVec compared with SPBert and SPGPT 
for feature representation
To demonstrate the feature representation capabili-
ties of SPVec, we compared it with state-of-the-art 
large language models. We utilized bert-based pre-
trained models, ChemBERTa-77M-MTR [59] and 
esm2_t33_650M_UR50D [60] for feature extraction. The 
combination of these is referred to as SPBert. Simul-
taneously, we employed GPT-based pre-trained mod-
els, ChemGPT-4.7M [61] and ProGPT2 [62] and their 
combination is denoted as SPGPT. We repeat the pro-
cess 10 times for model evaluations on three datasets to 
reduce the influence of chance factors, thus improving 
the accuracy of our assessment of the model’s perfor-
mance. Figure 5 illustrates the averaged AUC and AUPR 
while Figure S2 shows boxplot of AUC and AUPR with 
10 repetitions using three different feature representation 
methods on ChEMBL (fivefold cross-validation dataset), 
BindingDB (test set), and PubChem (test set). All models 
performed well on fivefold cross validation and two inde-
pendent testsets, suggesting saturation of modeling per-
formance based on biological embeddings generated by 

Fig. 5  AUC and AUPR of three different feature representation methods on ChEMBL training set, BindingDB test set and PubChem test set

Table 2  Comparison of three feature representation methods in dimensionality, computation time and memory consumption

All experiments are executed on Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz and the GeForce RTX 3080 was used to accelerate the training process

SPVec SPBert SPGPT

SMILES2vec ProtVec ChemBERT ESM2 ChemGPT ProGPT2

Dimensionality 100 100 384 1280 384 1280

Feature generation Time (Second) 137.11 49.39 1729.63 4688 1770.42 3549.28

Memory Cost(GB) 2.88 0.56 1.21 4.27 1.48 12.53

Training process Time (Hour) 2.43 5.03 4.87

Memory Cost(GB) 3.07 11.65 10.32
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pre-trained language models. This phenomenon is likely 
because the SGCN model’s potent neighbor aggregation 
and topological graph representation capabilities for CPI 
information entail relatively basic feature requirements, 
and all three models can provide sufficient performance. 
Table  2 shows comparison of three feature representa-
tion methods in dimensionality, computation time, and 
memory consumption. For CPI prediction task, word-
2Vec might already suffice in capturing word semantics. 
Due to the higher dimensions ( d = 1664 for both SPBert 
and SPGPT) and substantial computational resource 
demands using SPBert and SPGPT, SPVec may become a 
more practical choice under resource constraints.

Model performance and efficiency of different model 
combinations between SGCN and GCN
Performance. Table  3 shows model performance of 
nine model combinations between SGCN and GCN 
on ChEMBL dataset. As the number (S)GCN of lay-
ers increases from 1 to 3, there is a consistent improve-
ment in various performance metrics, suggesting that 
a larger receptive field or increased connectivity in the 
graph benefits the model’s ability to make accurate pre-
dictions. When hop value gets larger, model performance 
barely improved. Figure S3 shows fivefold cross valida-
tion results averaged over 10 runs in the 1-hop to 4-hop 
setting. As the hop value from 1 increases to 3, there is 
a consistent improvement in various performance met-
rics, suggesting that a larger receptive field or increased 

Table 3  Model performance of nine model combinations between SGCN and GCN on ChEMBL dataset

Model Accuracy Precision Recall F1-Score AUC​ AUPR

GCN 0.8940 0.9039 0.9166 0.9102 0.9557 0.9698

GCN + GCN 0.9462 0.9534 0.9548 0.9541 0.9868 0.9909

GCN + SGCN 0.932 0.9387 0.9459 0.9423 0.9802 0.9863

GCN + GCN + GCN 0.9757 0.9732 0.9856 0.9794 0.9967 0.9976

GCN + SGCN + SGCN 0.9459 0.9419 0.9680 0.9547 0.9861 0.9897

SGCN + SGCN + SGCN 0.9761 0.9742 0.9860 0.9776 0.9967 0.9975

GCN + GCN + SGCN 0.9754 0.9731 0.9854 0.9792 0.9966 0.9975

GCN + GCN + GCN + GCN 0.9871 0.9808 0.9935 0.9801 0.9972 0.9974

GCN + SGCN + GCN + SGCN 0.9752 0.9693 0.9860 0.9776 0.9967 0.9970

Table 4  Model performance of nine model combinations between SGCN and GCN on two independent test sets

Model Accuracy Precision Recall F1-Score AUC​ AUPR

BindingDB GCN 0.8493 0.8370 0.8669 0.8516 0.9261 0.9276

GCN + GCN 0.8243 0.7966 0.8697 0.8316 0.9084 0.9065

GCN + SGCN 0.8563 0.8426 0.8754 0.8587 0.9296 0.9273

GCN + GCN + GCN 0.8386 0.8152 0.8748 0.8440 0.9201 0.919

GCN + SGCN + SGCN 0.8691 0.8476 0.8993 0.8727 0.9433 0.9425

SGCN + SGCN + SGCN 0.9805 0.9763 0.9847 0.9805 0.9979 0.9979

GCN + GCN + SGCN 0.8394 0.8129 0.8808 0.8455 0.9202 0.9162

GCN + GCN + GCN + GCN 0.8197 0.8066 0.8399 0.8229 0.8906 0.8989

GCN + SGCN + GCN + SGCN 0.8618 0.8369 0.8938 0.8658 0.9375 0.9358

PubChem GCN 0.8151 0.0419 0.6208 0.0785 0.7741 0.0558

GCN + GCN 0.8246 0.0406 0.5666 0.0758 0.7676 0.0681

GCN + SGCN 0.8436 0.0510 0.6433 0.0945 0.8147 0.0771

GCN + GCN + GCN 0.8211 0.0407 0.6643 0.0856 0.7934 0.0701

GCN + SGCN + SGCN 0.8380 0.0508 0.6659 0.0944 0.8331 0.1156

SGCN + SGCN + SGCN 0.9948 0.7754 0.8262 0.8000 0.9875 0.8709

GCN + GCN + SGCN 0.8031 0.0431 0.6840 0.0810 0.8010 0.0998

GCN + GCN + GCN + GCN 0.8032 0.0401 0.5632 0.0743 0.7849 0.0695

GCN + SGCN + GCN + SGCN 0.8364 0.0537 0.6623 0.0934 0.8321 0.1121
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connectivity in the graph benefits the model’s ability to 
make accurate predictions. When hop value get larger, 
model performance improved little. We choose hop = 3 
for following research. When the model utilizes only 
3-order SGCN layers, it essentially undergoes linear 
transformation, that is a 3-hop neighbor aggregation. 
Its performance is superior to that of the 3-order GCN, 
indicating the unnecessity of non-linear transformations. 
Table 4 shows model performance of nine model combi-
nations between SGCN and GCN on two independent 
test sets. Despite achieving comparable results on the 
training set, the SGCN model alone significantly outper-
forms the GCN and GCN + SGCN combinations on the 
test sets. This suggests that SGCN has advantages over 
GCN in terms of generalization. Specifically, the GCN 
model exhibits a decrease in performance on both test 
sets, indicating potential overfitting during training. On 
the PubChem dataset, SGCN consistently performs well 
across all layers, while GCN’s performance is relatively 
limited. Notably, when the model consists of two or more 
layers, substituting the standard GCN layer with SGCN 
leads to an improvement in model performance. In sum-
mary, SGCN demonstrates superior generalization capa-
bilities compared to GCN, particularly on independent 
test sets, and replacing GCN layers with SGCN layers 
can enhance model performance, especially in deeper 
architectures.
Efficiency. Figure  6 illustrates the training time and 

AUC of nine model combinations between SGCN 
and GCN. As the standard GCN layer grows deeper, 
the training time increases gradually diminishing the 
model’s efficiency. However, utilizing SCN for K-order 
neighbor aggregation while simultaneously omitting 
non-linear layer-wise propagation can effectively reduce 

the model’s training time. For instance, comparing 
GCN + GCN + GCN and SGCN + SGCN + SGCN, the 
network structure of SGCN + SGCN + SGCN signifi-
cantly enhances the model’s training speed, reducing the 
training time by 72.23%, while still achieving competitive 
performance. Consequently, substituting the standard 
GCN layer with SGCN can effectively extends the layers 
of the GCN network without the occurrence of neighbor 
explosion and improve the training speed on the premise 
of ensuring the model efficiency.

Performance of SPVec‑SGCN model compared with ML‑ 
and DL‑based models on BindingDB and PubChem test 
sets
On one hand, accuracy, precision, recall, F1-score, AUC 
and AUPR of SPVec-SGCN model on BindingDB test-
set reached 0.9805, 0.9763, 0.9847, 0.9805, 0.9979 and 
0.9979 respectively. On the other hand, accuracy, preci-
sion, recall, F1-score, AUC and AUPR of SPVec-SGCN 
model on PubChem testset reached 0.9948, 0.7754, 
0.8262, 0.8000, 0.9875 and 0.8709 respectively. These 
results demonstrate its extraordinary predictive ability 
for CPI prediction tasks, especially in unbalanced data. 
We compared the SPVec-SGCN model with Gaussian 
Naïve Baysian (GNB), RF, GBDT and DNN to show its 
superiority in CPI prediction. Our proposed model is 
superior to other traditional ML and DL models on train-
ing set (Table S4) and two test sets (Table 5). On Bind-
ingDB test set, The AUCs of our method are higher than 
GNB, RF, GBDT and DNN by 46.27, 14.11, 29.04, and 
21.37%, respectively. All four ML and DL models failed 
to predict CPIs on PubChem test set, because these mod-
els may have a bias towards the majority class, struggling 
to identify or distinguish the minority class properly. For 

Fig. 6  Training time and AUC of nine model combinations between SGCN and GCN
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instance, GBDT and DNN overlooked minority samples 
and predicted almost the entire sample to negative. The 
excellent performance of our model is attributed to its 
effective and powerful graph processing ability via adap-
tive neighbor feature aggregation. The results show that 
our model has learned robust patterns and features that 
are applicable across various data distributions, rather 
than being overfit to a specific dataset. Generalizability 
and robustness of our model have been validated.

Further experimentation with imbalanced datasets
Besides compound-protein pairs with IC50 > 10000 
nM , we randomly selected the matching number of the 
unknown compound-protein pairs (by excluding all 
known CPIs) as negative samples [50, 51]. Figure 7 shows 
the model performance of our model under different pro-
portions of positive and negative samples on ChEMBL 
training set, BindingDB test set and PubChem test set. 
As the proportion of positive and negative samples 
increases, the AUC remains unchanged on the model 

training set. Due to changes in the balance between pre-
cision and recall, AUPR is more sensitive to class imbal-
ance, resulting in a slight decrease in AUPR. On the 
BindingDB and PubChem test sets, as the proportion of 
positive and negative samples increases, both AUC and 
AUPR values show a decreasing trend. This indicates that 
with the increase of negative samples, the performance of 
the model in the entire sample space decreases slightly. 
However, even at a positive-to-negative sample ratio of 
1:5, both AUC and AUPR remain high, indicating that the 
model performs well in handling class imbalance issues. 
The model’s high AUPR may also suggest its strong ability 
to identify positive instances (minority classes), meaning 
that it can find true positive instances while maintaining 
a low misclassification rate.

Further experimentation with larger datasets and deeper 
SGCN
To better showcase the superiority of the SGCN model, 
we collected data from multiple sources to augment the 

Table 5  Results of SPVec-SGCN model performance compared with machine learning- and deep learning-based models on 
BindingDB and PubChem test sets

Testset Methods Accuracy Precision Recall F1-Score AUC​ AUPR

BindingDB Ours 0.9805 0.9763 0.9847 0.9805 0.9979 0.9979

GNB 0.6354 0.6236 0.6789 0.6500 0.6822 0.6615

RF 0.7747 0.8072 0.7205 0.7614 0.8689 0.8745

GBDT 0.6868 0.6524 0.7964 0.7172 0.7751 0.7733

DNN 0.751 0.7412 0.7694 0.755 0.8222 0.807

PubChem Ours 0.9948 0.7754 0.8262 0.8000 0.9875 0.8709

GNB 0.5954 0.1558 0.5757 0.3708 0.6070 0.1672

RF 0.8246 0.0466 0.6460 0.0835 0.7648 0.1940

GBDT 0.5538 0.0207 0.7359 0.0402 0.6949 0.0244

DNN 0.6003 0.0202 0.6411 0.0391 0.6374 0.0179

Fig. 7  the model performance of our model under different proportions of positive and negative samples on ChEMBL training set, BindingDB test 
set and PubChem test set
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dataset. Details of the augmented training set (named 
MultiSource) can be found in Table S5. After data clean-
ing, there are a total of 676,414 positive samples and 
319,197 negative samples in the MultiSource dataset, 
with a ratio of approximately 2:1. Deeper SGCN models 
were employed on this larger dataset. Figure 8 illustrates 
model performance of SGCN and GCN models with dif-
ferent layers on MultiSource training set, BindingDB 
testset and PubChem testset averaged over 10 runs. It 
is important to note that data from the BindingDB and 
PubChem test sets were not involved in the model fine-
tuning process.

As the number of layers in the SGCN and GCN 
increases from 1 to 5, the performance shows a gradual 
improvement on the MultiScource dataset. This sug-
gests that adding layers contributes to the models learn-
ing more complex representations, thereby enhancing 
performance. When the number of layers reaches 5, the 
model reaches its optimum. With further increases in 
the number of layers, the performance of the model no 
longer improves. Across all layers, SGCN generally out-
performs GCN in terms of both AUC and AUPR indi-
cating that the SGCN is more effective on imbalanced 
training data. In the BindingDB dataset, as the number of 
layers increases, the SGCN model exhibits a similar trend 
to that observed in the MultiSource dataset. However, 
the GCN model shows a decline in model performance 
after 3 layers, indicating the occurrence of overfitting. 
On the PubChem dataset, SGCN performs well across all 
layers, while GCN’s performance is relatively limited.

Performance of SPVec‑SGCN model compared with six 
state‑of‑the‑art models
In order to provide additional evidences of the effi-
cacy of our proposed SPVec-SGCN-CPI approach, we 
conducted a comparative analysis with six other exist-
ing state-of-the-art methods published. Below are 
brief descriptions of each of these methods. (1) PMF-
CPI [63] is a pre-trained multi-functional model with 
assessing drug selectivity. (2) GraphCPI [64] is a novel 
graph-based computational model for potential CPIs. 
(3) STCPI [65] is self-training model with augment-
ing negative samples. (4) GcForest [66] is an ensemble 
decision tree learning algorithm with unique features. 
(5) CCL-DTI [67] contributes the contrastive loss in 
CPI prediction using CNN. (6) SgCPI [68] is heteroge-
neous sampled subgraph neural networks model with 
knowledge distillation. The results in Table  6 dem-
onstrate that SubSGCN-CPI outperforms the four 
state-of-the-art methods in terms of performance eval-
uation metrics on BindingDB and PubChem test sets. 
Although these state-of-the-art methods achieved rela-
tively high performance on training phase (Table  S6), 
our method exhibits superior performance with higher 
scores across all metrics for the BindingDB dataset. 
Accuracy (0.9805), precision (0.9763), recall (0.9847), 
F1-Score (0.9805), AUC (0.9979), and AUPR (0.9979) 
are higher than second best model (i.e., PMFCPI) by 
19.31, 19.21, 15.83, 19.08, 11.35, 10.34%. Our method 
also demonstrates superior performance on PubChem 
dataset displaying highest scores in AUPR (0.8709), 

Fig. 8  Model performance of SGCN and GCN models with different layers on MultiSource training set, BindingDB testset and PubChem testset 
averaged over 10 runs
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which is 20.22% higher than STCPI. PMFCPI, GcForest 
and GraphCPI achieved notably lower precision scores, 
showing poor ability to predict unbalanced data. These 
results suggest that SPVec-SGCN model is an effective 
approach to enhance the accuracy of CPI prediction. 
SPVec-SGCNs combined beneficial similarity features 
to build a homogeneous network, thereby maximizing 
the utility of available information through the aggrega-
tion of neighborhood data. And, SPVec-SGCNs utilized 

three-layer simplified GCN model to ensure parame-
ters of graph structure which offers advantages in terms 
of accuracy, scalability and training speed.

Prediction and validation of unidentified CPIs
To further validate the CPIs prediction ability of SPVec-
SGCN model, we scored all the unlabeled CPIs on the 
ChEMBL dataset. Table  S7 lists top 30 predicted CPIs. 
Specifically, we identified the top five ranked CPIs by 

Table 6  Classification results of SPVec-SGCNs model compared with four state-of-the-art models on BindingDB and PubChem test 
sets

Testset Methods Accuracy Precision Recall F1-Score AUC​ AUPR

BindingDB Ours 0.9805 0.9763 0.9847 0.9805 0.9979 0.9979

PMFCPI 0.8218 0.8189 0.8501 0.8234 0.8962 0.9044

GraphCPI 0.7237 0.7478 0.7016 0.7223 0.7697 0.7734

STCPI 0.8234 0.7965 0.7999 0.8228 0.8752 0.8745

GcForest 0.862 0.8523 0.8547 0.8678 0.8956 0.8957

CCL-DTI 0.8749 0.8594 0.8782 0.8631 0.9021 0.8954

SgCPI 0.8334 0.8348 0.8329 0.8335 0.8521 0.8545

PubChem Ours 0.9948 0.7754 0.8262 0.8000 0.9875 0.8709

PMFCPI 0.6967 0.1893 0.6743 0.4461 0.7880 0.2243

GraphCPI 0.6253 0.0587 0.6227 0.1048 0.7653 0.2540

STCPI 0.8439 0.6261 0.7359 0.6007 0.8949 0.7244

GcForest 0.6003 0.0202 0.6411 0.0391 0.6374 0.2037

CCL-DTI 0.6482 0.1467 0.5649 0.3732 0.8036 0.1734

SgCPI 0.8679 0.0573 0.6557 0.1064 0.8278 0.0693

Fig. 9  Interactions of top five ranked compounds-protein pairs predicted by SPVec-SGCN model via molecular docking
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molecular docking (MD) and cross-referenced them 
with external supporting evidences from relevant data-
bases and biomedical literature. Figure 9 shows interac-
tions of top five ranked compounds-protein pairs via 
MD and Table  S8 shows the positions, bond types, dis-
tances, and energy values of the interaction relationships 
among top five ranked compounds-protein pairs, which 
is important to understand mechanisms of CPIs. All five 
compound-protein pairs have various interactions like 
H-bond and Vanderwals force. Table  7 shows detailed 
information and external supporting evidence of top five 
ranked compounds-protein pairs. Except for the third 
compound protein pair, all of them have very low Ki or 
IC50 values, which is also consistent with the results of 
molecular simulations, demonstrating a strong interac-
tion between compound and target protein. However, 
the third compound-protein pair has a higher IC50 value 
because our training and modeling process is based on 
the premise that similar compounds and protein targets 
are related and similar compound-protein pairs tend to 
have similar interactions, as described above. However, 
protein-related life activities are complex and do not fully 
conform to this assumption. We examined the training 
data and found that there was a very strong interaction 
(IC50: 0.860 nM) between the third ranked molecule and 
another protein that was highly similar (sequence iden-
tity: 99%) to the predicted target (Integrin alpha-4/beta-
7), which was responsible for the high prediction score. 
Overall, these results suggest that the SPVec-SGCN-CPI 
model is highly effective in predicting novel CPIs and has 
important potential in drug discovery and development.

Conclusion
In this study, we proposed an end-to-end approach, 
named SPVec-SGCN-CPI, which utilizes simplified 
GCN model information based on low-dimensional 
and continuous feature generated by SPVec model and 
graph topology information for predicting CPIs. The 
SGCN technique separated local neighborhood aggre-
gation step and nonlinearity layer-wise propagation 

step to effectively aggregate K-order neighbor informa-
tion under the premise of avoiding neighbor explosion 
and accelerating training. This makes the method more 
effective than other traditional methods that can’t handle 
such complexity. The study evaluated the performance 
of SPVec-SGCN-CPI method on the three databases and 
compared it with classic ML and DL methods such as 
GNB, GBDT, RF, and DNN, as well as advanced CPI pre-
diction methods, including PMFCPI, GraphCPI, STCPI 
and GcForest. The classification results illustrated that 
SPVec-SGCN-CPI outperformed all these methods in 
terms of prediction accuracy, especially on unbalanced 
data. SPVec-SGCN-CPI is capable of propagating node 
features and topological information to the feature space, 
which enables the method to take interactions among 
CPIs into account for fusion of heterogeneity. All unla-
beled data in ChEMBEL were scored using our method 
and top five ranked CPIs were confirmed by molecular 
docking and existing evidence. The results suggest that 
our model can discover reliable CPIs among unlabeled 
compounds-protein pairs. This discovery has significant 
implications for drug re-profiling and drug discovery. 
Overall, SPVec-SGCN has demonstrated its superior 
ability to predict CPIs. This method has great potential 
to contribute to the identification of new targets and 
improve the efficiency of drug discovery.
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CNN	� Convolutional neural network
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AUC​	� Area under receiver operating characteristic curve
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GNB	� Gaussian Naïve Baysian
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Table 7  Detailed information and external supporting evidence of top five ranked compounds-protein pairs predicted by SPVec-
SGCN model

Rank Compounds Target Name Bioactivity data References

1 CHEMBL823551 Integrin alpha-4/beta-7 IC50: 211 nM [69]

2 CHEMBL3286826 ALK tyrosine kinase receptor/Nucle‑
ophosmin

Ki: < 0.0800 nM [70]

3 CHEMBL345144 Integrin alpha-4/beta-7 IC50: 2.10E + 3 nM [71]

4 CHEMBL116 Protease Ki: 0.00700 nM [72]

5 CHEMBL1120718 Histamine H3 receptor Ki:0.3 nM [73]
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