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Abstract 

Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinU-
NetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our 
training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed 
that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 
dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-
like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings under-
score the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 
as a promising tool for computational drug discovery.

Introduction
Proteins are dynamic molecules that play essential roles 
in various biological processes by interacting with other 
molecules, such as organic compounds, nucleotides, 
metal ions, and other proteins. A full understanding 
of the function of a protein often requires the identi-
fication of its ligand binding sites, which are specific 
sites on a protein that interact with ligand molecules. 
A classic example of the importance of understanding 

protein‒ligand binding sites is the development of tar-
geted therapies in the field of oncology. Precise knowl-
edge of binding sites [1, 2] has allowed for the creation of 
drugs that specifically target and inhibit cancer-promot-
ing proteins, revolutionizing cancer treatment. Further-
more, insights into the binding sites of enzymes involved 
in bacterial replication have facilitated the development 
of potent antibiotics. These examples underline the criti-
cal role of accurate protein‒ligand binding site iden-
tification in scientific and therapeutic advancements. 
However, the experimental determination of binding 
sites, such as by mass spectrometry and mutagenesis, is 
costly and time-consuming, necessitating the develop-
ment of computational methods for ligand binding site 
prediction (LBSP).

Over the years, a plethora of computational meth-
odologies have emerged to improve LBSP, including 
geometry-based, energy-based, consensus-based, and 
template-based paradigms. While these paradigms have 
advanced the field of LBSP, they come with their own 
sets of limitations. For instance, spatial geometry-based 
methods [3–9] rely heavily on intricate geometric cal-
culations derived from protein structure information, 
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which are computationally expensive and may not always 
accurately capture the dynamic nature of protein‒ligand 
interactions. Energy-based techniques [10–12] involve 
detailed calculations of the interaction energies between 
proteins and chemical probes, but these methods can 
struggle with multisite interactions and may not ade-
quately represent all biological conditions that influence 
these interactions. Template-based methods, whether 
they are evolutionary-based methods [13] sequence-
based approaches [14] or structure-based techniques [15, 
16] are heavily dependent on the quality and availability 
of reference datasets and may overlook novel binding 
sites that do not match known templates. These chal-
lenges highlight the need for the development of more 
advanced, efficient methods, such as those based on 
machine learning and deep learning, for LBSP.

The ever-increasing volume of data in the LBSP field 
has enabled significant advances through the incorpora-
tion of machine learning and deep learning techniques. 
Notable machine learning methods [17, 18] critically 
hinge on the accuracy of the designed features and can 
often lead to false-positive predictions, such as the 
identification of regions that are not feasible targets for 
drug interactions. Deep learning methods [19–23] that 
do not necessitate manual feature engineering, employ 
3D convolutional neural networks (CNNs) that repre-
sent protein structures as fixed-sized voxels. In general, 
these methods can be broadly categorized into two dis-
tinct groups based on their approach to problem formu-
lation: binding pocket prediction and binding residue 
prediction.

In the case of binding pocket prediction, the focus 
is to identify potential pockets on the protein structure 
where ligands could bind. P2rank and DeepSurf calculate 
the Solvent Accessible Surface (SAS) points and predict 
the ligandability score of these points. P2Rank employs 
Random Forest Classifiers, while DeepSurf uses 3D CNN 
for this purpose. Both methods then cluster SAS points 
based on ligandability scores to form and rank predicted 
pockets. In other hand, DeepSite and PUResNetV1.0 
conceptualize protein structures as 3D images, where 
each voxel represents atoms. DeepSite adopts a subgrid 
sampling strategy using a sliding window with a step of 
four voxels and employs deep convolutional neural net-
works (DCNN) to classify these subgrids as being proxi-
mal to the actual binding pocket whereas PUResNetV1.0 
utilizes a 3D Segmentation technique based on the UNet 
architecture, classifying each voxel to determine whether 
it belongs to the binding pocket.

In contrast, binding residue prediction methods such 
as DeepCSeqSite and GRaSP specialize in identifying 

specific residues on the protein surface that are likely to 
engage in ligand binding. DeepCSeqSite embeds each 
residue in a multidimensional feature space, comprising 
seven types of features. Utilizing a 1D DCNN, Deep-
CSeqSite classifies each residue as either a binding or 
non-binding residue, effectively discerning the potential 
interaction sites on the protein surface. In other hand, 
GRaSP adopts a comprehensive approach by generating a 
feature vector for each residue, employing the Extremely 
Randomized Trees algorithm, GRaSP predicts the likeli-
hood of each residue being involved in ligand binding. 
These diverse methodologies, from P2Rank and Deep-
Surf ’s solvent accessible surface analysis to DeepCSeqSite 
and GRaSP’s intricate residue-level feature engineering, 
collectively represent significant strides in LBSP. They 
demonstrate how leveraging large datasets and complex 
structural features through advanced computational 
techniques can overcome the limitations of traditional 
methods, leading to more accurate and insightful predic-
tions in protein–ligand interaction studies.

Despite these advancements, deep learning techniques 
are significantly impeded by the sparse nature of protein 
structures. Here, ‘sparse nature’ refers to the fact that 
protein structures are mostly empty space, with atoms 
occupying only a small fraction of the total volume. Typi-
cally, these techniques utilize dense representations of 
protein structures as fixed-sized voxels, much like the 
pixels in a 3D image. However, this approach has two 
main drawbacks. First, it involves substantial computa-
tional costs, as it requires information to be stored and 
processed for all voxels, including those that do not con-
tain any atoms. Second, it can lead to a loss of informa-
tion because proteins have diverse, complex shapes that 
cannot be accurately represented within fixed-size vox-
els. Thus, dense representations are less suited for mod-
eling the full complexity of protein structures given their 
inherent sparsity.

Applying sparse representation techniques to protein 
structures finds parallels in fields where high-dimen-
sional data are represented in a sparse manner to perform 
more effective computations. Notably, light detection and 
ranging (LiDAR)-based semantic segmentation [24, 25] 
in autonomous vehicle navigation and robotics is a perti-
nent example. LiDAR semantic segmentation labels each 
point in a sparse 3D point cloud generated from LiDAR 
sensors with a class label that describes the object to 
which it belongs (such as a road, a pedestrian, a vehicle, 
etc.) The challenge lies in the sparsity of the given point 
cloud data, like the sparse nature of protein structures. 
In the realm of LBSP, one can draw an analogy where 
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atoms in a protein structure are equivalent to points in 
a LiDAR point cloud, and the goal is to classify which of 
these atoms belong to the binding site; this Minkowski 
Convolutional Neural Network (MCNN), a specific type 
of sparse convolutional neural network that operates on a 
Minkowski SparseTensor, is particularly suitable for han-
dling such tasks.

In this work, we introduce ProteinUNetResNetV2.0 
(PUResNetV2.0), a cutting-edge LBSP approach that 
fundamentally addresses the inherent sparsity of pro-
tein structures, which is a major obstacle in the field. 
Inspired by LiDAR semantic segmentation, our strategy 
is centered around representing protein complexes as 
Minkowski SparseTensors and utilizing MCNNs. The 
developmental workflow encompasses five stages: gen-
erating training data by applying a tailored parser for 
Minkowski SparseTensor representations of the pro-
tein structures obtained from the RCSB [26] database 
based on information provided in BioLip [27] database; 
implementing PUResNetV2.0 based on MCNNs; opti-
mizing PUResNetV2.0 using Optuna [28]; evaluating 
PUResNetV2.0 in terms of success rate based on the dis-
tance from the center of the predicted binding pocket to 
the center of the ligand (DCC) and the minimum distance 
from the center of the predicted binding pocket to any 
atom in the ligand (DCA), precision, recall, F1 score, and 
MCC; and deploying PUResNetV2.0 accessible at https:// 
nsclb io. jbnu. ac. kr/ tools/ jmol. We show that by repre-
senting protein structures as Minkowski SparseTensors, 
PUResNetV2.0 exhibits remarkable capabilities in terms 
of handling diverse scenarios, such as oligomeric struc-
tures and structures interacting with peptides. Further-
more, PUResNetV2.0 outperformed established methods 
such as P2Rank, DeepSurf, PUResNetV1.0, DeepSite and 
GRaSP, as evidenced by evaluations across four distinct 
benchmark datasets: Coach100, which focuses on mon-
omeric protein structures; Holo801, featuring ligand-
bound oligomeric structures; Apoholo45, encompassing 
both ‘apo’ and ‘holo’ protein structures; PDBBind1681, 
aims at providing high-quality protein complexes, mak-
ing it a promising tool in the realm of LBSP.

Materials and methods
Data acquisition and processing
In this study, as shown in Fig.  1, we acquired a nonre-
dundant set of biologically relevant protein–ligand inter-
actions information from the BioLip database. We then 
downloaded the relevant protein structures from the 
RCSB database. We discarded any structures that had 
resolutions above 2  Å, that contained multiple models 
with different numbers of atoms, or that included DNA 
or RNA. Next, we parsed the atomic records according 
to the specifications mentioned in the WorldWide Pro-
tein Data Bank (wwPDB) [29]. Each parsed atom was fea-
turized using Open Babel [30, 31]; this process entailed 
downloading the residues (in SDF format) from the RCSB 
ligand database (https:// www. rcsb. org/ ligand/) and load-
ing them as Open Babel molecule objects. This process 
allowed us to acquire a diverse and accurate dataset for 
the experiment.

To construct a sparse representation model, we 
represented each protein structure as a Minkowski 
SparseTensor using atomic coordinates and the associ-
ated features and labels to formulate a semantic segmen-
tation problem. The featurization process was carried 
out in the same way as that used by our previous method 
(PUResNetV1.0), in which each atom was described 
based on nine atomic features, namely, hybridization, 
heavy atoms, heteroatoms, hydrophobia, aromatics, par-
tial charges, acceptors, donors, and rings. Consequently, 
we represented each protein structure as a sparse tensor 
with a matrix C and a matrix F.

where (xi, yi, Zi) denotes the 3D coordinates of the ith 
atom of the  tith protein structure in the  bith batch and  fi 
is the feature vector of the ith atom.

For each protein structure, if any atom was within 
5 Å of the ligand atom, then it was labeled as a binding 
site atom; the binding site atoms were represented as a 
matrix L.
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Finally, we prepared a dataset of 61,691 protein com-
plexes, which included 25,780 biologically relevant small 
molecule binding sites. Careful curation was performed 
to exclude HETATOM record from the PDB file. Overall, 
the protein complexes in this dataset were sourced from 
4729 different protein families, providing a diverse set of 
protein structure for the experiment.

Curating the benchmark datasets
To conduct a comprehensive evaluation of diverse 
methodologies, we generated three benchmark data-
sets, Holo801, Coach100 and PDBBind1681, which 
were derived from the extensively employed Holo4k 
[32], Coach420 and PDBBind [33] datasets, respectively. 
To facilitate an accurate comparison among various 

Fig. 1 Flowchart illustrating the overall process of preparing the training dataset. We initiate the process by procuring protein structures 
from the esteemed RCSB PDB database using the BioLip database as a reference. Subsequently, these structures undergo a parsing process 
using our customized PDB parser, followed by featurization through Open Babel. The final step involves the transformation of these structures 
into Minkowski SparseTensor representations. Within the figure, brown arrows signify the acquisition of information from external databases, blue 
arrows illustrate the directional flow of data processing, and red arrows denote the endpoints of data flows.
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Fig. 2 Key components of the PUResNetV2.0 architecture. a The overall architecture, highlighting the integration of an encoder path for input 
downsampling and a decoder path for upsampling the feature maps, with skip connections between the corresponding blocks in both paths. b 
Illustration of the convolution block used within the encoder for input downsampling and feature extraction, which is composed of Minkowski 
convolutional layer, batch normalization layer, and ReLU activation function. c Presentation of the transpose block, which is deployed in the decoder 
path for input upsampling and consists of a Minkowski convolution transpose layer, a Minkowski batch normalization layer, and a Minkowski ReLU 
activation function. d Depiction of the ResNet-inspired basic block, which possesses skip connections for effective feature extraction and is utilized 
in both the encoder and decoder paths
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methods, we eliminated the protein structures found in 
both our training datasets and the sc-PDB [34] dataset. 
Consequently, the newly formed Holo801, Coach100 and 
PDBBind1681 datasets comprised 801, 100 and 1681 pro-
tein complexes, respectively.

Furthermore, we established the Apoholo45 data-
set derived from D3PM [35], an extensive collection 
encompassing 45 pairs of bounded and unbounded 
structures. This dataset was curated excluding any 
protein structures or structures with binding sites that 
were present in the PUResNetV2.0 training dataset.

Model
PUResNetV2.0, based on MCNNs, features an encoder-
decoder framework [36] with 171 layers and 10,861,601 
trainable parameters, tailored for binary segmentation, 
as illustrated in Fig.  2a. The architecture integrates an 
encoder and a decoder, both of which are constructed 
from multiple blocks. The encoder’s role is to reduce the 
dimensionality of the input—a SparseTensor depiction 
of a protein structure—by incorporating an assembly of 
convolution and basic blocks. The decoder, conversely, 
aims to upscale the encoder-produced feature maps. 
It uses a series of transpose and basic blocks, which are 
augmented by concatenating the corresponding feature 
maps from the skip pathway. These skip connections 
equip the decoder with detailed information from the 
encoder.

Figure 2b presents the convolution block, which is an 
integral part of the encoder pathway. The block incorpo-
rates a Minkowski convolutional layer [37], followed by 
a Minkowski batch normalization layer and a Minkowski 
ReLU activation function. Collectively, these compo-
nents reduce the input dimensionality while simultane-
ously drawing out significant features. The combined 
use of Minkowski convolution, batch normalization, and 
ReLU activation empowers PUResNetV2.0 to learn com-
plex input representations. Minkowski convolution layer 
inputs a 4-dimensional tensor, with three spatial dimen-
sions (x,y,z) and one temporal dimension (t) and uses a 
hybrid kernel (non-hypercubic, non-permutohedral) of 
arbitrary shape for feature extraction [24]. The convolu-
tion operation in Minkowski convolution layer can be 
described with the equation below,

where  ND is a set of offsets that define the shape of a ker-
nel and  ND(u,  Cin) = {i|u + i ∈  Cin, i ∈  ND} as the set of off-
sets from current center, u, that exists in  Cin.  Cin and  Cout 
are predefined input and output coordinates of sparse 
tensors. Minkowski convolution batch normalization 

Xout
u =

∑

i∈ND(u,Cin)

Wix
in
u+i for u ∈ Cout

,

layer and Minkowski ReLU activation function are 
adopted for sparse tensor from conventional batch nor-
malization and ReLU activation function.

The decoder’s fundamental component, the transpose 
block, is visualized in Fig.  2c. It employs a Minkowski 
convolution transpose layer, Minkowski batch nor-
malization, and a Minkowski ReLU activation function 
to upscale the input. These layers work in harmony to 
heighten the input’s spatial resolution and concurrently 
isolate pertinent features. The integration of Minkowski 
transposed convolution, Minkowski batch normalization, 
and Minkowski ReLU activation layers facilitates efficient 
upsampling, enhancing the model’s ability to distinguish 
between binding and non-binding atoms.

Figure  2d highlights the ResNet [38]-inspired basic 
block, which features skip connections between the 
input and output and is applied in both the encoder and 
decoder pathways of PUResNetV2.0. The deployment of 
the ResNet-derived basic block allows PUResNetV2.0 to 
effectively extract high-level and low-level features, effec-
tively circumventing the issue of vanishing gradients.

Optimizing PUResNetV2.0 using Optuna
To optimize PUResNetV2.0, we used Optuna, an auto-
mated hyperparameter optimization framework. We 
began the optimization process by defining the hyper-
parameter search space for PUResNetV2.0, incorporat-
ing parameters like batch size, learning rate, number of 
output planes and number of basic blocks. Our aim was 
to maximize the PRC AUC on the validation set, hence 
we established an objective function accordingly. Lev-
eraging the Tree-structured Parzen Estimator (TPE), a 
Bayesian optimization algorithm, Optuna recommended 
hyperparameters by building a probabilistic model of the 
objective function. This sophisticated approach involves 
iteratively modeling and updating the probability dis-
tributions of hyperparameters to balance exploration 
and exploitation, ultimately guiding the search towards 
promising regions in the hyperparameter space with each 
iteration. We also incorporated an early stopping strategy 
to prevent overfitting, halting training if no improvement 
was seen in the validation loss over a predefined number 
of epochs.

Postprocessing the predictions yielded by PUResNetV2.0
In the postprocessing phase of PUResNetV2.0, we uti-
lized the density-based spatial clustering of applica-
tions with noise (DBSCAN) [39] algorithm, known for 
its advantage of not requiring a predetermined num-
ber of clusters, which was ideal for our scenario where 
the number of binding pockets was not known a priori. 
This algorithm took the xyz coordinates of the predicted 
binding atoms and grouped the proximate predictions, 
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forming distinct binding pockets under the criterion of a 
minimum of five atoms within a spatial distance of 5.5 Å. 
Implementing the kd_tree algorithm and setting a leaf 
size of 100 enhanced its computational efficiency. This 
transformation of atomic-level predictions into identifi-
able binding pockets enables a more comprehensive anal-
ysis in protein-drug interaction studies.

Performance benchmarking against PUResNetV1.0, 
DeepSurf, DeepSite, GRasP and P2Rank
To benchmark PUResNetV2.0’s performance, we 
extracted predictions from several established models, 
including PUResNetV1.0, DeepSurf, DeepSite, GRaSP, 
and P2Rank. For P2Rank and DeepSite, we obtained the 
predictions directly from the P2Rank datasets, which 
are available at https:// github. com/ rdk/ p2rank- datas 
ets. We implemented the models for PUResNetV1.0 and 
DeepSurf using their respective GitHub repositories 
(PUResNetV1.0: https:// github. com/ jivan kandel/ PURes 
Net; DeepSurf: https:// github. com/ stemy lonas/ DeepS 
urf ) and subsequently generated predictions. For GRaSP, 
we sourced the predictions through its dedicated web-
server at https:// grasp. ufv. br/ submit.

With P2Rank, each predicted binding pocket was 
ranked, and we chose the highest-ranked pocket for 
evaluation. We then calculated the pocket’s center 
based on its atomic coordinates. DeepSite provided the 
center for each predicted pocket, simplifying our extrac-
tion process. Similarly, DeepSurf also provided the pre-
dicted centers for the binding pockets. In the case of 
PUResNetV1.0, we used the atomic coordinates derived 
from the predicted pockets to calculate the center, facili-
tating standardization across the models for compari-
son purposes. Finally, with GRaSP, the predictions were 
supplied as residues within a CSV file, which we used to 
extract the necessary information for our analysis. Suc-
cess rate based on DCA, Success rate based on DCC, pre-
cision, recall, F1 score, and MCC metrices are utilized to 
compare between methods.

A. Pocket centric method

 1. Success rate based on DCA

 DCA is the minimum distance between the 
center of predicted binding site to the any actual 
binding site atom. If the distance is ≤ 4 Å, then it 
its determined to be correctly predicted site and 
success rate is given by:

2. Success rate based on DCC
 DCC is the minimum distance between the 

center of predicted binding site to the center of 
the actual binding site. If the distance is ≤ 4Å, 
then it its determined to be correctly predicted 
site and success rate is given by:

B. Residue centric method
 True Positive (TP) is correctly predicted residue as 

binding residues. False Positive (FP) is incorrectly 
predicted binding residues. True Negative (TN) is 
correctly predicted non-binding residue. False Nega-
tive (FN) is incorrectly predicted non-binding resi-
due.

1. Precision

 Precision =
∑n

i=0

TPi
TPi+FPi
n  where n is the total num-

ber of protein structures.
2. Recall
 Recall =

∑n
i=0

TPi
TPi+FNi
n  where n is the total number 

of protein structures.
3. F1 score
 F1 score =

∑n
i=0

2×Precisioni×Recalli
Precisioni+Recalli

n  where n is the 
total number of protein structures.

4. MCC
 MCC =

∑n
i=0

TPi×TNi−FPi×FNi√
(TPi+FPi)(TPi+FNi)(TNi+FPi)(TNi+FNi)

n  
where n is the total number of protein structures.

Implementation of the Web Server for PUResNetV2.0
To facilitate the application of PUResNetV2.0, we imple-
mented a web server (https:// nsclb io. jbnu. ac. kr/ tools/ 
jmol/) utilizing the Django Python web framework. 
The user interface was designed to provide options 
for uploading a PDB file or entering a PDB ID or Uni-
Prot ID. The platform also provides flexible preprocess-
ing settings: a user-submitted protein structure can be 
processed as a single complex, individual chains can be 
treated as separate complexes, or selected chains (identi-
fied by a comma-separated list of their identifiers) can be 
treated as a single complex.

Sucess RateDCA

=
Number of predicted binding sites having DCA ≤ 4 Å

Total number of sites
.

Sucess RateDCC

=
Number of predicted binding sites having DCC ≤ 4 Å

Total number of sites
.

https://github.com/rdk/p2rank-datasets
https://github.com/rdk/p2rank-datasets
https://github.com/jivankandel/PUResNet
https://github.com/jivankandel/PUResNet
https://github.com/stemylonas/DeepSurf
https://github.com/stemylonas/DeepSurf
https://grasp.ufv.br/submit
https://nsclbio.jbnu.ac.kr/tools/jmol/
https://nsclbio.jbnu.ac.kr/tools/jmol/
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Once the necessary inputs and selections are provided 
by the user, the backend of the web server initiates the 
conversion of the protein structure into a Minkowski 
SparseTensor, as elaborated in “Data acquisition and 
processing” section. When the preprocessing setting 
is set to ‘single complex’, the given protein structure 
is converted into a single Minkowski SparseTensor. If 
‘individual chains as separate complexes’ is selected, 
each chain is represented by an individual Minkowski 
SparseTensor, thus creating a batch. In scenarios where 
specific chains are selected, these chains are converted 
into a single Minkowski SparseTensor. Subsequently, the 
PUResNetV2.0 model is activated to generate predictions. 
The predicted binding atoms are then postprocessed by 
following the steps discussed in the “Postprocessing the 
Predictions Yielded by PUResNetV2.0” subsection, read-
ying them for visualization.

In the final step, the predicted binding pockets are vis-
ually represented on the front-end side of the web server 
using the JSmol [40] Java-based viewer. This facilitates an 
interactive visualization of the 3D molecular structures 
of proteins and their predicted binding pockets, thereby 
providing the user with a graphical representation of the 
predictions. Furthermore, a list of the identified amino 
acids within each predicted binding pocket is also made 
available for download in the form of a PDB file. This 
comprehensive workflow from input processing to result 

visualization allows for a seamless and user-friendly 
experience on the web server, thereby maximizing the 
utility of PUResNetV2.0 for users.

Results
Diverse training dataset curated using a tailored parser
In the initial phase of our research, we curated a data-
set crucial for the development of the PUResNetV2.0 
model, with a focus on protein–ligand interaction 
sites. This dataset comprised 61,691 protein complexes, 
encompassing 25,780 unique ligand-binding sites 
across 4729 protein families. We extracted PDB and 
Ligand IDs from the BioLip database and downloaded 
the corresponding structures from the RCSB database. 
To concentrate on small molecule ligand-binding sites, 
we excluded binding sites associated with ions, water 
molecules, small peptides, and polynucleotides. More-
over, we removed the HETATM records from each PDB 
file in the dataset preparation phase. This methodology 
offered a detailed perspective on vital ligand-binding 
sites. For example, among the protein complexes, 3.8% 
contained a HEM binding site, 2.3% an ADP binding 
site, and another 2.3% an III binding site. In terms of 
protein families, 5.2% of the complexes were from the 
Pkinase family, 2.7% from the PK_Tyr_Ser-Thr family, 
and 2.3% from the Hormone_recep family, illustrating 
the dataset’s diversity as shown in Fig. 3.

Fig. 3 Distribution of the training dataset employed for PUResNetV2.0, categorized by its ligand types and protein families. These pie charts offer 
detailed insight into the breadth and depth of our dataset, encompassing 61,691 protein complexes. a Visualization of the distribution across 4729 
protein families, emphasizing prevalent families such as Pkinase, PK_Tye_Ser-Thr, and Hormone_recep, which represent a significant proportion 
of the dataset. b Illustration of the diversity of 25,780 unique ligand binding sites included in the dataset, pointing out commonly found ligand 
binding site such as HEM, ADP, and III
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While preparing our dataset, we acknowledged 
the inherent imbalance that characterizes real-world 
protein‒ligand interactions. Specifically, atoms 
involved in interactions are far outnumbered by those 
that do not partake in such interactions. To ensure a 
fair model performance evaluation and eliminate data 
leakage, we implemented an 80/20 split for the training 
and validation sets, ensuring that protein complexes 
interacting with the same ligand were exclusive to 
either set. This careful dataset preparation and division 
process laid the foundation for the successful training 
and optimization of our PUResNetV2.0 model.

To aid in the development of our dataset, we created 
a custom parser specifically designed for converting 
given PDB files to Minkowski SparseTensor representa-
tions. Our parser, based on the specifications provided 
by the WorldWide Protein Data Bank (wwPDB), parsed 
the atomic records from the associated PDB files. One of 
the key features of our parser is its capability to directly 
access and process protein structures from the RCSB 
database, streamlining the data input process for users 
and facilitating the efficient preparation of data for 
PUResNetV2.0 training and evaluation. More detailed 
usage examples are available in our GitHub repository.

The PUResNetV2.0 optimization process improved the 
validation PRC AUC from 46 to 71%.

In the quest to improve our model’s performance on 
the highly imbalanced dataset, we initiated our optimi-
zation process using the Optuna library. The weighted 
adaptive moment estimation (AdamW) optimizer [41] 
was used as the optimizer. Initially, we used the Dice loss 
function [42] as a loss function due to its effectiveness 
in balancing the contributions of the foreground (atoms 
involved in interactions) and the background (atoms not 
involved in interactions) by considering both precision 
and recall in its calculation. Despite its well-regarded 
ability to manage disparities between classes, the appli-
cation of the Dice loss function led to a validation area 
under the precision recall curve (PRC AUC) of 46% and 
an F1 score of 61%, as shown in Table 1, indicating that 
further optimization was required to enhance the perfor-
mance of our PUResNetV2.0 model.

The loss graphs labeled as a, b, c, and d correspond 
to the respective hyperparameter configurations delin-
eated in Table  1. Each graph presents a comparative 
analysis of training vs validation loss, substantiating the 
assertion that the model exhibits neither overfitting nor 
underfitting.

In response, we pivoted our approach to focus on the 
focal loss function [43]. Noted for its capacity to handle 
imbalanced datasets by concentrating on challenging 
examples, the implementation of the focal loss function 
served as the turning point in our model’s optimiza-
tion process. Through rigorous hyperparameter tuning 
performed using the Optuna library, we observed a sig-
nificant leap in our model’s predictive ability, with the 
validation PRC AUC of our optimized PUResNetV2.0 
model reaching an impressive 71% and its F1 score 
improving to 65%, as shown in Table  1. As shown in 
Fig.  4, the graph shows for each hyperparameter con-
figuration, the model is stable and well-tuned. Using the 
best hyperparameters identified, a 10-fold cross-valida-
tion was performed. The results, as detailed in Table  2, 
showed an average PRC AUC of 70.00% with a standard 
deviation of 0.011%, and an F1 score of 64.03% with a 
standard deviation of 0.016%, underscoring the model’s 
steady performance across different data segments. This 
substantial improvement in the validation PRC AUC 
underscores the effectiveness of the focal loss function in 
cases with highly imbalanced protein‒ligand interaction 
data. Notably, the high validation PRC AUC score indi-
cates the ability of PUResNetV2.0 to correctly predict the 
atoms involved in interactions.

PUResNetV2.0 identifies binding pockets of complex 
protein structures
Our examination of PUResNetV2.0’s prediction results 
obtained across the Holo801 and Apoholo45 datasets 
elucidated the model’s capability to navigate the intrica-
cies of protein structures. Evidently, the model’s predic-
tions varied significantly depending on the context in 
which we presented the protein structures: as individual 
chains each forming separate complexes, as groups of 

Table 1 Hyperparameter optimization results obtained for PUResNetV2.0

Batch size LR Loss function Out planes Number of basic 
blocks

Validation

Encoder basic blocks Transpose blocks PRC AUC (%) F1 score (%)

a) 80 7.89e−4 Focal loss (γ = 1, 
α = 0.15)

32, 48, 128, 128 128, 128, 48, 32 2, 3, 1, 3, 3, 2, 1, 3 71 65

b) 96 4.21e−4 Focal loss (γ = 2, 
α = 0.10)

32, 48, 128, 128 128, 128, 48, 32 2, 2, 1, 3, 1, 2, 1, 1 70 64

c) 64 1.65e−3 Dice loss 32, 32, 112, 80 80, 112, 32, 32 3, 1, 1, 3, 1, 2, 1, 1 46 61

d) 128 1.03e−4 Dice loss 32, 48, 96, 128 128, 96, 48, 32 2, 3, 3, 3, 1, 2, 2, 1 45 60
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Fig. 4 Training loss vs validation loss for each configuration in Table 1

Table 2 10-fold cross validation results

Experiment Training sample Validation sample Validation PRC AUC Validation F1 score

1 55,521 6170 69.14% 62.27%

2 55,522 6169 70.70% 64.10%

3 55,522 6169 68.70% 62.90%

4 55,522 6169 70.40% 64.40%

5 55,522 6169 70.20% 64.50%

6 55,522 6169 70.20% 63.80%

7 55,522 6169 71.90% 67.80%

8 55,522 6169 68.00% 62.10%

9 55,522 6169 71.00% 65.10%

10 55,522 6169 69.80% 63.30%

Average 70.00% 64.03%

Standard deviation 0.011455 0.0164673

Variance 0.0001312 0.0002712
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Fig. 5 Visual representation of PUResNetV2.0’s capabilities in terms of accurately predicting diverse protein‒ligand binding sites across a variety 
of complex protein structures. The structures of proteins are displayed in cartoon format, with the corresponding ligands represented by stick 
models. The meshes overlaid on these structures signify the predicted binding pockets as determined by PUResNetV2.0. Each protein structure’s 
PDB ID is provided at the bottom right side of the structure. This figure illustrates the model’s competence in identifying potential binding sites 
across a range of protein‒ligand complexes
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two or more chains that constituted a larger complex, or 
as an integrated structure treated as a single complex.

A noteworthy aspect of our analysis was the model’s 
approach for handling the protein structures in the 
Holo801 dataset that incorporated peptide-like ligands, 
specifically structures 1a2c, 8lpr, 1eoj, 1eol, 1i4f, 1eb1, 
1p12, 1iht, and 1f0c, as shown in Fig. 5. As these peptide-
like ligands were not represented in our training dataset, 
they introduced an element of novelty to the test sce-
nario. If we presented the peptide-containing structures 
as a unified complex, the model refrained from providing 
predictions. In contrast, when we interpreted these struc-
tures as a complex excluding the peptides, PUResNetV2.0 
successfully discerned the binding pockets for these pep-
tide-like ligands. Additionally, in the cases with antibody-
antigen complexes 1k4c and 1k4d from the Holo801 
dataset shown in Fig. 5, when considering the heavy and 
light chains as a complex, PUResNetV2.0 successfully 
predicted the binding region where the antigen and anti-
body bound.

Additional remarkable insights were derived from the 
analysis conducted on the Apoholo45 dataset, more spe-
cifically, structures 6m7j, 6v9y, 6wj5, and 5urv depicted 
in Fig.  5. For instance, when we treated chains C and 
D of the bounded structure 6m7j as a larger complex, 
PUResNetV2.0 accurately identified the binding pocket 
for the COL ligand, which interacted with both chains. 
Additionally, when treating structures 6v9y, 6wj5, and 
5urv as a single complex, PUResNetV2.0 precisely pre-
dicted the binding pockets.

In conclusion, the performance of PUResNetV2.0 in 
accurately identifying binding pockets across various 
scenarios and structures, including the nuanced com-
plexities of structures with peptide-like ligands and anti-
gen–antibody complexes in the Holo801 dataset and the 
ligand interactions across multiple chains in the Apo-
holo45 dataset, exhibited PUResNetV2.0’s versatility 
and adaptability, positioning it as a powerful tool in the 
field of protein structure analysis and ligand binding site 
prediction.

Comparative benchmark analysis reveals PUResNetV2.0’s 
better performance
In this study, we evaluated the performance of 
PUResNetV2.0, our proposed LBSP model, against 
established methods such as P2Rank, DeepSurf, 
PUResNetV1.0, DeepSite, and GRaSP. This analysis used 
four distinctive benchmark datasets, Coach100, Holo801, 
Apoholo45 and PDBBind1681, each offering unique 
challenges. Coach100, comprising only monomeric pro-
tein structures, assessed the models’ proficiency in han-
dling simpler, individual protein structures. Conversely, 
Holo801, laden with ligand-bound oligomeric structures, 

tested the models’ abilities to interpret complex interac-
tions across multiple protein chains. The PDBBind1681 is 
a high-quality dataset originally used for developing and 
validating scoring functions and docking methods which 
contains bindings residues information for each target 
protein. The Apoholo45 dataset stood out by incorporat-
ing both ‘apo’ and ‘holo’ protein structures, pushing the 
models to discern and differentiate between these critical 
states for accurate ligand binding site prediction.

A comparison of the model performances achieved 
across the benchmark datasets revealed insightful trends. 
The performance of various models on the Coach100 
dataset, characterized by simpler monomeric structures 
and ion binding sites, was generally lower, with DeepSite 
exhibiting the poorest results among them. Conversely, 
when tested against the Holo801 dataset, composed of 
complex oligomeric structures, most models showed 
higher success rates, except for PUResNetV1.0, which 
exhibited a significant drop, indicating its challenges 
in managing such complex structures. The Apoholo45 
dataset, which comprises both ‘apo’ and ‘holo’ protein 
structures, presented an added challenge that led most 
models, including DeepSurf and GRaSP, to struggle.

PUResNetV2.0 consistently demonstrated improved 
performance over the P2Rank, DeepSurf, PUResNetV1.0 
and DeepSite methods by attaining elevated DCA and 
DCC success rates across the Coach100, Holo801, and 
Apoholo45 benchmark datasets, as highlighted in Table 3. 
In the case of the Coach100 dataset, PUResNetV2.0 
achieved 59.0% DCA and 38.0% DCC success rates. 
Regarding the Holo801 dataset, PUResNetV2.0 yielded 
85.4% DCA and 53.7% DCC success rates. Finally, for the 

Table 3 Comparison among the performances of P2Rank, 
DeepSurf, PUResNetV1.0, DeepSite, and PUResNetV2.0 on 
benchmark datasets

Top values for each benchmark dataset are represented in bold

Benchmark dataset Methods Success rate 
(DCA ≤ 4Å) 
(%)

Success rate 
(DCC ≤ 4Å) (%)

Coach100 P2Rank 44.0 29.0

DeepSurf 51.0 26.0

PUResNetV1.0 51.0 38.0
DeepSite 27.0 15.0

PUResNetV2.0 59.0 38.0
Holo801 P2Rank 74.0 48.2

DeepSurf 83.8 46.5

PUResNetV1.0 2 0.9

DeepSite 71.4 33.8

PUResNetV2.0 85.4 53.7
Apoholo45 DeepSurf 46.7 16.7

PUResNetV2.0 71.1 40.0
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Apoholo45 dataset, PUResNetV2.0 attained 71.1% DCA 
and 40.0% DCC success rates.

As shown in Table  4, compared to GRaSP, the 
PUResNetV2.0 method exhibited substantial perfor-
mance enhancements on the Coach100, Holo801, Apo-
holo45 and PDBBind1681 datasets, particularly in 
terms of the F1 score, MCC, and recall metrics. Nev-
ertheless, GRaSP excelled with respect to precision on 
the Coach100. In the case of PDBBind1681 dataset, 
PUResNetV2.0 notably outperforms GRaSP, as evidenced 
by its enhanced metrics, achieving a precision of 78.68%, 
recall of 35.90%, F1 score of 47.10%, and a MCC of 
46.70%. In summary, PUResNetV2.0 consistently yielded 
superior results for most metrics, achieving a minimum 
MCC increase of 10% and a 10% F1 score improvement 
over GRaSP.

Discussion
The insights garnered from this research have demon-
strated the remarkable potential of PUResNetV2.0 for 
accomplishing the challenging task of LBSP. Through 
the careful curation of a comprehensive dataset encom-
passing a wide range of protein complexes and the 
optimization of PUResNetV2.0, we achieved a remark-
able improvement in the validation PRC AUC from 
46 to 71% in the presence of a highly imbalanced data-
set. The key findings from our study revealed the abil-
ity of PUResNetV2.0 to adeptly predict binding pocket, 
especially for complex structures housing peptide-like 
ligand. Additionally, it consistently outperformed other 
methods across benchmark datasets, including Holo801, 
Coach100, Apoholo45, and PDBBind1681. These find-
ings, characterized by PUResNetV2.0’s enhanced per-
formance not only underscore the significant strides our 
study has made in the field of LBSP but also set the stage 
for an in-depth exploration of our findings, their implica-
tions, and potential avenues for future research.

The transition from PUResNetV1.0 to PUResNetV2.0 
represents an important journey of continuous evolution 

in protein structure representation and feature extrac-
tion for LBSP. A critical insight gained during this pro-
cess is the importance of the quality and diversity of the 
utilized training dataset in driving the predictive power 
and generalizability of the resulting model. Both ver-
sions are rooted in the robust UNet [36] and ResNet [38] 
architectures, yet their feature extraction methods differ: 
PUResNetV1.0 utilizes 3D CNNs, while PUResNetV2.0 
adopts MCNNs. MCNNs are specifically designed for the 
efficient processing and extraction of features from sparse 
representations. However, transitioning to MCNNs and 
sparse representations was not sufficient for ensuring 
success; we also needed to address the imbalance issues 
that are frequently found in the datasets of this field. In 
PUResNetV1.0, we managed these issues with the Dice 
loss, a strategy carried forward to PUResNetV2.0. How-
ever, the Dice loss only yielded a 46% PRC AUC on our 
validation dataset. Upon switching to focal loss, our per-
formance improved significantly, achieving a 71% PRC 
AUC on the validation dataset. This stark difference 
emphasizes the need for utilizing appropriate loss func-
tions when handling imbalanced data, leading to our 
model’s improved performance.

PUResNetV1.0 was trained on the 2017 version of 
the sc-PDB dataset [34]. Although comprehensive for 
its time, we found this dataset to be limited in terms of 
representing the diversity and complexity of protein 
structures, particularly oligomeric structures, which 
directly impacted the performance of PUResNetV1.0. 
PUResNetV1.0 had difficulties dealing with the Holo801 
dataset, which is composed of complex oligomeric 
structures. However, it was more adept at handling the 
monomeric structures in the Coach100 dataset. The 
shortcomings of PUResNetV1.0 pushed us toward a 
more advanced approach for PUResNetV2.0, adopting 
a sparse representation method inspired by Minkowski 
SparseTensor’s application in LiDAR segmentation.

The proposed method outperformed existing ones 
across a variety of datasets, including Coach100, 

Table 4 Comprehensive assessment of PUResNetV2.0 and GRaSP on benchmark datasets

Top values for each benchmark dataset are represented in bold

Benchmark dataset Methods Precision (%) Recall (%) F1 score (%) MCC (%)

Coach100 PUResNetV2.0 61.3 62.4 61.8 62.4
GRaSP 63.5 43.9 51.9 50.1

Holo801 PUResNetV2.0 70.2 71.0 70.6 68.3
GRaSP 66.9 50.1 57.3 55.1

Apoholo45 PUResNetV2.0 69.7 54.2 61.0 59.4
GRaSP 61.7 32.0 42.1 42.0

PDBBind1681 PUResNetV2.0 78.68 35.90 47.10 46.70
GRaSP 57.31 22.89 31.01 30.84
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Holo801, Apoholo45 and PDBBind1681. The superiority 
of PUResNetV2.0 can be partially attributed to its ability 
to adeptly avoid the errors observed in other models. 
For example, while treating oligomeric structures as 
surface representations of a protein with a set of local 
3D voxelized grids placed on the protein’s surface, 
DeepSurf introduced errors in its predictions. DeepSurf 
identified residues of peptide-like ligands as binding 
residues (as shown in Additional file Table 1). A similar 
inability was observed with the machine learning 
based P2Rank method, while GRasP simply failed to 
process such structures. In contrast, PUResNetV2.0, 
leveraging the advantages of Minkowski SparseTensors 
to represent protein structures, was able to process such 
structures as well as restrained to predict residues of 
peptide-like ligands as binding residues as evidenced in 
“PUResNetV2.0 Identifies Binding Pockets of Complex 
Protein Structures”. This reflects the potential of sparse 
representation in LBSP, not only in terms of improving 
performance but also in advancing the field of LBSP, 
especially in scenarios involving complex molecular 
interactions.

While PUResNetV2.0 has demonstrated a significant 
advancement over its predecessor and other method-
ologies, it does not come without its own limitations. A 
primary constraint is that the model’s performance is con-
tingent upon the input training dataset. Currently, our 
dataset does not account for all types of binding sites, with 
notable exclusions being ions, DNA/RNA, and peptide-
like ligand binding sites. These ligand types demonstrate 
unique interaction patterns with proteins. For example, 
ions typically interact with proteins through salt bridges 
or coordinate bonds. Interactions between DNA/RNA 
and proteins typically engage larger surface areas, com-
monly occurring in the grooves or channels of the protein. 
Peptide-like ligands present a spectrum of interaction pat-
terns, which are largely dependent on their lengths and 
sequences. In addition, our present training dataset pri-
marily encompasses orthosteric sites, neglecting allosteric 
sites that play a vital role in protein‒ligand interactions. 
The omission of these entities constitutes a significant 
limitation, as their unique interaction patterns can sub-
stantially influence the precision and applicability of our 
model’s predictions. Consequently, PUResNetV2.0 in its 
current form may lack effectiveness in terms of predicting 
binding sites that involve these omitted ligand types.

Addressing these limitations necessitates a more 
nuanced approach in future research. An integral part 
of this approach would be the expansion of the training 
dataset to include more diverse types of binding sites, 
especially those involving ions, DNA/RNA, and peptide-
like ligands. Given their distinct interaction patterns with 
proteins, these ligand types could benefit from dedicated 

models trained on specialized datasets curated specifi-
cally for each ligand type. Our custom parser, developed 
to convert protein structures into Minkowski SparseTen-
sor representations, provides a robust tool for streamlin-
ing the curation of these specialized datasets. However, 
we must not overlook the complexity that accompanies 
this approach. Developing and validating separate mod-
els for each ligand type could pose significant challenges, 
particularly in maintaining the balance between speciali-
zation and generalizability. This task also demands the 
careful tuning of model parameters and loss functions for 
each ligand-specific model. Nevertheless, the potential 
rewards—improved accuracy, broader applicability, and 
greater insights into unique interaction patterns—make 
this a promising direction for future research.

Conclusion
In conclusion, this study combines well-curated train-
ing datasets, innovative protein structure representa-
tions via Minkowski SparseTensors, and a strategically 
selected loss function, all geared toward addressing the 
intricate challenges of LBSP. The transition from dense 
to sparse data representations has significantly elevated 
PUResNetV2.0’s ability to manage complex protein struc-
tures, outperforming previous methods across diverse 
datasets. Although some areas demand further refine-
ment, specifically the representation of the complete 
range of protein‒ligand interactions, the potential of 
PUResNetV2.0 in facilitating the drug discovery pro-
cess, coupled with our user-friendly web server, stands 
as a significant achievement. This account highlights the 
strides we have made thus far. As we continue to refine 
our methodologies and broaden our training datasets, 
we expect to uncover deeper insights and achieve even 
higher levels of accuracy and inclusivity in predicting 
protein‒ligand interactions, propelling the field of LBSP 
to new heights.
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