
Dobberstein et al.
Journal of Cheminformatics (2024) 16:73
https://doi.org/10.1186/s13321-024-00863-8

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

Llamol: a dynamic multi-conditional
generative transformer for de novo molecular
design
Niklas Dobberstein1*, Astrid Maass1 and Jan Hamaekers1

Abstract
Generative models have demonstrated substantial promise in Natural Language Processing (NLP) and have
found application in designing molecules, as seen in General Pretrained Transformer (GPT) models. In our efforts
to develop such a tool for exploring the organic chemical space in search of potentially electro-active com-
pounds, we present Llamol, a single novel generative transformer model based on the Llama 2 architecture, which
was trained on a 12.5M superset of organic compounds drawn from diverse public sources. To allow for a maxi-
mum flexibility in usage and robustness in view of potentially incomplete data, we introduce Stochastic Context
Learning (SCL) as a new training procedure. We demonstrate that the resulting model adeptly handles single-
and multi-conditional organic molecule generation with up to four conditions, yet more are possible. The model
generates valid molecular structures in SMILES notation while flexibly incorporating three numerical and/or one
token sequence into the generative process, just as requested. The generated compounds are very satisfactory
in all scenarios tested. In detail, we showcase the model’s capability to utilize token sequences for conditioning,
either individually or in combination with numerical properties, making Llamol a potent tool for de novo molecule
design, easily expandable with new properties.

Scientific contribution
We developed a novel generative transformer model, Llamol, based on the Llama 2 architecture that was trained
on a diverse set of 12.5 M organic compounds. It introduces Stochastic Context Learning (SCL) as a new training pro-
cedure, allowing for flexible and robust generation of valid organic molecules with up to multiple conditions that can
be combined in various ways, making it a potent tool for de novo molecular design.

Keywords Molecular generation, Machine learning, Transformers, De novo molecular design

Introduction
In fields like energy storage materials or medicinal chem-
istry, substances are key to technological advancement
and progress: the success of these applications hinges
on the specific properties of the materials. However, the

processes of discovery and development of new materi-
als often face practical and/or principal obstacles, such
as unavailability of compounds or precursors, high pro-
duction costs, and the need for extensive trials on the
practical side, or limited data and/or experience, as well
as biased expectations of designers and developers on
the other hand. Generative models, a powerful category
in machine learning, have the potential to address both
of these issues simultaneously, as they can help focus our
efforts a priori only on the most likely candidates.

*Correspondence:
Niklas Dobberstein
niklas.dobberstein@scai.fraunhofer.de
1 Virtual Material Design, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00863-8&domain=pdf

Page 2 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

Many architectures related to creation of novel data
points were developed in recent years, most nota-
bly Recurrent Neural Networks (RNN) [1], Generative
Adversarial Networks (GAN) [2], Variational Autoen-
coders (VAE) [3] and Transformers [4]. The transformer
architecture, especially, has revolutionized the fields
of Natural Language Processing (NLP) [5] and other
domains like computer vision [6]. The introduction of
the General Pretrained Transformer (GPT) architecture
led to significant advancements in generative natural lan-
guage applications. Generative models have also been
applied in the fields of medicine and material science to
create new molecules with predefined features, a process
known as conditional generation [7, 8]. This application
can significantly accelerate the discovery of new candi-
date molecules. Although current generative models may
not provide the optimal solution, they can greatly reduce
the size of the chemical space that needs to be evaluated.
Current estimates for the size of the chemical space con-
taining drug-like molecules range from 1023 to 1060 [9].
Many approaches have successfully used VAEs [10–12],
GANs [13], RNNs [14, 15] or Reinforcement Learning
[16]. However, more recently, transformer models, spe-
cifically the GPT models [8, 17], have emerged as the new
state-of-the-art in this domain, especially, in the field of
conditional molecular generation [18–20]. A good sum-
mary of available models can be found in the survey from
Du et. al. [21].

Bagal et al. [8] presented the MolGPT architecture
from which a family of models, each one tailored to a
specific task, could be derived. Inspired by their work, we
set out to develop a solitary model that can handle many
tasks simultaneously to support the search for low-cost,
high-energy-density alternatives for energy storage mate-
rials in flow batteries. The model itself should not require
complex training data; thus, it operates on SMILES [22]
– a minimalist molecular representation that allows us to
draw a mass of data from numerous sources – and easy
to provide and directly to verify target properties that
serve as conditions (primarily to facilitate the develop-
ment process of the model).1

In this paper, we present a new, dynamic training
approach termed “Stochastic Context Learning” (SCL)
to train a single model for conditional generation, capa-
ble of generating molecules as SMILES while respecting
a variable number of conditions. Our training dataset
consists of approx. 12.5 million organic molecules, which
is a superset of several public datasets (see Sect. 3.1). On
this, we train a GPT-style transformer model, specifically

a model based on Llama 2 [23], to generate new com-
pounds based on one or more conditions/target proper-
ties. To achieve this, we assign a learnable embedding
to each property value. This ensures that the model per-
ceives not only the numerical value, but also the associ-
ated label.

To be able to assess the model’s performance directly,
we chose three easily determined numerical proper-
ties: SAScore [24] (reflecting production cost), logP, and
molecular weight (contributing to energy density), along
with another optional condition: a user-defined core
structure that has to be integrated into the final molecule.
The latter is given as a SMILES string, which is a continu-
ous sequence of tokens, hereafter referred to as a ’token
sequence’.2

In the following sections, we detail the architecture,
training data and process along with the results obtained
for unconditional, single, and multi-conditional molecule
generation.

Architecture
The architecture we utilized, as depicted in Fig. 1, is
a modified version of the Llama2 architecture [23] as
obtained from GitHub (https://github.com/karpathy/
llama2.c). The hyperparameters can be found in Table 1,
which we determined from previous experiments.

Our model consists of approximately 15 million param-
eters and is composed of eight decoder blocks. Each
decoder block includes a masked multi-head self-atten-
tion layer, followed by a Feed Forward Network (FFN)
that employs the SwiGLU [25] activation function. While
the original Llama 2 architecture utilized Grouped-
Query Attention (GQA) [26], we opted for the full multi-
head attention mechanism given the comparatively
smaller size of our model.

The masked multi-head self-attention layer [4], defined
by Eq. 1, takes an embedded input sequence X ∈ R

L×demb
of length L, where each element represents an embedding
vector with dimension demb . Through the attention mech-
anism, each head learns to attend to a different part of the
sequence, resulting in an attention matrix headi ∈ R

L×dv .
We utilize dot-product self-attention, which produces
three matrices: Qi and Ki with dimensions L× dk , and
Vi with dimensions L× dv . These matrices are generated
by applying linear transformations using weight matrices
Wi

Q , Wi
K , and Wi

V , each with dimensions of demb × dk and
demb × dv , respectively, to the input sequence X for each
attention head i.

1 A condition, here, is a desired molecular property that we want to provide
to the model. Based on this condition, the model should generate new mol-
ecules that satisfy the requested value.

2 A token sequence can represent either a complete molecule or a molecu-
lar fragment, which may not necessarily be valid independently. However, a
token sequence should become part of a valid molecule when incorporated
into the generative process.

Page 3 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

In our specific case, we set dk and dv to be equal to
demb/nheads , resulting in dk = dv = 384/8 = 48 . To keep
the autoregressive property for our model, we mask
out the upper right triangle by using the mask matrix
M ∈ R

L×L shown in Eq. 4. Then, these attention matri-
ces are concatenated with each other along the dv-dimen-
sion. Afterward, the resulting concatenated matrix is

further transformed using another learnable weight
matrix WO ∈ R

h·dv×demb.

The Llama 2 architecture employs several changes com-
pared to the standard decoder architecture [4]. Firstly, we
use rotary positional embeddings (RoPe) [27] to encode
absolute and relative positional information directly
into the attention matrix. Secondly, instead of apply-
ing layer normalization [28] after the self-attention and
feed-forward layers, we employ RMSNorm [29] as a
more efficient pre-normalization step. A feed-forward
layer is described by Eq. 5, where W1,W3 ∈ R

demb×dffn
and W2 ∈ R

dffn×demb are learned weight matrices and
⊙ represents the elementwise product of two vectors.
After each feed-forward layer, we employ a dropout-
layer [30] with the probability given in Table 1. The
concatenate function, stacks the matrices row-wise
Concat(A,B) : Ra×e × R

b×e → R
(a+b×e).

Furthermore, we made significant alterations to the
context ingestion process. The input to our model is a
sequence X of shape L× demb , which can be divided
into two parts: X = Concat(C , S) . The first part,
C ∈ R

c×demb , also later referred to as the “context”, rep-
resents the given conditions and can be expressed as
C = Concat((t1, t2, . . . , tn)

T , tts) ∈ R
c×demb . The embed-

ded vectors ti ∈ R
demb ∀i ∈ {1, . . . , n} represent the n

numerical conditions, which are provided to the model,
in our case n = 3 . On the other hand, tts ∈ R

k×demb is a
matrix of k embedded tokens, that is concatenated with
the numerical conditions. The second part, S ∈ R

s×demb ,
just describes the molecule, as a SMILES, itself. c is just
the length of the complete context and s is the length of
the given SMILES, both are not fixed in length.

Typically, a token sequence includes multiple tokens,
which translates to multiple embeddings in the con-
text, while a numerical condition is represented by one
embedding. In our case, the order was the following: First

(1)
MMHA(X) = Concat(head1, head2, . . . , headh) ·WO

(2)
headi = MaskedAttention(X ·Wi

Q,X ·Wi
K ,X ·Wi

V)

(3)

MaskedAttention(Q,K ,V) = softmax

(
QKT
√

dk
+M

)
· V

(4)
M =

L� �� �

0 −∞ −∞ . . . −∞
0 0 −∞ . . . −∞
. −∞
0 0 0 . . . 0

(5)FFN(X) = SwiGLU(X ,W1,W3) ·W2

Fig. 1 The Llamol architecture visualized

Table 1 Hyperparameters used for the Llamol model

Hyperparameters

Parameter/model Llamol

Number of attention-heads nheads 8

Number of decoder-blocks 8

Dropout probability 10%

Activation function SwiGLU

Positional embeddings RoPe

Embedding dimension demb 384

FFN hidden dim dffn 1024

Vocabulary size dvoc 591

Max SMILES length 256

Page 4 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

are the embedded numerical conditions, then the token
sequence embeddings, and lastly the SMILES itself. Dur-
ing the training process, we learn SMILES embeddings
by learning an embedding vector for each token.

In order to facilitate controlled property generation of
molecules, we prepend the sequence with conditions,
such as numerical values or a token sequence. In princi-
ple, the number of conditions has no limit as it is part of
the input sequence of the transformer model, although
empirical evaluation is needed to determine practical
limits and scalability. Initial experiments with ten condi-
tions showed promising results, suggesting the model’s
potential to handle a larger number of conditions. For
the purposes of this paper, we limit the contexts to three
numerical values and one token sequence. Each numeri-
cal value is assigned a type identifier, and a separate lin-
ear layer is used to transform them into the embedding
dimension. The transformed values are then combined
with the learned type encoding specific to each numeri-
cal property. In our implementation, we assigned a fixed
type number to each property and mapped it to a learn-
able vector, which serves as the type encoding.

To provide positional information, we applied RoPe to
every part of the context and sequence. Although adding
positional information to numerical values is not neces-
sary, we chose to include it for the sake of simplicity in
implementation, without negatively impacting the mod-
el’s performance.

Due to the type identifiers, this approach enables the
model to differentiate between various conditions in a
straightforward, yet effective manner. Consequently,
we are free to mix or even omit conditions within the
sequence. This property plays a crucial role in our train-
ing procedure, as in combination with the SCL method
it allows the model to adapt dynamically and process all
possible combinations of context.

The degree of creativity of the model’s output can be
controlled by the so-called temperature parameter, which
is defined as a positive real number t ∈ R+ , by dividing
the output log probabilities by the said value. A tempera-
ture of t = 1 does not alter the model’s output, whereas a
lower temperature sharpens the output distribution, thus
making it more deterministic. Conversely, a temperature
greater than one leads to a higher level of variability.

Training
Dataset
The model was trained on a dataset of molecules, which
was compiled from several public sources to create a large
and diverse population. The resulting dataset, we call
OrganiX13, includes SMILES strings of mostly organic
and/or drug-like molecules taken from the sources listed
in Table 2.

All SMILES were canonicalized via RDKit, while
keeping the stereochemistry intact and duplicates
were, via string-based comparison, removed. Entries
that could not be parsed properly by RDKit were also
removed. Likewise, all molecules exceeding a limit of
256 tokens or ionic structures (salts) were rejected.
After this preprocessing, the final dataset contains
approximately 12.5 million SMILES.

Subsequently, we used RDKit to provide the numeri-
cal values for some quick-to-compute surrogate prop-
erties to investigate the training behavior and to enable
the direct verification of the generated results. The
properties chosen were the logP, SAScore, and molecu-
lar weight, as those properties also have an impact on
the achievable energy density or cost of an electro-
active material in the chosen aqueous flow battery
application. In detail,

1. LogP is defined as the logarithm of the partition coef-
ficient, which denotes the hydrophobic or lipophilic
nature of a molecule. A positive logP value sug-
gests that the molecule prefers non-polar solvents,
whereas a negative value indicates that the molecule
is soluble in water, a desirable property for aqueous
flow battery systems, which correlates to energy den-
sity.

2. Molecular weight can be used as a proxy for its size.
Again, to attain high energy densities, we would like
to have control over the maximum size of the com-
pounds generated. To ensure numerical similarity
with the intervals of other properties, the molecular
weights were divided by 100.

3. SAScore: The Synthetic Accessibility Score (SAScore)
[24] estimates the ease or difficulty of creating a com-
pound. Based on a frequency analysis of chemical
moieties in the PubChem database, it assigns a score
ranging from zero (easy) to ten (difficult), which is

Table 2 Datasets used in the combined dataset

Dataset Number of SMILES

ZINC 15 [31] 5M

QM9 [32, 33] 134k

ZINC 250k [34] 250k

RedDB [35] 31k

OPV [36] 91k

PubchemQC 2017/2020 [37, 38] 5.3M

CEP [39] subset [40] 20k

ChEMBL [41–44] 2.3M

Combined (OrganiX13) 13.1M (Total) / 12.5M
(After removing dupli-
cates)

Page 5 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

supposed to reflect to some extent the cost of pro-
duction.

The resulting dataset encompasses many SMILES strings
that cover a broad range of about 12 units in logP, a range
in SAScore from around 1 to 6, as well as a similar range
in scaled molecular weights. This served as a basis for the
subsequent training.

Procedure
Initially, we convert the SMILES representation into a
sequence of tokens using a tokenizer. We used the BERT-
tokenizer [45] in DeepChem [46], which employs a fixed
vocabulary size of 591 tokens. It splits the SMILES at
the character level, except for values enclosed in square
brackets, which are treated as a single token.

These tokens are then passed through a separate
lookup table, which maps them to a demb-dimensional
embedding space. Prior to feeding the token embeddings
into the decoder model, a context is prepended.

The numerical properties are processed as described in
section 2.

If we use a token sequence as context, we perform
these calculations dynamically in each batch during the
training, allowing them to have varying token sequence
sizes and content. During a training step, a token
sequence represents a contiguous subsequence of the
current tokenized SMILES. We start by randomly select-
ing a starting index from zero up to the current SMILES
length, followed by determining a random ending index
greater than the starting index but smaller than the cur-
rent SMILES length.

In our case, we limited the context token to a maximum
sequence length of 50 to avoid memory issues, which suf-
ficed for our purposes. This sequence is then embedded
using the same embedding layer as the input sequence
and combined with an embedding specific to the token
sequence, sharing the shape of the input embedding
table. Additionally, a learned label embedding is added to
these combined token sequence embeddings to indicate
their relatedness.

Stochastic context learning (SCL)
Given an input sequence X ∈ R

L×demb of length L, where
each element is represented by a demb-dimensional vec-
tor, we divide it into two parts: X = Concat(C , S) . Our
algorithm focuses on modifying the context part C. We

represent this part as a combination of two parts. The first
is Cnum = (t1, t2, . . . , tn)

T ∈ R
n×demb , where n represents

the maximum number of numerical conditions used in
the training process (in this case, n = 3). The second is
the token sequence Cts ∈ R

k×demb , where k is the length
of the token sequence, such that C = Concat(Cnum,Cts) .
The length k is not specific and can change for each input
sequence X.

To begin, we set a deletion probability pdel to 15%
during training. For each row in the Cnum matrix, we
check if it should be deleted with a probability of pdel .
If it meets the criteria, we remove the row from the
Cnum matrix and consequently from the input sequence
X, which then would be of shape (L− i)× demb , where
0 ≤ i ≤ n is the number of deleted numerical condi-
tions. Similarly, the same probability is used to control
if the token sequence should remain in the context for
the current sequence. In this case, the pdel probability
says if the entire token sequence should be removed,
not just one row. Occasionally, there may be a situation
where all conditions in Cnum and Cts are eliminated. In
such instances, the sequence becomes unconditioned.

For batched input sequences Xbatch with shape
R
B×Lmax×demb , the process works similarly. We iter-

ate over each of the n numerical conditions and sam-
ple if it should be deleted with a probability of pdel . If
a condition is selected for deletion, we remove the cor-
responding row from all entries in the batch of size B.
A description for the batched algorithm is given in the
Algorithm 1. We assume that every molecule in the
batch has all n numerical properties. If a molecule only
has a portion of the properties, we would simply pad
the missing values. In our case, there was no need for
padding, as all molecules had all the numerical proper-
ties. The batch is created out of B number of sequences
X, each of those could have a different length L due to
the variance in length in the token sequence condition
and also the SMILES itself. To batch those together,
we take the maximum sequence length Lmax for all
sequences that should be packed into the batch and pad
the shorter SMILES by appending a pad-token to the
length of Lmax.

Thus, throughout the training process, the model has
to handle different combinations of the provided con-
ditions, which allows the model to learn uncondition-
ally, single conditions, and also multiple conditions in
one go. Thanks to the type of embeddings we add to
every context element, we can change the number of

Page 6 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

properties that are provided to the model and still have
the model distinguish which properties are provided.

Algorithm 1 Batched SCL algorithm

Loss
The model is trained to predict the next token by cal-
culating the cross-entropy loss between the actual next
token and the predicted probability for that token. Note
that this loss is only calculated for the SMILES part of
the given sequence, the prepended context is not con-
sidered in the loss. Since we only train with the autore-
gressive loss, the context does not have to be evaluated
while training, making our approach very flexible to
various conditions. This loss is then backpropagated
through the model using the AdamW optimizer [47].
The cross-entropy loss is defined as follows (Eq. 6):

In this expression, N is the batch size, where
y ∈ {0, 1, 2, . . . , dvoc}

N and ŷ ∈ R
N×dvoc correspond to the

target tokens and the predicted log probabilities, respec-
tively. The mean over the negative logarithms for the
normalized predicted probabilities of the next token is
calculated. Here, ŷn,yn specifically refers to the predicted
log probability assigned to the correct target token yn for
the n-th sample in the batch.

The model was trained on a single Nvidia A100 GPU
for two days and used about 35 GB VRAM while train-
ing. A constant learning rate of α = 10−4 , with β1 = 0.9

(6)

CrossEntropyLoss(y, ŷ) = −
1
N

N∑
n=1

log

(
exp(ŷn,yn)∑dvoc
i=1 exp(ŷn,i)

)

and β2 = 0.95 was used for the AdamW optimizer. The
dataset was randomly partitioned into two parts, a

training set and a testing set. The training dataset con-
sisted of 90%, while the testing dataset comprised 10%
of the data. The model was trained using a batch size of
256 with gradient accumulation steps of 4 batches. Each
sequence for the model starts with a “start of SMILES”-
token ([CLS]) and ends with an “end of SMILES”-token
([SEP]). Shorter SMILES strings were padded with a
“pad”-token ([PAD]) to match the length of the longest
SMILES in that batch. The same padding process was
applied to the token sequence in the context.

New SMILES are then sequentially generated by first
starting with a “[CLS]”-token and then predicting the
next tokens iteratively. The generation ends, when the
model predicts the “[SEP]”-token or a specified token
limit is reached.

Results and discussion
After the training, we used the model in different sce-
narios to generate new SMILES, e.g., without any con-
straints or with one or more constraints (including
numerical and/or structural targets), while keeping the
temperature parameter constant at temperature = 0.8 .
This value ensures a close but not too strict coupling
to the underlying probability distributions, which
proved helpful in our experiments.

The metric used to measure the performance of the
models for a batch of generated compounds is the mean

Page 7 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

absolute deviation between requested and obtained
numerical values, in addition to the percentage of nov-
elty, uniqueness, and validity of the molecular struc-
tures generated. These are evaluated on the complete
training dataset.

In more detail, these metrics are defined as follows:

1. Novelty: is defined as the percentage of newly gen-
erated molecules not present in the reference data-
set. We use this, to ensure that the model is not
memorizing the training data, but instead is invent-
ing new compounds. We measure this by compar-
ing the generated SMILES with the SMILES in the
dataset. Please note: this is not equivalent to testing
the molecular graphs for isomerism, i.e., alternative
synonyms are not detected as redundant molecular
structures by this procedure, but rather just a string
comparison.

2. Uniqueness: The uniqueness is the ability of the
model to generate unique molecules. We measure
the percentage of unique molecules generated in a
batch of 1k and 10k molecules under specific condi-
tions.

 Again, identical molecules with synonymous SMILES
remain undetected.

3. Validity: The ratio of validity is determined by the
number of properly parsed SMILES (by RDKit [48])
versus the total number of generated SMILES in a
batch.

4. Mean average deviation: Is defined as the following:

 For each of the n generated SMILES strings, the tar-
get value of the respective property is denoted as yi ,
while xi represents the ’true’, i.e. actually calculated

(7)MAD =
1

n

n∑
i=1

|xi − yi|

property value. The model should minimize this
quantity without being explicitly trained on it, which
would indicate that the model incorporates the pro-
vided context into the generative process. This metric
is also used to enable comparisons to other models
[8, 49].

We compare our model to others of similar architecture
and choice of conditions. The findings can be seen in
Table 3.

Unconditional generation
Without applying any conditions, we generated 20k
SMILES and calculated the corresponding properties
logP, SAScore, and molecular weight using RDKit. The
resulting frequencies of distribution are very similar to
the distributions obtained from a representative sample
of training molecules, see Fig. 2a–c.

This indicates that the model has indeed learned the
inherent distribution of the training dataset, without spe-
cifically training the model unconditionally.

The generated SMILES also achieve very comparable
performance in terms of uniqueness, and validity to the
other models as shown in Table 3. Our degree of novelty
is inline or slightly better than that of models trained on
the MOSES [50] dataset (1.9 Mio. molecules), but falls
behind on the GuacaMol (1.59 Mio. molecules) [51].
We argue that this is mostly due to the significant dif-
ference in size of our dataset compared to the datasets
mentioned above. Since our dataset covers more of the
chemical space, this makes it more likely for the model to
generate molecules present in the dataset.

Single Condition
In this experiment, we also assessed the model’s ability to
handle single-condition generation over wide ranges of
target values.

Fig. 2 Distribution of properties as obtained from the training dataset in comparison with the distributions from 20k unconditionally generated
molecules

Page 8 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

For each target value of the intervals listed in Table 3,
rows 2 – 7, the procedure involved generating a sam-
ple of 10,000 molecules. As before, we determined the
true property values of the generated molecules using
RDKit and compared those to the targeted values. For
each property, we ran two scenarios: The first one cov-
ered a broad interval of values that encompassed both

in-distribution, as well as out-of-distribution values. The
second run focused solely on the performance of a select
few in-distribution target values. The interval notation
[a, b; c] signifies that the values were uniformly sampled
from a discrete distribution of values, including a and b,
with a step size of c. More precisely, [-2, 7; 1] denotes the
set of values {−2,−1, 0, . . . , 6, 7} . The notation {a1, a2, . . .}

Fig. 3 Requested (x-axis) versus actual values (y-axis) for the diverse target properties: a) LogP, b) SAScore, c) Molecular weight. For each target
value, a batch of 10k SMILES was generated; MAD is averaged over the entire range

Table 3 Table for comparing metrics for the three metrics at a temperature of 0.8 for 10k generated molecules. All metrics were
evaluated with these 10k molecules, except uniqueness at 1k

1 Trained on the GuacaMol dataset
2 The experiments of the Transformer-Decoder Generator (FSM-DDTR) were conducted on the MOSES dataset with 30k generated molecules instead of 10k

Model Condition type Interval Novelty [%] ↑ Uniqueness
@ 1k [%] ↑

Uniqueness [%]↑ Validity [%] ↑ MAD ↓

Llamol Unconditional 89.7 100.0 99.9 99.5

LogP [-2, 7; 1] 86.5 100.0 99.9 99.3 0.159

LogP {2, 4, 6} 85.5 100.0 99.7 99.42 0.191

SAScore [1, 10; 1] 85.4 100.0 98.8 82.1 0.390

SAScore {2, 3, 4} 86.6 100.0 99.9 99.7 0.103

Molecular weight [1, 10; 1] 88.8 100.0 99.3 97.5 0.157

Molecular weight {2, 3, 4} 84.3 100.0 99.6 99.45 0.041

MolGPT Unconditional (MOSES) 79.7 100.0 99.4

Unconditional (GuacaMol [51]) 100.0 99.8 98.1

LogP1 {2, 4, 6} 100.0 99.8 97.1 0.23

SAScore1 {2, 3, 4} 100.0 99.5 97.7 0.13

MolGPT (relative attention) [53] Unconditional (MOSES) 87.9 100.0 99.2

Unconditional (GuacaMol 100.0 100.0 97.8

LogP1 {2, 4, 6} 100.0 100.0 96.9 N/A

SAScore1 {2, 3, 4} 100.0 99.7 98.6 N/A

Transformer-Decoder Generator
[54]

Unconditional (MOSES 30k2) 97.38 99.92 91.15

GraphGPT [49] Unconditional (MOSES) 78.7 99.9 99.5

Unconditional (GuacaMol) 100.0 99.9 97.5

LogP1 {2, 4, 6} 100.0 99.8 96.9 0.22

SAScore1 {2, 3, 4} 100.0 99.6 97.7 0.14

Page 9 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

indicates that the values were uniformly sampled from
that specific set of values.

Despite the low probability of the model being trained
solely on one property, it performs well in this task, as
demonstrated in Figs. 3a–c. The model achieves low
MAD values across the entire span of the respective
target properties (rows 2, 4, and 6), although the MAD
values obtained for the in-distribution series are gener-
ally and significantly lower (rows 3, 5, and 7). In fact, pre-
dicting logP values to an accuracy of 0.5 logP units (root
mean square deviation) is commonly considered a satis-
factory result [52].

Still, the out-of-sample performance is acceptable.
Although the scatter increases, the general trend is well
retained, with the only exception of the very high (>7)
SAScores. In this case (row 4 in Table 3), we observe
also a concomitant drop in the percentage of validity of
the generated molecules (82.5 vs 99 %). Upon manual
inspection, we find that not only compounds with highly
bridged ring systems and/or accumulations of stereo-
genic centers were generated that are supposedly very
demanding to synthesize but also rare and unstable
atomic environments such as neighboring diradicals and/
or carbenes that presumably prevent the proper parsing
of structures.

In comparison to the other models in Table 3 our
model archives a slightly lower MAD in the single condi-
tion case, without being specifically trained on that task,
while simultaneously scoring the uniqueness and valid-
ity on par with the other models. Yet again, our level of
novelty is significantly lower than that from MolGPT. As
before, we suspect that this is due to the larger size of our
training dataset and the restrictions on the generative
process imposed by the constraints given by the context.

Multiple conditions
For each pairwise combination of target properties, we
generated 10k SMILES, see Figs. 4, 5 and 6. The graph
labels are in the same order as given in the captions of the
respective figures.

In general, the generated molecules’ properties center
closely around the desired values. Although all chosen
values were well within the highly populated areas of
the underlying distributions, some combinations turned
out to be hard to satisfy, resulting in a more pronounced
scatter.

Figure 4 shows the distribution of calculated logP val-
ues and SAScores. This pair works well for lower logP
values, but for higher ones the variance in the SAScore
axis rises significantly. This seems to indicate that in this
case, the logP values have a slight priority in the genera-
tive process compared to SAScore. There are some out-
liers, but most of the generated molecules fulfill both
conditions. We suspect that this could be an effect of the
shortage of training data in that region, thus leading to
more inaccurate results.

Next we compare the combination of logP and the
molecular weight values, as shown in Fig. 5. Apparently,
the molecular weight takes priority in the generation, as
it displays a much smaller variance compared to the logP.
However, the logP is still met accurately despite being
under very strict size constraints. This comes as no sur-
prise, due to the ease with which the molecular weight
can be determined by counting the contributions of each

Table 4 Table for comparing multiple property conditions for 10k generated molecules to other models

Model Novelty [%] ↑ Uniqueness [%]↑ Validity [%] ↑ LogP {2, 4, 6}
MAD ↓

SAScore {2, 3, 4}
MAD ↓

Molecular
Weight {2, 3, 4}
MAD ↓

Llamol 88.9 99.5 98.95 0.20 0.13

86.4 89.5 99.1 0.20 0.04

86.3 99.3 99.5 0.10 0.04

89.8 94.9 98.5 0.24 0.18 0.05

MolGPT 100.0 99.2 97.2 0.25 0.14

GraphGPT 100.0 99.1 97.1 0.252 0.151

Fig. 4 LogP + SAScore

Page 10 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

atom, as opposed to the more extensive considerations
demanded by logP values.

Lastly, Fig. 6 displays the combination of SAScore and
molecular weight. Similar to the logP and molecular
weight comparison, molecular weight still dominates the
generative process. In comparison, the model can not
uphold the SAScore in all cases. This is especially evi-
dent in the case, where the molecular weight is set to a
low value of 1.5 which results in a high SAScore variance.
Apparently, the model struggles to incorporate a suffi-
cient number of challenging motifs into a small molecule,
due to the limited size and range of available elements In
contrast, when the weight is set to a higher value of 3.5,
i.e. a larger molecule, we obtain a much lower variance.

Finally, in Fig. 7 we visualize the generated molecules
that take into account all three properties. As is evi-
dent by the disjoint point clouds in the graph, the model
learned to consider all three conditions and generate
matching molecules. The labels in the legend should be
read in the order of logP, SAScore, and molecular weight.

In Table 4 we compare the performance of our model
to other models in multi-conditional generation where
applicable. Each row in the table represents an experi-
ment, with the columns representing the properties used
as conditions. If a condition was not utilized, the cell was
left empty. Our model slightly outperforms the others, in
the case of logP + SAScore, in terms of MAD, uniqueness
and validity, while simultaneously being able to handle
other condition combinations effectively. Again, the nov-
elty falls behind the other models.

Token sequence incorporation
A very common question in material design is to create
analogs from a given starting molecule and add/modify
structural features to customize the physical properties.
For this reason, the model also accepts a SMILES string
representing the desired molecular moiety that should
be integrated as a building block in the newly gener-
ated structure as an additional condition. The requested
SMILES string is converted to the canonical form used
throughout, before it is tokenized. To measure the per-
formance of our model for this task, we used the follow-
ing criteria:

• Substructure Matches (SM): The substructure match
measures the percentage of generated molecules that
explicitly include the target moiety. As a first step,
we convert the target structure into a SMARTS [55]
pattern, which is essentially a regular expression
to match specific atoms or substructures within a
molecular structure. To make the criterion a little less
strict, all information about bond orders is removed,
only the connectivity itself is retained. Therefore,
the pattern tolerates modifications in the details of
the electronic structure (e.g. localized double bonds
versus aromatic bonds), while still maintaining the
overall topology. With this property, we measure how

Fig. 5 LogP + Molecular weight

Fig. 6 SAScore + Molecular weight

Fig. 7 LogP + SAScore + Molecular weight

Page 11 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

often the target structure is retained during the gen-
erative process.

For this experiment, at a constant temperature of 0.8,
batches of 1k molecules were generated for various con-
text token sequences and evaluated using the mentioned
metric. Table 5 lists different organic target structures
(as the context token sequence in SMILES form) and the
results obtained a) without applying any other conditions
(columns: uniqueness at 1k / SM), and b) with another
additional numerical condition (columns: LogP/SAS-
core/molecular weight at different target values each).

Overall, the model seems to perform very well, as we
can recover the target structures at least once in most
of the newly generated SMILES. However, especially
when given a larger target structure such as Morphine,
we observe that the generated structures become very
repetitive.

Token sequence with a single numerical condition
The really useful application for customizing given struc-
tures is the simultaneous application of one or more
additional criteria.

Thus, we study combinations of token sequence con-
ditions together with single numerical conditions, see
Table 5. Each combination was tested on 1000 generated
molecules, with the numerical values uniformly sam-
pled from the range specified in the table header for each
property.

Generally, we observe that smaller token sequences,
which naturally occur as building blocks in the training

data (entries 1 - 5), are readily integrated into a variety
of generated compounds. In contrast, larger compounds
(entries 6 - 10) that emerge as independent, self-con-
tained units within the dataset exhibit a significantly
lower rate of uniqueness.

In most cases, we observed a decrease in the num-
ber of substructure matches for the molecules tested as
compared to the previous run without numerical con-
ditions. This is likely due to the model having to handle
two possibly competing conditions simultaneously. The
MAD values for logP and SAScore were also notably
higher compared to generating without a token sequence
but remain within acceptable limits. It is worth noting
that when the two conditions conflicted, such as with
Ibuprofen and negative logP values, this led to the pres-
ence of some significant outliers. Conversely, when the
conditions aligned well, the errors were consistent with
the previous results. More details on the graph for the
Ibuprofen and logP relationship can be found in Appen-
dix 5.1. We also observed that the MAD of the SAScore
in the case of Morphine is significantly higher than in the
other examples. This is mostly due to Morphine having
a SAScore of about 5.2, and we requested lower values.
In this case, the model prioritizes the token sequence in
comparison to the SAScore, which leads to the higher
MAD.

Surprisingly, the token sequence condition takes prec-
edence in most cases over the criteria logP and SAScore,
as evidenced by the elevated MAD scores. Yet again, the
molecular weight seems to be prioritized over the token

Table 5 Table for comparing metrics on 1000 generated molecules for each context token sequence

Token sequence SMILES Unconditional
Uniqueness at 1k [%]
/ SM [%]

LogP {-2, 0, 2} MAD /
Uniqueness at 1k [%] /
SM [%]

SAScore {2, 3, 4} MAD /
Uniqueness at 1k [%] /
SM [%]

Molecular Weight {2, 3, 4}
MAD / Uniqueness at 1k
[%] / SM [%]

1 c1ccccc1 (Benzene) 99.8 / 96.59 0.4 / 99.9 / 75.08 0.15 / 100.0 / 88.17 0.11 / 99.2 / 93.17

2 s1cccc1 (Thiophene) 94.08 / 70.88 0.5 / 97.36 / 53.05 0.15 / 98.39 / 53.33 0.13 / 95.97 / 60.52

3 CC1=CSC=C1 (3-Methylth-
iophene)

90.78 / 79.86 0.43 / 95.85 / 53.5 0.14 / 93.05 / 62.94 0.14 / 94.04 / 56.97

4 CCO (Ethanol) 99.9 / 61.83 0.17 / 99.8 / 65.73 0.09 / 100.0 / 65.06 0.07 / 99.9 / 54.92

5 CC=O (Acetaldehyde) 99.9 / 89.1 0.19 / 99.2 / 93.67 0.19 / 95.77 / 88.61 0.08 / 97.38 / 91.03

6 CC(=O)OC1=CC=CC=
C1C(=O)O (Aspirin)

56.44 / 96.78 0.56 / 73.63 / 87.55 0.2 / 81.45 / 88.41 0.14 / 45.21 / 64.98

7 CC(=O)NC1=CC=C(C =C1)O
(Paracetamol)

89.74 / 65.29 0.31 / 92.63 / 72.98 0.15 / 96.12 / 72.55 0.11 / 70.29 / 82.68

8 CN1C=NC2=C1C(=O)N
(C(=O)N2C)C (Caffeine)

42.66 / 98.19 0.7 / 70.53 / 91.93 0.23 / 61.69 / 95.69 0.29 / 51.78 / 68.1

9 CN1CCC23C4C1CC5=C2
C(=C(C=C5)O)OC3C (C=C4)
O (Morphine)

14.21 / 99.37 0.5 / 46.32 / 94.66 1.85 / 31.86 / 99.49 0.11 / 29.4 / 96.68

10 OC(=O)C(C)c1ccc(cc 1)CC(C)
C (Ibuprofen)

33.2 / 44.5 1.03 / 63.65 / 87.46 0.28 / 48.28 / 69.39 0.12 / 30.4 / 66.97

Page 12 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

sequence, as evidenced by the very low MAD scores, par-
ticularly for larger molecules such as Morphine.

Token sequence with multiple numerical conditions
We also conducted experiments where multiple token
sequences were tested under two conditions simultane-
ously. The results of these experiments can be found in
Table 6. Each row in the table represents a specific exper-
iment, with the columns representing the properties used
as conditions. If a condition was not utilized, the cell was
left empty.

The model consistently performs well under various
conditions, as shown by the low MAD values. How-
ever, when conditions are overly restrictive in combina-
tion with the token sequence, it can lead to higher MAD
values or lower rates of substructure matches. This is
because the model prioritizes certain properties over
others.

For instance, consider Paracetamol, where both logP
and molecular weight conditions are applied. Due to the
constraining effect of molecular weight on the molecule’s
size, decreasing the logP value significantly becomes
challenging. In this case, the model prioritizes the molec-
ular weight condition. We suspect this is because molec-
ular weight is easier to validate and has more pronounced
limitations compared to logP.

Nevertheless, the model effectively satisfies all three
constraints in most cases, as evidenced by a high per-
centage of substructure matches and low MAD values
for the properties in Table 6. Notably, when generating
molecules with three properties, some MAD values are
even lower than those observed in two-property genera-
tion. This could be attributed to the model being trained
on a larger number of three-property batches, resulting
in improved performance.

In general, all four conditions are respected during the
generative process and make significant contributions to
the resulting molecules.

Conclusion
Our aim was to provide a tool for exploring the rel-
evant chemical spaces for a given application, in our
case the subspace of organic, potentially electro-active
compounds. We therefore adapted existing work and
approaches to our needs and came up with a new train-
ing variant that allows for a solitary model very flexible
in use, which was also trained on a data set of substantial
size.

In detail, we

1. developed a GPT-style Transformer based on the
Llama 2 architecture, showcasing strong perfor-

Table 6 Table for comparing multiple property conditions for 1000 generated molecules using example token sequences

Token Sequence SMILES SM[%] Uniqueness at
1k [%]

LogP {-2, 0, 2}
MAD

SAScore {2, 3, 4}
MAD

Molecular
Weight {2, 3, 4}
MAD

C1=CSC=C1 (Thiophene) 42.32 91.72 0.45 0.15

37.05 94.88 0.45 0.13

40.16 98.98 0.15 0.13

24.02 87.73 0.49 0.18 0.15

CC=O (Acetaldehyde) 92.79 94.19 0.18 0.15

96.88 99.20 0.18 0.07

91.68 98.40 0.14 0.08

94.65 91.83 0.18 0.14 0.08

CC(=O)NC1=CC=C(C=C1)O (Paracetamol) 71.41 90.61 0.37 0.18

75.95 74.00 0.37 0.10

82.05 81.17 0.35 0.11

70.20 83.98 0.38 0.29 0.13

CN1C=NC2=C1C(=O)N(C(=O)N2C)C (Caffeine) 89.91 72.48 0.52 0.25

60.13 57.36 0.47 0.20

70.48 49.36 0.35 0.23

62.70 60.21 0.54 0.37 0.17

Page 13 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

mance in both single and multi-conditioned gen-
eration, comparable to or slightly surpassing existing
models, despite not being task-specific.

2. compiled and utilized a training dataset comprising
12.5 million organic molecules sourced from various
origins, enhancing the model’s ability to generate a
variety of molecular structures.

3. implemented a new training method we call Sto-
chastic Context Learning (SCL), enabling our model
to handle various combinations of conditions effi-
ciently for multi-conditional generation using a single
model.

We were able to show that the training process was suc-
cessful and the achieved accuracy very satisfactory. The
model generalizes quite well, as target values requested
outside the well-sampled areas still tend to fall in the
desired ranges. At present, this provides us with prom-
ising chemical sub-spaces to screen for electro-active
materials, e.g. by feeding the generated SMILES into a
trained model for predicting the enthalpy of reaction (as
a prerequisite for calculating the redox potential [56]).

The whole setup is very generic and easily adaptable
to other applications. The latter motivates the number
and choice of properties used as conditions for narrow-
ing down the search space. In fact, for the model to be
more useful in the search for energy-storage materials,
in future we intend to provide a more meaningful, yet
expensive property, such as the enthalpy of reaction.

Looking ahead, this research opens up exciting pos-
sibilities for further advancements in generative models
and their applications in chemistry and related fields.
Our modified architecture, combined with the SCL
approach, holds great potential for generating novel
and diverse organic molecules with precise control over
desired properties.

In theory, a single model can learn a wide range of con-
ditions and combinations by utilizing this approach dur-
ing training. Therefore, we chose the SAScore (reflecting
a materials’ production cost), molecular size and logP
(contributing to the energy density), as well as a desir-
able molecular core structure as optional target condi-
tions. As an added benefit, a single model also comes at
a reduced training cost. This method enables a more flex-
ible and scalable training process, as it does not require
every property to be available for all samples.

Outlook For future work, we intend to focus more on
curating the dataset, as to not have these very concen-
trated distributions for all properties. We hope that by

reducing redundant molecules, the model would general-
ize better, while also reducing training time in the pro-
cess. Generally, we assume that the model could perform
even better with more training data, as it seems to be
underfitted even with our large dataset.

Furthermore, we also intend to expand the number of
properties that are given to the model, as there are more
useful conditions for practical applications, such as the
HOMO-LUMO gap.

Appendix
A
In this chapter, we visualize the errors of generated mole-
cules using the molecular fragment condition with a sin-
gle numerical condition.

In the case of Ibuprofen with a naturally very positive
logP of about 3.0, it is very difficult for the model to sig-
nificantly reduce the logP to the desired negative values,
while also keeping the fragment intact. This leads to an
overall higher MAD, due to a small sample of large outli-
ers that increased the mean by a significant margin. This
can be seen in the Fig. 8.

B
We also conducted some experiments on special com-
binations of different conditions, as these also show the
limitations of the model, either due to the incompatibility
of these conditions or the lack of training data in those
regions.

Fig. 8 Ibuprofen logP Graph - Generated vs Target

Page 14 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

We tested the combination of a low molecular weight
(100) and a high SAScore (7), which can be seen in the
Fig. 9. The generated molecules have both characteristics
by being hard to produce due to the high number of con-
nected, bridged, annealed or spiro-rings and ring strains
associated with the high degree of interconnected rings
and/or open-shell centers (radicals and/or carbenes),
while keeping the molecular weight small. In this sce-
nario, it also uses more uncommon elements to fit into
both conditions.

C
In this section are a sample of the generated molecules
for each property visualized. Figure 10 showcases
examples that are generated with logP as a property
from negative to positive values. Furthermore, the
Fig. 11 show the change over different SAScores. Lastly,
the Fig. 12 shows how the generated molecules get
larger with a rising molecular weight.

Fig. 9 Special Case: Generated molecules with low molecular weight and high SAScore as conditioning

Page 15 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

Fig. 10 A sample of the generated molecules with logP as conditioning

Fig. 11 A sample of the generated molecules with SAScore as conditioning

Page 16 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

Author contributions
N.D. wrote the main manuscript. A.M. helped in writing and refining parts of
the manuscript and gave input on the chemical application of the model.
J.H. supervised the paper and helped with the mathematical background. All
authors reviewed and refined the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Data availability
The model and training data is available at our Github: https://github.com/
Fraunhofer-SCAI/llamol.

Declarations

Competing interests
The authors declare no competing interests.

Received: 9 January 2024 Accepted: 19 May 2024

References
 1. Sherstinsky A (2020) Fundamentals of recurrent neural network

(RNN) and long short-term memory (LSTM) network. Physica D:
Nonlinear Phenomena 404:132306. https://doi.org/10.1016%2Fj.
physd.2019.132306

 2. Goodfellow IJ et al (2014) Generative adversarial networks. http://arxiv.
org/abs/1406.2661arXiv:1406.2661

 3. Kingma DP, Welling M (2022) Auto-encoding variational bayes. http://
arxiv.org/abs/1312.6114arXiv:1312.6114

 4. Vaswani A, et al (2017) Attention is all you need. http://arxiv.org/abs/17
06.03762arXiv:1706.03762

 5. Brown TB, et al (2020) Language models are few-shot learners. http://
arxiv.org/abs/2005.14165arXiv:2005.14165

 6. Dosovitskiy A, et al (2021) An image is worth 16x16 words: Transform-
ers for image recognition at scale. http://arxiv.org/abs/2010.11929ar
Xiv:2010.11929

 7. Urbina F, Lowden CT, Culberson JC, Ekins S (2022) MegaSyn: integrat-
ing generative molecular design, automated analog designer, and
synthetic viability prediction. ACS Omega 7:18699–18713

 8. Bagal V, Aggarwal R, Vinod PK, Priyakumar UD (2021) MolGPT:
molecular generation using a transformer-decoder model. J Chem Inf
Modeling 62:2064–2076. https:// doi. org/ 10. 1021/ acs. jcim. 1c006 00

 9. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of
drug-like chemical space based on gdb-17 data. J Comput-aided Mol
Design 27:675–679

 10. Richards RJ, Groener AM (2022) Conditional β-vae for de novo molecu-
lar generation. http://arxiv.org/abs/2205.01592arXiv:2205.01592

 11. Lim J, Ryu S, Kim JW, Kim WY (2018) Molecular generative model based
on conditional variational autoencoder for de novo molecular design. J
Cheminf https:// doi. org/ 10. 1186/ s13321- 018- 0286-7

 12. Lee M, Min K (2022) Mgcvae: multi-objective inverse design via molec-
ular graph conditional variational autoencoder. J Chem Inf Modeling
62:2943–2950. https:// doi. org/ 10. 1021/ acs. jcim. 2c004 87

 13. Cao ND, Kipf T (2022) Molgan: An implicit generative model for small
molecular graphs. http://arxiv.org/abs/1805.11973arXiv:1805.11973

 14. Grisoni F, Moret M, Lingwood R, Schneider G (2020) Bidirectional mol-
ecule generation with recurrent neural networks. J Chem Inf Modeling
60:1175–1183. https:// doi. org/ 10. 1021/ acs. jcim. 9b009 43

Fig. 12 A sample of the generated molecules with the molecular weight as conditioning

https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.1186/s13321-018-0286-7
https://doi.org/10.1021/acs.jcim.2c00487
https://doi.org/10.1021/acs.jcim.9b00943

Page 17 of 17Dobberstein et al. Journal of Cheminformatics (2024) 16:73

 15. Kotsias P-C et al (2020) Direct steering of de novo molecular genera-
tion with descriptor conditional recurrent neural networks. Nat Mach
Intell 2:254–265. https:// doi. org/ 10. 1038/ s42256- 020- 0174-5

 16. S V, S S, et al (2022) Multi-objective goal-directed optimization of de
novo stable organic radicals for aqueous redox flow batteries. Nat
Mach Intell 4:720–730. https:// doi. org/ 10. 1038/ s42256- 022- 00506-3

 17. Chen Y et al (2023) Molecular language models: RNNs or transformer?
Brief Functional Genom 22:392–400. https:// doi. org/ 10. 1093/ bfgp/
elad0 12

 18. Wang J et al (2021) Multi-constraint molecular generation based
on conditional transformer, knowledge distillation and reinforce-
ment learning. Nat Mach Intell 3:914–922. https:// doi. org/ 10. 1038/
s42256- 021- 00403-1

 19. Wang Y, Zhao H, Sciabola S, Wang W (2023) cMolGPT: a conditional
generative pre-trained transformer for target-specific de novo molecular
generation. Molecules 28:4430. https:// doi. org/ 10. 3390/ molec ules2 81144
30

 20. Kim H, Na J, Lee WB (2021) Generative chemical transformer: neural
machine learning of molecular geometric structures from chemical
language via attention. J Chem Inf Modeling 61:5804–5814. https:// doi.
org/ 10. 1021/ acs. jcim. 1c012 89. (PMID: 34855384)

 21. Du Y, Fu T, Sun J, Liu S (2022) Molgensurvey: a systematic survey in
machine learning models for molecule design. http://arxiv.org/abs/2203.
14500arXiv:2203.14500

 22. Weininger D (1988) Smiles, a chemical language and information system.
1. introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28:31–36. https:// doi. org/ 10. 1021/ ci000 57a005

 23. Touvron H, et al (2023) Llama 2: open foundation and fine-tuned chat
models. http://arxiv.org/abs/2307.09288arXiv:2307.09288

 24. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity and fragment
contributions. J Cheminf https:// doi. org/ 10. 1186/ 1758- 2946-1-8

 25. Shazeer N (2020) Glu variants improve transformer. http://arxiv.org/abs/2
002.05202arXiv:2002.05202

 26. Ainslie J, et al (2023) Gqa: Training generalized multi-query transformer
models from multi-head checkpoints. http://arxiv.org/abs/2305.13245ar
Xiv:2305.13245

 27. Su J, et al (2022) Roformer: Enhanced transformer with rotary position
embedding. http://arxiv.org/abs/2104.09864arXiv:2104.09864

 28. Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. http://arxiv.org/abs/
1607.06450arXiv:1607.06450

 29. Zhang B, Sennrich R (2019) Root mean square layer normalization. http://
arxiv.org/abs/1910.07467arXiv:1910.07467

 30. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014)
Dropout: a simple way to prevent neural networks from overfitting. J
Mach Learn Res 15:1929–1958

 31. Sterling T, Irwin JJ (2015) ZINC 15 - ligand discovery for everyone. J Chem
Inf Modeling 55:2324–2337. https:// doi. org/ 10. 1021/ acs. jcim. 5b005 59

 32. Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA (2014) Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data
1. https://doi.org/10.1038%2Fsdata.2014.22

 33. Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumera-
tion of 166 billion organic small molecules in the chemical universe
database GDB-17. J Chem Inf Modeling 52:2864-2875. https://doi.
org/10.1021%2Fci300415d

 34. Gómez-Bombarelli R et al (2018) Automatic chemical design using a
data-driven continuous representation of molecules. ACS Central Sci
4:268-276. https://doi.org/10.1021%2Facscentsci.7b00572

 35. Sorkun E, Zhang Q, Khetan A, Sorkun MC, Er S (2022) RedDB, a compu-
tational database of electroactive molecules for aqueous redox flow
batteries. Sci Data 9.https://doi.org/10.1038%2Fs41597-022-01832-2

 36. John PCS et al (2019) Message-passing neural networks for high-
throughput polymer screening. J Chem Phys 150:234111. https://doi.
org/10.1063%2F1.5099132

 37. Nakata M, Shimazaki T, Hashimoto M, Maeda T (2020) PubChemQC
PM6: data sets of 221 million molecules with optimized molecu-
lar geometries and electronic properties. J Chem Inf Modeling
60:5891–5899

 38. Nakata M, Shimazaki T (2017) PubChemQC project: a large-scale first-
principles electronic structure database for data-driven chemistry. J
Chem Inf Model 57:1300–1308

 39. Hachmann J et al (2011) The Harvard clean energy project: Large-scale
computational screening and design of organic photovoltaics on
the world community grid. The Journal of Physical Chemistry Letters
2:2241-2251. https://doi.org/10.1021%2Fjz200866s

 40. Duvenaud D, et al (2015) Convolutional networks on graphs for
learning molecular fingerprints. http://arxiv.org/abs/1509.09292ar
Xiv:1509.09292

 41. Zdrazil B et al (2023) The ChEMBL Database in 2023: a drug discovery
platform spanning multiple bioactivity data types and time periods.
Nucleic Acids Res 52:D1180–D1192. https:// doi. org/ 10. 1093/ nar/ gkad1
004

 42. Blackshaw J et al (2009) CHEMBL database release 31. https://doi.
org/10.6019/chembl.database.31

 43. Davies M et al (2015) Chembl web services: streamlining access to drug
discovery data and utilities. Nucleic Acids Res 43:W612–W620. https:// doi.
org/ 10. 1093/ nar/ gkv352

 44. Jupp S et al (2014) The ebi rdf platform: linked open data for the life sci-
ences. Bioinformatics 30:1338–1339. https:// doi. org/ 10. 1093/ bioin forma
tics/ btt765

 45. Schwaller P et al (2019) Molecular transformer: a model for uncertainty-
calibrated chemical reaction prediction. ACS Central Sci 5:1572–1583.
https:// doi. org/ 10. 1021/ acsce ntsci. 9b005 76

 46. Ramsundar B, et al (2019) Deep Learning for the Life Sci-
ences O’Reilly Media. https://www.amazon.com/
Deep-Learning-Life-Sciences-Microscopy/dp/1492039837

 47. Loshchilov I, Hutter F (2019) Decoupled weight decay regularization.
http://arxiv.org/abs/1711.05101arXiv:1711.05101

 48. Landrum G, et al (2020) rdkit/rdkit: 2020_03_1 (q1 2020) release. https://
doi.org/10.5281/zenodo.3732262

 49. Lu H, Wei Z, Wang X, Zhang K, Liu H (2023) Graphgpt: A graph enhanced
generative pretrained transformer for conditioned molecular generation.
Int J Mol Sci 24. https://www.mdpi.com/1422-0067/24/23/16761

 50. Polykovskiy D et al (2020) Molecular sets (moses): a benchmarking plat-
form for molecular generation models. Front Pharmacol. https:// doi. org/
10. 3389/ fphar. 2020. 565644

 51. Brown N, Fiscato M, Segler MH, Vaucher AC (2019) Guacamol: bench-
marking models for de novo molecular design. J Chem Inf Modeling
59:1096–1108. https:// doi. org/ 10. 1021/ acs. jcim. 8b008 39

 52. Işık M et al (2020) Assessing the accuracy of octanol-water partition coef-
ficient predictions in the sampl6 part ii log p challenge. J Comput-aided
Mol Design 34:335–370

 53. Haroon S, CA H, AS J, (2023) Generative pre-trained transformer (gpt)
based model with relative attention for de novo drug design. Comput
Biol Chem 106:107911. https:// doi. org/ 10. 1016/j. compb iolch em. 2023.
107911

 54. Monteiro NR et al (2023) Fsm-ddtr: end-to-end feedback strategy for
multi-objective de novo drug design using transformers. Comput Biol
Med 164:107285. https:// doi. org/ 10. 1016/j. compb iomed. 2023. 107285

 55. Daylight Theory: SMARTS - A language for describing molecular patterns
– daylight.com. https://www.daylight.com/dayhtml/doc/theory/theory.
smarts.html. [Accessed 03-11-2023]

 56. Barker J, Berg L-S, Hamaekers J, Maass A (2021) Rapid prescreening of
organic compounds for redox flow batteries: a graph convolutional net-
work for predicting reaction enthalpies from smiles. Batteries Supercaps
4:1482–1490

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/s42256-020-0174-5
https://doi.org/10.1038/s42256-022-00506-3
https://doi.org/10.1093/bfgp/elad012
https://doi.org/10.1093/bfgp/elad012
https://doi.org/10.1038/s42256-021-00403-1
https://doi.org/10.1038/s42256-021-00403-1
https://doi.org/10.3390/molecules28114430
https://doi.org/10.3390/molecules28114430
https://doi.org/10.1021/acs.jcim.1c01289
https://doi.org/10.1021/acs.jcim.1c01289
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1093/nar/gkv352
https://doi.org/10.1093/nar/gkv352
https://doi.org/10.1093/bioinformatics/btt765
https://doi.org/10.1093/bioinformatics/btt765
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1016/j.compbiolchem.2023.107911
https://doi.org/10.1016/j.compbiolchem.2023.107911
https://doi.org/10.1016/j.compbiomed.2023.107285

	Llamol: a dynamic multi-conditional generative transformer for de novo molecular design
	Abstract
	Scientific contribution
	Introduction
	Architecture
	Training
	Dataset
	Procedure
	Stochastic context learning (SCL)
	Loss

	Results and discussion
	Unconditional generation
	Single Condition
	Multiple conditions
	Token sequence incorporation
	Token sequence with a single numerical condition
	Token sequence with multiple numerical conditions

	Conclusion
	Appendix
	A
	B
	C

	References

