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Abstract 
Generative models have demonstrated substantial promise in Natural Language Processing (NLP) and have 
found application in designing molecules, as seen in General Pretrained Transformer (GPT) models. In our efforts 
to develop such a tool for exploring the organic chemical space in search of potentially electro-active com-
pounds, we present Llamol, a single novel generative transformer model based on the Llama 2 architecture, which 
was trained on a 12.5M superset of organic compounds drawn from diverse public sources. To allow for a maxi-
mum flexibility in usage and robustness in view of potentially incomplete data, we introduce Stochastic Context 
Learning (SCL) as a new training procedure. We demonstrate that the resulting model adeptly handles single- 
and multi-conditional organic molecule generation with up to four conditions, yet more are possible. The model 
generates valid molecular structures in SMILES notation while flexibly incorporating three numerical and/or one 
token sequence into the generative process, just as requested. The generated compounds are very satisfactory 
in all scenarios tested. In detail, we showcase the model’s capability to utilize token sequences for conditioning, 
either individually or in combination with numerical properties, making Llamol a potent tool for de novo molecule 
design, easily expandable with new properties.

Scientific contribution 
We developed a novel generative transformer model, Llamol, based on the Llama 2 architecture that was trained 
on a diverse set of 12.5 M organic compounds. It introduces Stochastic Context Learning (SCL) as a new training pro-
cedure, allowing for flexible and robust generation of valid organic molecules with up to multiple conditions that can 
be combined in various ways, making it a potent tool for de novo molecular design.

Keywords Molecular generation, Machine learning, Transformers, De novo molecular design

Introduction
In fields like energy storage materials or medicinal chem-
istry, substances are key to technological advancement 
and progress: the success of these applications hinges 
on the specific properties of the materials. However, the 

processes of discovery and development of new materi-
als often face practical and/or principal obstacles, such 
as unavailability of compounds or precursors, high pro-
duction costs, and the need for extensive trials on the 
practical side, or limited data and/or experience, as well 
as biased expectations of designers and developers on 
the other hand. Generative models, a powerful category 
in machine learning, have the potential to address both 
of these issues simultaneously, as they can help focus our 
efforts a priori only on the most likely candidates.
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Many architectures related to creation of novel data 
points were developed in recent years, most nota-
bly Recurrent Neural Networks (RNN) [1], Generative 
Adversarial Networks (GAN) [2], Variational Autoen-
coders (VAE) [3] and Transformers [4]. The transformer 
architecture, especially, has revolutionized the fields 
of Natural Language Processing (NLP) [5] and other 
domains like computer vision [6]. The introduction of 
the General Pretrained Transformer (GPT) architecture 
led to significant advancements in generative natural lan-
guage applications. Generative models have also been 
applied in the fields of medicine and material science to 
create new molecules with predefined features, a process 
known as conditional generation [7, 8]. This application 
can significantly accelerate the discovery of new candi-
date molecules. Although current generative models may 
not provide the optimal solution, they can greatly reduce 
the size of the chemical space that needs to be evaluated. 
Current estimates for the size of the chemical space con-
taining drug-like molecules range from 1023 to 1060 [9]. 
Many approaches have successfully used VAEs [10–12], 
GANs [13], RNNs [14, 15] or Reinforcement Learning 
[16]. However, more recently, transformer models, spe-
cifically the GPT models [8, 17], have emerged as the new 
state-of-the-art in this domain, especially, in the field of 
conditional molecular generation [18–20]. A good sum-
mary of available models can be found in the survey from 
Du et. al. [21].

Bagal et  al. [8] presented the MolGPT architecture 
from which a family of models, each one tailored to a 
specific task, could be derived. Inspired by their work, we 
set out to develop a solitary model that can handle many 
tasks simultaneously to support the search for low-cost, 
high-energy-density alternatives for energy storage mate-
rials in flow batteries. The model itself should not require 
complex training data; thus, it operates on SMILES [22] 
– a minimalist molecular representation that allows us to 
draw a mass of data from numerous sources – and easy 
to provide and directly to verify target properties that 
serve as conditions (primarily to facilitate the develop-
ment process of the model).1

In this paper, we present a new, dynamic training 
approach termed “Stochastic Context Learning” (SCL) 
to train a single model for conditional generation, capa-
ble of generating molecules as SMILES while respecting 
a variable number of conditions. Our training dataset 
consists of approx. 12.5 million organic molecules, which 
is a superset of several public datasets (see Sect. 3.1). On 
this, we train a GPT-style transformer model, specifically 

a model based on Llama 2 [23], to generate new com-
pounds based on one or more conditions/target proper-
ties. To achieve this, we assign a learnable embedding 
to each property value. This ensures that the model per-
ceives not only the numerical value, but also the associ-
ated label.

To be able to assess the model’s performance directly, 
we chose three easily determined numerical proper-
ties: SAScore [24] (reflecting production cost), logP, and 
molecular weight (contributing to energy density), along 
with another optional condition: a user-defined core 
structure that has to be integrated into the final molecule. 
The latter is given as a SMILES string, which is a continu-
ous sequence of tokens, hereafter referred to as a ’token 
sequence’.2

In the following sections, we detail the architecture, 
training data and process along with the results obtained 
for unconditional, single, and multi-conditional molecule 
generation.

Architecture
The architecture we utilized, as depicted in Fig.  1, is 
a modified version of the Llama2 architecture [23] as 
obtained from GitHub (https://github.com/karpathy/
llama2.c). The hyperparameters can be found in Table 1, 
which we determined from previous experiments.

Our model consists of approximately 15 million param-
eters and is composed of eight decoder blocks. Each 
decoder block includes a masked multi-head self-atten-
tion layer, followed by a Feed Forward Network (FFN) 
that employs the SwiGLU [25] activation function. While 
the original Llama 2 architecture utilized Grouped-
Query Attention (GQA) [26], we opted for the full multi-
head attention mechanism given the comparatively 
smaller size of our model.

The masked multi-head self-attention layer [4], defined 
by Eq. 1, takes an embedded input sequence X ∈ R

L×demb 
of length L, where each element represents an embedding 
vector with dimension demb . Through the attention mech-
anism, each head learns to attend to a different part of the 
sequence, resulting in an attention matrix headi ∈ R

L×dv . 
We utilize dot-product self-attention, which produces 
three matrices: Qi and Ki with dimensions L× dk , and 
Vi with dimensions L× dv . These matrices are generated 
by applying linear transformations using weight matrices 
Wi

Q , Wi
K  , and Wi

V  , each with dimensions of demb × dk and 
demb × dv , respectively, to the input sequence X for each 
attention head i.

1 A condition, here, is a desired molecular property that we want to provide 
to the model. Based on this condition, the model should generate new mol-
ecules that satisfy the requested value.

2 A token sequence can represent either a complete molecule or a molecu-
lar fragment, which may not necessarily be valid independently. However, a 
token sequence should become part of a valid molecule when incorporated 
into the generative process.
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In our specific case, we set dk and dv to be equal to 
demb/nheads , resulting in dk = dv = 384/8 = 48 . To keep 
the autoregressive property for our model, we mask 
out the upper right triangle by using the mask matrix 
M ∈ R

L×L shown in Eq.  4. Then, these attention matri-
ces are concatenated with each other along the dv-dimen-
sion. Afterward, the resulting concatenated matrix is 

further transformed using another learnable weight 
matrix WO ∈ R

h·dv×demb.

The Llama 2 architecture employs several changes com-
pared to the standard decoder architecture [4]. Firstly, we 
use rotary positional embeddings (RoPe) [27] to encode 
absolute and relative positional information directly 
into the attention matrix. Secondly, instead of apply-
ing layer normalization [28] after the self-attention and 
feed-forward layers, we employ RMSNorm [29] as a 
more efficient pre-normalization step. A feed-forward 
layer is described by Eq.  5, where W1,W3 ∈ R

demb×dffn 
and W2 ∈ R

dffn×demb are learned weight matrices and 
⊙ represents the elementwise product of two vectors. 
After each feed-forward layer, we employ a dropout-
layer [30] with the probability given in Table  1. The 
concatenate function, stacks the matrices row-wise 
Concat(A,B) : Ra×e × R

b×e → R
(a+b×e).

Furthermore, we made significant alterations to the 
context ingestion process. The input to our model is a 
sequence X of shape L× demb , which can be divided 
into two parts: X = Concat(C , S) . The first part, 
C ∈ R

c×demb , also later referred to as the “context”, rep-
resents the given conditions and can be expressed as 
C = Concat((t1, t2, . . . , tn)

T , tts) ∈ R
c×demb . The embed-

ded vectors ti ∈ R
demb ∀i ∈ {1, . . . , n} represent the n 

numerical conditions, which are provided to the model, 
in our case n = 3 . On the other hand, tts ∈ R

k×demb is a 
matrix of k embedded tokens, that is concatenated with 
the numerical conditions. The second part, S ∈ R

s×demb , 
just describes the molecule, as a SMILES, itself. c is just 
the length of the complete context and s is the length of 
the given SMILES, both are not fixed in length.

Typically, a token sequence includes multiple tokens, 
which translates to multiple embeddings in the con-
text, while a numerical condition is represented by one 
embedding. In our case, the order was the following: First 

(1)
MMHA(X) = Concat(head1, head2, . . . , headh) ·WO

(2)
headi = MaskedAttention(X ·Wi

Q,X ·Wi
K ,X ·Wi

V )

(3)

MaskedAttention(Q,K ,V ) = softmax

(
QKT
√

dk
+M

)
· V

(4)
M =

L� �� �


0 −∞ −∞ . . . −∞
0 0 −∞ . . . −∞
. . . . . . . . . . . . −∞
0 0 0 . . . 0




(5)FFN(X) = SwiGLU(X ,W1,W3) ·W2

Fig. 1 The Llamol architecture visualized

Table 1 Hyperparameters used for the Llamol model

Hyperparameters

Parameter/model Llamol

Number of attention-heads nheads 8

Number of decoder-blocks 8

Dropout probability 10%

Activation function SwiGLU

Positional embeddings RoPe

Embedding dimension demb 384

FFN hidden dim dffn 1024

Vocabulary size dvoc 591

Max SMILES length 256
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are the embedded numerical conditions, then the token 
sequence embeddings, and lastly the SMILES itself. Dur-
ing the training process, we learn SMILES embeddings 
by learning an embedding vector for each token.

In order to facilitate controlled property generation of 
molecules, we prepend the sequence with conditions, 
such as numerical values or a token sequence. In princi-
ple, the number of conditions has no limit as it is part of 
the input sequence of the transformer model, although 
empirical evaluation is needed to determine practical 
limits and scalability. Initial experiments with ten condi-
tions showed promising results, suggesting the model’s 
potential to handle a larger number of conditions. For 
the purposes of this paper, we limit the contexts to three 
numerical values and one token sequence. Each numeri-
cal value is assigned a type identifier, and a separate lin-
ear layer is used to transform them into the embedding 
dimension. The transformed values are then combined 
with the learned type encoding specific to each numeri-
cal property. In our implementation, we assigned a fixed 
type number to each property and mapped it to a learn-
able vector, which serves as the type encoding.

To provide positional information, we applied RoPe to 
every part of the context and sequence. Although adding 
positional information to numerical values is not neces-
sary, we chose to include it for the sake of simplicity in 
implementation, without negatively impacting the mod-
el’s performance.

Due to the type identifiers, this approach enables the 
model to differentiate between various conditions in a 
straightforward, yet effective manner. Consequently, 
we are free to mix or even omit conditions within the 
sequence. This property plays a crucial role in our train-
ing procedure, as in combination with the SCL method 
it allows the model to adapt dynamically and process all 
possible combinations of context.

The degree of creativity of the model’s output can be 
controlled by the so-called temperature parameter, which 
is defined as a positive real number t ∈ R+ , by dividing 
the output log probabilities by the said value. A tempera-
ture of t = 1 does not alter the model’s output, whereas a 
lower temperature sharpens the output distribution, thus 
making it more deterministic. Conversely, a temperature 
greater than one leads to a higher level of variability.

Training
Dataset
The model was trained on a dataset of molecules, which 
was compiled from several public sources to create a large 
and diverse population. The resulting dataset, we call 
OrganiX13, includes SMILES strings of mostly organic 
and/or drug-like molecules taken from the sources listed 
in Table 2.

All SMILES were canonicalized via RDKit, while 
keeping the stereochemistry intact and duplicates 
were, via string-based comparison, removed. Entries 
that could not be parsed properly by RDKit were also 
removed. Likewise, all molecules exceeding a limit of 
256 tokens or ionic structures (salts) were rejected. 
After this preprocessing, the final dataset contains 
approximately 12.5 million SMILES.

Subsequently, we used RDKit to provide the numeri-
cal values for some quick-to-compute surrogate prop-
erties to investigate the training behavior and to enable 
the direct verification of the generated results. The 
properties chosen were the logP, SAScore, and molecu-
lar weight, as those properties also have an impact on 
the achievable energy density or cost of an electro-
active material in the chosen aqueous flow battery 
application. In detail, 

1. LogP is defined as the logarithm of the partition coef-
ficient, which denotes the hydrophobic or lipophilic 
nature of a molecule. A positive logP value sug-
gests that the molecule prefers non-polar solvents, 
whereas a negative value indicates that the molecule 
is soluble in water, a desirable property for aqueous 
flow battery systems, which correlates to energy den-
sity.

2. Molecular weight can be used as a proxy for its size. 
Again, to attain high energy densities, we would like 
to have control over the maximum size of the com-
pounds generated. To ensure numerical similarity 
with the intervals of other properties, the molecular 
weights were divided by 100.

3. SAScore: The Synthetic Accessibility Score (SAScore) 
[24] estimates the ease or difficulty of creating a com-
pound. Based on a frequency analysis of chemical 
moieties in the PubChem database, it assigns a score 
ranging from zero (easy) to ten (difficult), which is 

Table 2 Datasets used in the combined dataset

Dataset Number of SMILES

ZINC 15 [31] 5M

QM9 [32, 33] 134k

ZINC 250k [34] 250k

RedDB [35] 31k

OPV [36] 91k

PubchemQC 2017/2020 [37, 38] 5.3M

CEP [39] subset [40] 20k

ChEMBL [41–44] 2.3M

Combined (OrganiX13) 13.1M (Total) / 12.5M 
(After removing dupli-
cates)
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supposed to reflect to some extent the cost of pro-
duction.

The resulting dataset encompasses many SMILES strings 
that cover a broad range of about 12 units in logP, a range 
in SAScore from around 1 to 6, as well as a similar range 
in scaled molecular weights. This served as a basis for the 
subsequent training.

Procedure
Initially, we convert the SMILES representation into a 
sequence of tokens using a tokenizer. We used the BERT-
tokenizer [45] in DeepChem [46], which employs a fixed 
vocabulary size of 591 tokens. It splits the SMILES at 
the character level, except for values enclosed in square 
brackets, which are treated as a single token.

These tokens are then passed through a separate 
lookup table, which maps them to a demb-dimensional 
embedding space. Prior to feeding the token embeddings 
into the decoder model, a context is prepended.

The numerical properties are processed as described in 
section 2.

If we use a token sequence as context, we perform 
these calculations dynamically in each batch during the 
training, allowing them to have varying token sequence 
sizes and content. During a training step, a token 
sequence represents a contiguous subsequence of the 
current tokenized SMILES. We start by randomly select-
ing a starting index from zero up to the current SMILES 
length, followed by determining a random ending index 
greater than the starting index but smaller than the cur-
rent SMILES length.

In our case, we limited the context token to a maximum 
sequence length of 50 to avoid memory issues, which suf-
ficed for our purposes. This sequence is then embedded 
using the same embedding layer as the input sequence 
and combined with an embedding specific to the token 
sequence, sharing the shape of the input embedding 
table. Additionally, a learned label embedding is added to 
these combined token sequence embeddings to indicate 
their relatedness.

Stochastic context learning (SCL)
Given an input sequence X ∈ R

L×demb of length L, where 
each element is represented by a demb-dimensional vec-
tor, we divide it into two parts: X = Concat(C , S) . Our 
algorithm focuses on modifying the context part C. We 

represent this part as a combination of two parts. The first 
is Cnum = (t1, t2, . . . , tn)

T ∈ R
n×demb , where n represents 

the maximum number of numerical conditions used in 
the training process (in this case, n = 3 ). The second is 
the token sequence Cts ∈ R

k×demb , where k is the length 
of the token sequence, such that C = Concat(Cnum,Cts) . 
The length k is not specific and can change for each input 
sequence X.

To begin, we set a deletion probability pdel to 15% 
during training. For each row in the Cnum matrix, we 
check if it should be deleted with a probability of pdel . 
If it meets the criteria, we remove the row from the 
Cnum matrix and consequently from the input sequence 
X, which then would be of shape (L− i)× demb , where 
0 ≤ i ≤ n is the number of deleted numerical condi-
tions. Similarly, the same probability is used to control 
if the token sequence should remain in the context for 
the current sequence. In this case, the pdel probability 
says if the entire token sequence should be removed, 
not just one row. Occasionally, there may be a situation 
where all conditions in Cnum and Cts are eliminated. In 
such instances, the sequence becomes unconditioned.

For batched input sequences Xbatch with shape 
R
B×Lmax×demb , the process works similarly. We iter-

ate over each of the n numerical conditions and sam-
ple if it should be deleted with a probability of pdel . If 
a condition is selected for deletion, we remove the cor-
responding row from all entries in the batch of size B. 
A description for the batched algorithm is given in the 
Algorithm  1. We assume that every molecule in the 
batch has all n numerical properties. If a molecule only 
has a portion of the properties, we would simply pad 
the missing values. In our case, there was no need for 
padding, as all molecules had all the numerical proper-
ties. The batch is created out of B number of sequences 
X, each of those could have a different length L due to 
the variance in length in the token sequence condition 
and also the SMILES itself. To batch those together, 
we take the maximum sequence length Lmax for all 
sequences that should be packed into the batch and pad 
the shorter SMILES by appending a pad-token to the 
length of Lmax.

Thus, throughout the training process, the model has 
to handle different combinations of the provided con-
ditions, which allows the model to learn uncondition-
ally, single conditions, and also multiple conditions in 
one go. Thanks to the type of embeddings we add to 
every context element, we can change the number of 
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properties that are provided to the model and still have 
the model distinguish which properties are provided.

Algorithm 1 Batched SCL algorithm

Loss
The model is trained to predict the next token by cal-
culating the cross-entropy loss between the actual next 
token and the predicted probability for that token. Note 
that this loss is only calculated for the SMILES part of 
the given sequence, the prepended context is not con-
sidered in the loss. Since we only train with the autore-
gressive loss, the context does not have to be evaluated 
while training, making our approach very flexible to 
various conditions. This loss is then backpropagated 
through the model using the AdamW optimizer [47]. 
The cross-entropy loss is defined as follows (Eq. 6):

In this expression, N is the batch size, where 
y ∈ {0, 1, 2, . . . , dvoc}

N and ŷ ∈ R
N×dvoc correspond to the 

target tokens and the predicted log probabilities, respec-
tively. The mean over the negative logarithms for the 
normalized predicted probabilities of the next token is 
calculated. Here, ŷn,yn specifically refers to the predicted 
log probability assigned to the correct target token yn for 
the n-th sample in the batch.

The model was trained on a single Nvidia A100 GPU 
for two days and used about 35 GB VRAM while train-
ing. A constant learning rate of α = 10−4 , with β1 = 0.9 

(6)

CrossEntropyLoss(y, ŷ) = −
1
N

N∑
n=1

log

(
exp(ŷn,yn )∑dvoc
i=1 exp(ŷn,i)

)

and β2 = 0.95 was used for the AdamW optimizer. The 
dataset was randomly partitioned into two parts, a 

training set and a testing set. The training dataset con-
sisted of 90%, while the testing dataset comprised 10% 
of the data. The model was trained using a batch size of 
256 with gradient accumulation steps of 4 batches. Each 
sequence for the model starts with a “start of SMILES”-
token ([CLS]) and ends with an “end of SMILES”-token 
([SEP]). Shorter SMILES strings were padded with a 
“pad”-token ([PAD]) to match the length of the longest 
SMILES in that batch. The same padding process was 
applied to the token sequence in the context.

New SMILES are then sequentially generated by first 
starting with a “[CLS]”-token and then predicting the 
next tokens iteratively. The generation ends, when the 
model predicts the “[SEP]”-token or a specified token 
limit is reached.

Results and discussion
After the training, we used the model in different sce-
narios to generate new SMILES, e.g., without any con-
straints or with one or more constraints (including 
numerical and/or structural targets), while keeping the 
temperature parameter constant at temperature = 0.8 . 
This value ensures a close but not too strict coupling 
to the underlying probability distributions, which 
proved helpful in our experiments.

The metric used to measure the performance of the 
models for a batch of generated compounds is the mean 
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absolute deviation between requested and obtained 
numerical values, in addition to the percentage of nov-
elty, uniqueness, and validity of the molecular struc-
tures generated. These are evaluated on the complete 
training dataset.

In more detail, these metrics are defined as follows: 

1. Novelty: is defined as the percentage of newly gen-
erated molecules not present in the reference data-
set. We use this, to ensure that the model is not 
memorizing the training data, but instead is invent-
ing new compounds. We measure this by compar-
ing the generated SMILES with the SMILES in the 
dataset. Please note: this is not equivalent to testing 
the molecular graphs for isomerism, i.e., alternative 
synonyms are not detected as redundant molecular 
structures by this procedure, but rather just a string 
comparison.

2. Uniqueness: The uniqueness is the ability of the 
model to generate unique molecules. We measure 
the percentage of unique molecules generated in a 
batch of 1k and 10k molecules under specific condi-
tions.

 Again, identical molecules with synonymous SMILES 
remain undetected.

3. Validity: The ratio of validity is determined by the 
number of properly parsed SMILES (by RDKit [48]) 
versus the total number of generated SMILES in a 
batch.

4. Mean average deviation: Is defined as the following: 

 For each of the n generated SMILES strings, the tar-
get value of the respective property is denoted as yi , 
while xi represents the ’true’, i.e. actually calculated 

(7)MAD =
1

n

n∑
i=1

|xi − yi|

property value. The model should minimize this 
quantity without being explicitly trained on it, which 
would indicate that the model incorporates the pro-
vided context into the generative process. This metric 
is also used to enable comparisons to other models 
[8, 49].

We compare our model to others of similar architecture 
and choice of conditions. The findings can be seen in 
Table 3.

Unconditional generation
Without applying any conditions, we generated 20k 
SMILES and calculated the corresponding properties 
logP, SAScore, and molecular weight using RDKit. The 
resulting frequencies of distribution are very similar to 
the distributions obtained from a representative sample 
of training molecules, see Fig. 2a–c.

This indicates that the model has indeed learned the 
inherent distribution of the training dataset, without spe-
cifically training the model unconditionally.

The generated SMILES also achieve very comparable 
performance in terms of uniqueness, and validity to the 
other models as shown in Table 3. Our degree of novelty 
is inline or slightly better than that of models trained on 
the MOSES [50] dataset (1.9 Mio. molecules), but falls 
behind on the GuacaMol (1.59 Mio. molecules ) [51]. 
We argue that this is mostly due to the significant dif-
ference in size of our dataset compared to the datasets 
mentioned above. Since our dataset covers more of the 
chemical space, this makes it more likely for the model to 
generate molecules present in the dataset.

Single Condition
In this experiment, we also assessed the model’s ability to 
handle single-condition generation over wide ranges of 
target values.

Fig. 2 Distribution of properties as obtained from the training dataset in comparison with the distributions from 20k unconditionally generated 
molecules
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For each target value of the intervals listed in Table 3, 
rows 2 – 7, the procedure involved generating a sam-
ple of 10,000 molecules. As before, we determined the 
true property values of the generated molecules using 
RDKit and compared those to the targeted values. For 
each property, we ran two scenarios: The first one cov-
ered a broad interval of values that encompassed both 

in-distribution, as well as out-of-distribution values. The 
second run focused solely on the performance of a select 
few in-distribution target values. The interval notation 
[a, b; c] signifies that the values were uniformly sampled 
from a discrete distribution of values, including a and b, 
with a step size of c. More precisely, [-2, 7; 1] denotes the 
set of values {−2,−1, 0, . . . , 6, 7} . The notation {a1, a2, . . .} 

Fig. 3 Requested (x-axis) versus actual values (y-axis) for the diverse target properties: a) LogP, b) SAScore, c) Molecular weight. For each target 
value, a batch of 10k SMILES was generated; MAD is averaged over the entire range

Table 3 Table for comparing metrics for the three metrics at a temperature of 0.8 for 10k generated molecules. All metrics were 
evaluated with these 10k molecules, except uniqueness at 1k

1 Trained on the GuacaMol dataset
2 The experiments of the Transformer-Decoder Generator (FSM-DDTR) were conducted on the MOSES dataset with 30k generated molecules instead of 10k

Model Condition type Interval Novelty [%] ↑ Uniqueness 
@ 1k [%] ↑

Uniqueness [%]↑ Validity [%] ↑ MAD ↓

Llamol Unconditional 89.7 100.0 99.9 99.5

LogP [-2, 7; 1] 86.5 100.0 99.9 99.3 0.159

LogP {2, 4, 6} 85.5 100.0 99.7 99.42 0.191

SAScore [1, 10; 1] 85.4 100.0 98.8 82.1 0.390

SAScore {2, 3, 4} 86.6 100.0 99.9 99.7 0.103

Molecular weight [1, 10; 1] 88.8 100.0 99.3 97.5 0.157

Molecular weight {2, 3, 4} 84.3 100.0 99.6 99.45 0.041

MolGPT Unconditional (MOSES) 79.7 100.0 99.4

Unconditional (GuacaMol [51]) 100.0 99.8 98.1

LogP1 {2, 4, 6} 100.0 99.8 97.1 0.23

SAScore1 {2, 3, 4} 100.0 99.5 97.7 0.13

MolGPT (relative attention) [53] Unconditional (MOSES) 87.9 100.0 99.2

Unconditional (GuacaMol 100.0 100.0 97.8

LogP1 {2, 4, 6} 100.0 100.0 96.9 N/A

SAScore1 {2, 3, 4} 100.0 99.7 98.6 N/A

Transformer-Decoder Generator 
[54]

Unconditional (MOSES 30k2) 97.38 99.92 91.15

GraphGPT [49] Unconditional (MOSES) 78.7 99.9 99.5

Unconditional (GuacaMol) 100.0 99.9 97.5

LogP1 {2, 4, 6} 100.0 99.8 96.9 0.22

SAScore1 {2, 3, 4} 100.0 99.6 97.7 0.14



Page 9 of 17Dobberstein et al. Journal of Cheminformatics           (2024) 16:73  

indicates that the values were uniformly sampled from 
that specific set of values.

Despite the low probability of the model being trained 
solely on one property, it performs well in this task, as 
demonstrated in Figs.  3a–c. The model achieves low 
MAD values across the entire span of the respective 
target properties (rows 2, 4, and 6), although the MAD 
values obtained for the in-distribution series are gener-
ally and significantly lower (rows 3, 5, and 7). In fact, pre-
dicting logP values to an accuracy of 0.5 logP units (root 
mean square deviation) is commonly considered a satis-
factory result [52].

Still, the out-of-sample performance is acceptable. 
Although the scatter increases, the general trend is well 
retained, with the only exception of the very high (>7) 
SAScores. In this case (row 4 in Table  3), we observe 
also a concomitant drop in the percentage of validity of 
the generated molecules (82.5 vs 99 %). Upon manual 
inspection, we find that not only compounds with highly 
bridged ring systems and/or accumulations of stereo-
genic centers were generated that are supposedly very 
demanding to synthesize but also rare and unstable 
atomic environments such as neighboring diradicals and/
or carbenes that presumably prevent the proper parsing 
of structures.

In comparison to the other models in Table  3 our 
model archives a slightly lower MAD in the single condi-
tion case, without being specifically trained on that task, 
while simultaneously scoring the uniqueness and valid-
ity on par with the other models. Yet again, our level of 
novelty is significantly lower than that from MolGPT. As 
before, we suspect that this is due to the larger size of our 
training dataset and the restrictions on the generative 
process imposed by the constraints given by the context.

Multiple conditions
For each pairwise combination of target properties, we 
generated 10k SMILES, see Figs.  4, 5 and 6. The graph 
labels are in the same order as given in the captions of the 
respective figures.

In general, the generated molecules’ properties center 
closely around the desired values. Although all chosen 
values were well within the highly populated areas of 
the underlying distributions, some combinations turned 
out to be hard to satisfy, resulting in a more pronounced 
scatter.

Figure 4 shows the distribution of calculated logP val-
ues and SAScores. This pair works well for lower logP 
values, but for higher ones the variance in the SAScore 
axis rises significantly. This seems to indicate that in this 
case, the logP values have a slight priority in the genera-
tive process compared to SAScore. There are some out-
liers, but most of the generated molecules fulfill both 
conditions. We suspect that this could be an effect of the 
shortage of training data in that region, thus leading to 
more inaccurate results.

Next we compare the combination of logP and the 
molecular weight values, as shown in Fig. 5. Apparently, 
the molecular weight takes priority in the generation, as 
it displays a much smaller variance compared to the logP. 
However, the logP is still met accurately despite being 
under very strict size constraints. This comes as no sur-
prise, due to the ease with which the molecular weight 
can be determined by counting the contributions of each 

Table 4 Table for comparing multiple property conditions for 10k generated molecules to other models

Model Novelty [%] ↑ Uniqueness [%]↑ Validity [%] ↑ LogP {2, 4, 6} 
MAD ↓

SAScore {2, 3, 4} 
MAD ↓

Molecular 
Weight {2, 3, 4} 
MAD ↓

Llamol 88.9 99.5 98.95 0.20 0.13

86.4 89.5 99.1 0.20 0.04

86.3 99.3 99.5 0.10 0.04

89.8 94.9 98.5 0.24 0.18 0.05

MolGPT 100.0 99.2 97.2 0.25 0.14

GraphGPT 100.0 99.1 97.1 0.252 0.151

Fig. 4 LogP + SAScore
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atom, as opposed to the more extensive considerations 
demanded by logP values.

Lastly, Fig. 6 displays the combination of SAScore and 
molecular weight. Similar to the logP and molecular 
weight comparison, molecular weight still dominates the 
generative process. In comparison, the model can not 
uphold the SAScore in all cases. This is especially evi-
dent in the case, where the molecular weight is set to a 
low value of 1.5 which results in a high SAScore variance. 
Apparently, the model struggles to incorporate a suffi-
cient number of challenging motifs into a small molecule, 
due to the limited size and range of available elements In 
contrast, when the weight is set to a higher value of 3.5, 
i.e. a larger molecule, we obtain a much lower variance.

Finally, in Fig.  7 we visualize the generated molecules 
that take into account all three properties. As is evi-
dent by the disjoint point clouds in the graph, the model 
learned to consider all three conditions and generate 
matching molecules. The labels in the legend should be 
read in the order of logP, SAScore, and molecular weight.

In Table 4 we compare the performance of our model 
to other models in multi-conditional generation where 
applicable. Each row in the table represents an experi-
ment, with the columns representing the properties used 
as conditions. If a condition was not utilized, the cell was 
left empty. Our model slightly outperforms the others, in 
the case of logP + SAScore, in terms of MAD, uniqueness 
and validity, while simultaneously being able to handle 
other condition combinations effectively. Again, the nov-
elty falls behind the other models.

Token sequence incorporation
A very common question in material design is to create 
analogs from a given starting molecule and add/modify 
structural features to customize the physical properties. 
For this reason, the model also accepts a SMILES string 
representing the desired molecular moiety that should 
be integrated as a building block in the newly gener-
ated structure as an additional condition. The requested 
SMILES string is converted to the canonical form used 
throughout, before it is tokenized. To measure the per-
formance of our model for this task, we used the follow-
ing criteria:

• Substructure Matches (SM): The substructure match 
measures the percentage of generated molecules that 
explicitly include the target moiety. As a first step, 
we convert the target structure into a SMARTS [55] 
pattern, which is essentially a regular expression 
to match specific atoms or substructures within a 
molecular structure. To make the criterion a little less 
strict, all information about bond orders is removed, 
only the connectivity itself is retained. Therefore, 
the pattern tolerates modifications in the details of 
the electronic structure (e.g. localized double bonds 
versus aromatic bonds), while still maintaining the 
overall topology. With this property, we measure how 

Fig. 5 LogP + Molecular weight

Fig. 6 SAScore + Molecular weight

Fig. 7 LogP + SAScore + Molecular weight
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often the target structure is retained during the gen-
erative process.

For this experiment, at a constant temperature of 0.8, 
batches of 1k molecules were generated for various con-
text token sequences and evaluated using the mentioned 
metric. Table  5 lists different organic target structures 
(as the context token sequence in SMILES form) and the 
results obtained a) without applying any other conditions 
(columns: uniqueness at 1k / SM), and b) with another 
additional numerical condition (columns: LogP/SAS-
core/molecular weight at different target values each).

Overall, the model seems to perform very well, as we 
can recover the target structures at least once in most 
of the newly generated SMILES. However, especially 
when given a larger target structure such as Morphine, 
we observe that the generated structures become very 
repetitive.

Token sequence with a single numerical condition
The really useful application for customizing given struc-
tures is the simultaneous application of one or more 
additional criteria.

Thus, we study combinations of token sequence con-
ditions together with single numerical conditions, see 
Table 5. Each combination was tested on 1000 generated 
molecules, with the numerical values uniformly sam-
pled from the range specified in the table header for each 
property.

Generally, we observe that smaller token sequences, 
which naturally occur as building blocks in the training 

data (entries 1 - 5), are readily integrated into a variety 
of generated compounds. In contrast, larger compounds 
(entries 6 - 10) that emerge as independent, self-con-
tained units within the dataset exhibit a significantly 
lower rate of uniqueness.

In most cases, we observed a decrease in the num-
ber of substructure matches for the molecules tested as 
compared to the previous run without numerical con-
ditions. This is likely due to the model having to handle 
two possibly competing conditions simultaneously. The 
MAD values for logP and SAScore were also notably 
higher compared to generating without a token sequence 
but remain within acceptable limits. It is worth noting 
that when the two conditions conflicted, such as with 
Ibuprofen and negative logP values, this led to the pres-
ence of some significant outliers. Conversely, when the 
conditions aligned well, the errors were consistent with 
the previous results. More details on the graph for the 
Ibuprofen and logP relationship can be found in Appen-
dix 5.1. We also observed that the MAD of the SAScore 
in the case of Morphine is significantly higher than in the 
other examples. This is mostly due to Morphine having 
a SAScore of about 5.2, and we requested lower values. 
In this case, the model prioritizes the token sequence in 
comparison to the SAScore, which leads to the higher 
MAD.

Surprisingly, the token sequence condition takes prec-
edence in most cases over the criteria logP and SAScore, 
as evidenced by the elevated MAD scores. Yet again, the 
molecular weight seems to be prioritized over the token 

Table 5 Table for comparing metrics on 1000 generated molecules for each context token sequence

Token sequence SMILES Unconditional 
Uniqueness at 1k [%] 
/ SM [%]

LogP {-2, 0, 2} MAD / 
Uniqueness at 1k [%] / 
SM [%]

SAScore {2, 3, 4} MAD / 
Uniqueness at 1k [%] / 
SM [%]

Molecular Weight {2, 3, 4} 
MAD / Uniqueness at 1k 
[%] / SM [%]

1 c1ccccc1 (Benzene) 99.8 / 96.59 0.4 / 99.9 / 75.08 0.15 / 100.0 / 88.17 0.11 / 99.2 / 93.17

2 s1cccc1 (Thiophene) 94.08 / 70.88 0.5 / 97.36 / 53.05 0.15 / 98.39 / 53.33 0.13 / 95.97 / 60.52

3 CC1=CSC=C1 (3-Methylth-
iophene)

90.78 / 79.86 0.43 / 95.85 / 53.5 0.14 / 93.05 / 62.94 0.14 / 94.04 / 56.97

4 CCO (Ethanol) 99.9 / 61.83 0.17 / 99.8 / 65.73 0.09 / 100.0 / 65.06 0.07 / 99.9 / 54.92

5 CC=O (Acetaldehyde) 99.9 / 89.1 0.19 / 99.2 / 93.67 0.19 / 95.77 / 88.61 0.08 / 97.38 / 91.03

6 CC(=O)OC1=CC=CC= 
C1C(=O)O (Aspirin)

56.44 / 96.78 0.56 / 73.63 / 87.55 0.2 / 81.45 / 88.41 0.14 / 45.21 / 64.98

7 CC(=O)NC1=CC=C(C =C1)O 
(Paracetamol)

89.74 / 65.29 0.31 / 92.63 / 72.98 0.15 / 96.12 / 72.55 0.11 / 70.29 / 82.68

8 CN1C=NC2=C1C(=O)N 
(C(=O)N2C)C (Caffeine)

42.66 / 98.19 0.7 / 70.53 / 91.93 0.23 / 61.69 / 95.69 0.29 / 51.78 / 68.1

9 CN1CCC23C4C1CC5=C2 
C(=C(C=C5)O)OC3C (C=C4)
O (Morphine)

14.21 / 99.37 0.5 / 46.32 / 94.66 1.85 / 31.86 / 99.49 0.11 / 29.4 / 96.68

10 OC(=O)C(C)c1ccc(cc 1)CC(C)
C (Ibuprofen)

33.2 / 44.5 1.03 / 63.65 / 87.46 0.28 / 48.28 / 69.39 0.12 / 30.4 / 66.97
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sequence, as evidenced by the very low MAD scores, par-
ticularly for larger molecules such as Morphine.

Token sequence with multiple numerical conditions
We also conducted experiments where multiple token 
sequences were tested under two conditions simultane-
ously. The results of these experiments can be found in 
Table 6. Each row in the table represents a specific exper-
iment, with the columns representing the properties used 
as conditions. If a condition was not utilized, the cell was 
left empty.

The model consistently performs well under various 
conditions, as shown by the low MAD values. How-
ever, when conditions are overly restrictive in combina-
tion with the token sequence, it can lead to higher MAD 
values or lower rates of substructure matches. This is 
because the model prioritizes certain properties over 
others.

For instance, consider Paracetamol, where both logP 
and molecular weight conditions are applied. Due to the 
constraining effect of molecular weight on the molecule’s 
size, decreasing the logP value significantly becomes 
challenging. In this case, the model prioritizes the molec-
ular weight condition. We suspect this is because molec-
ular weight is easier to validate and has more pronounced 
limitations compared to logP.

Nevertheless, the model effectively satisfies all three 
constraints in most cases, as evidenced by a high per-
centage of substructure matches and low MAD values 
for the properties in Table  6. Notably, when generating 
molecules with three properties, some MAD values are 
even lower than those observed in two-property genera-
tion. This could be attributed to the model being trained 
on a larger number of three-property batches, resulting 
in improved performance.

In general, all four conditions are respected during the 
generative process and make significant contributions to 
the resulting molecules.

Conclusion
Our aim was to provide a tool for exploring the rel-
evant chemical spaces for a given application, in our 
case the subspace of organic, potentially electro-active 
compounds. We therefore adapted existing work and 
approaches to our needs and came up with a new train-
ing variant that allows for a solitary model very flexible 
in use, which was also trained on a data set of substantial 
size.

In detail, we 

1. developed a GPT-style Transformer based on the 
Llama 2 architecture, showcasing strong perfor-

Table 6 Table for comparing multiple property conditions for 1000 generated molecules using example token sequences

Token Sequence SMILES SM[%] Uniqueness at 
1k [%]

LogP {-2, 0, 2} 
MAD

SAScore {2, 3, 4} 
MAD

Molecular 
Weight {2, 3, 4} 
MAD

C1=CSC=C1 (Thiophene) 42.32 91.72 0.45 0.15

37.05 94.88 0.45 0.13

40.16 98.98 0.15 0.13

24.02 87.73 0.49 0.18 0.15

CC=O (Acetaldehyde) 92.79 94.19 0.18 0.15

96.88 99.20 0.18 0.07

91.68 98.40 0.14 0.08

94.65 91.83 0.18 0.14 0.08

CC(=O)NC1=CC=C(C=C1)O (Paracetamol) 71.41 90.61 0.37 0.18

75.95 74.00 0.37 0.10

82.05 81.17 0.35 0.11

70.20 83.98 0.38 0.29 0.13

CN1C=NC2=C1C(=O)N(C(=O)N2C)C (Caffeine) 89.91 72.48 0.52 0.25

60.13 57.36 0.47 0.20

70.48 49.36 0.35 0.23

62.70 60.21 0.54 0.37 0.17
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mance in both single and multi-conditioned gen-
eration, comparable to or slightly surpassing existing 
models, despite not being task-specific.

2. compiled and utilized a training dataset comprising 
12.5 million organic molecules sourced from various 
origins, enhancing the model’s ability to generate a 
variety of molecular structures.

3. implemented a new training method we call Sto-
chastic Context Learning (SCL), enabling our model 
to handle various combinations of conditions effi-
ciently for multi-conditional generation using a single 
model.

We were able to show that the training process was suc-
cessful and the achieved accuracy very satisfactory. The 
model generalizes quite well, as target values requested 
outside the well-sampled areas still tend to fall in the 
desired ranges. At present, this provides us with prom-
ising chemical sub-spaces to screen for electro-active 
materials, e.g. by feeding the generated SMILES into a 
trained model for predicting the enthalpy of reaction (as 
a prerequisite for calculating the redox potential [56]).

The whole setup is very generic and easily adaptable 
to other applications. The latter motivates the number 
and choice of properties used as conditions for narrow-
ing down the search space. In fact, for the model to be 
more useful in the search for energy-storage materials, 
in future we intend to provide a more meaningful, yet 
expensive property, such as the enthalpy of reaction.

Looking ahead, this research opens up exciting pos-
sibilities for further advancements in generative models 
and their applications in chemistry and related fields. 
Our modified architecture, combined with the SCL 
approach, holds great potential for generating novel 
and diverse organic molecules with precise control over 
desired properties.

In theory, a single model can learn a wide range of con-
ditions and combinations by utilizing this approach dur-
ing training. Therefore, we chose the SAScore (reflecting 
a materials’ production cost), molecular size and logP 
(contributing to the energy density), as well as a desir-
able molecular core structure as optional target condi-
tions. As an added benefit, a single model also comes at 
a reduced training cost. This method enables a more flex-
ible and scalable training process, as it does not require 
every property to be available for all samples.

Outlook For future work, we intend to focus more on 
curating the dataset, as to not have these very concen-
trated distributions for all properties. We hope that by 

reducing redundant molecules, the model would general-
ize better, while also reducing training time in the pro-
cess. Generally, we assume that the model could perform 
even better with more training data, as it seems to be 
underfitted even with our large dataset.

Furthermore, we also intend to expand the number of 
properties that are given to the model, as there are more 
useful conditions for practical applications, such as the 
HOMO-LUMO gap.

Appendix
A
In this chapter, we visualize the errors of generated mole-
cules using the molecular fragment condition with a sin-
gle numerical condition.

In the case of Ibuprofen with a naturally very positive 
logP of about 3.0, it is very difficult for the model to sig-
nificantly reduce the logP to the desired negative values, 
while also keeping the fragment intact. This leads to an 
overall higher MAD, due to a small sample of large outli-
ers that increased the mean by a significant margin. This 
can be seen in the Fig. 8.

B
We also conducted some experiments on special com-
binations of different conditions, as these also show the 
limitations of the model, either due to the incompatibility 
of these conditions or the lack of training data in those 
regions.

Fig. 8 Ibuprofen logP Graph - Generated vs Target



Page 14 of 17Dobberstein et al. Journal of Cheminformatics           (2024) 16:73 

We tested the combination of a low molecular weight 
(100) and a high SAScore (7), which can be seen in the 
Fig. 9. The generated molecules have both characteristics 
by being hard to produce due to the high number of con-
nected, bridged, annealed or spiro-rings and ring strains 
associated with the high degree of interconnected rings 
and/or open-shell centers (radicals and/or carbenes), 
while keeping the molecular weight small. In this sce-
nario, it also uses more uncommon elements to fit into 
both conditions.

C
In this section are a sample of the generated molecules 
for each property visualized.  Figure  10 showcases 
examples that are generated with logP as a property 
from negative to positive values. Furthermore, the 
Fig. 11 show the change over different SAScores. Lastly, 
the Fig.  12 shows how the generated molecules get 
larger with a rising molecular weight.

Fig. 9 Special Case: Generated molecules with low molecular weight and high SAScore as conditioning
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Fig. 10 A sample of the generated molecules with logP as conditioning

Fig. 11 A sample of the generated molecules with SAScore as conditioning
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