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Abstract 

Stereochemistry plays a fundamental role in pharmacology. Here, we systematically investigate the relationship 
between stereoisomerism and bioactivity on over 1 M compounds, finding that a very significant fraction (~ 40%) 
of spatial isomer pairs show, to some extent, distinct bioactivities. We then use the 3D representation of these 
molecules to train a collection of deep neural networks (Signaturizers3D) to generate bioactivity descriptors associ‑
ated to small molecules, that capture their effects at increasing levels of biological complexity (i.e. from protein 
targets to clinical outcomes). Further, we assess the ability of the descriptors to distinguish between stereoisomers 
and to recapitulate their different target binding profiles. Overall, we show how these new stereochemically-aware 
descriptors provide an even more faithful description of complex small molecule bioactivity properties, capturing key 
differences in the activity of stereoisomers.

Scientific contribution
We systematically assess the relationship between stereoisomerism and bioactivity on a large scale, focusing on com‑
pound-target binding events, and use our findings to train novel deep learning models to generate stereochemically-
aware bioactivity signatures for any compound of interest.
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Main text
Small molecules are a great tool to probe biology and, 
still, the main asset of pharmaceutical companies. The 
last years have seen a surge of ever more complex biolog-
ical high-throughput assays involving the use of chemical 
compounds, and databases committed to gathering bio-
activity data associated to small molecules are expanding 

[1, 2]. Moreover, the widespread availability of computa-
tional resources [3] and artificial intelligence techniques 
has been pivotal to leverage such amounts of data [4].

From the computational perspective, small molecules 
are typically characterized by numerical descriptors 
encoding physicochemical or topological features [5]. 
Compounds can be further described using their biologi-
cal activities (e.g. the targets they interact with), which 
represents a complementary strategy that extends the 
small molecule similarity principle beyond conventional 
chemical properties [6]. Unfortunately, experimental bio-
activity data are sparse and only available for a limited 
set of well-characterized compounds. To overcome these 
coverage issues, we recently trained a collection of deep 
neural networks able to infer bioactivity signatures for 
any compound of interest (i.e. Signaturizers), even when 
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little or no experimental information is available for them 
[7]. The Signaturizers are able to infer 25 different bioac-
tivity types, from target profiles to cellular responses or 
clinical outcomes. Moreover, the vector-like format of 
the resulting bioactivity descriptors enables them to be 
readily used in day-to-day cheminformatics tasks. For 
instance, we showed their utility to navigate the chemical 
space in a biologically relevant manner, unveiling shared 
mechanisms of action in the absence of chemical similar-
ity. Additionally, we demonstrated that small molecule 
bioactivity descriptors provide a significant improvement 
in performance, with respect to chemistry-restricted 
trained classifiers, across a series of biophysics and physi-
ology activity prediction benchmarks. Indeed, our results 
showed that the added value of bioactivity descriptors 
increased together with the biological complexity of the 
classification tasks [7]. However, the original Signatur-
izers are built on 2D representations of molecules and 
are thus not able to capture subtle, but often meaningful, 
bioactivity differences between stereoisomers. Indeed, 
stereochemistry and chirality play pivotal roles in phar-
macology [8, 9], often driving supramolecular recogni-
tion processes crucial in drug design. Biological matter is 
intrinsically chiral (e.g. amino acids) [10] and stereoiso-
meric small molecule drugs may exhibit different thera-
peutic and toxicological effects [11, 12]. For example, the 
antidepressant Citalopram is administered as a mixture 
of two enantiomers (i.e. racemate), although only one of 
them is active [13, 14]. However, in some other cases, one 
of the enantiomers is associated with toxic side effects. 
This is the case of the antiarthritic drug Penicillamine, 
administered as an enantiomerically pure compound 
((S)-Penicillamine) since (R)-Penicillamine acts as a pyri-
doxine (vitamin B6) antagonist and is thus toxic [12, 15]. 
We now present novel deep learning models to gener-
ate stereochemically-aware bioactivity signatures for any 
compound of interest, which we call Signaturizers3D, 
that overcome the inherent limitations of our original 
Signaturizers.

Systematic quantification of the relationship 
between stereochemistry and small molecule bioactivity
The first steps in the development of Signaturizers3D 
were (i) to select a comprehensive database containing 
detailed bioactivity data for a wide range of chemical 
compounds, and (ii) within this database, systematically 
identify groups of stereoisomers to compare their bioac-
tivity profiles and evaluate the ability of Signaturizers3D 
to distinguish them.

To gather bioactivity data, we used the Chemical 
Checker (CC), which represents the largest collection of 
small molecule bioactivity signatures available to date, 
with experimental information for over 1 M compounds 
[6]. The CC divides data into five levels of increasing 
complexity, ranging from the chemical properties of com-
pounds to their clinical outcomes. Compound bioactivi-
ties are expressed in a vector-like format (i.e. signatures), 
and the data processing pipeline also includes several 
steps of increasing level of integration and abstraction: 
from raw experimental data representing explicit knowl-
edge (type 0 signatures) to inferred representations that 
leverage all the experimentally determined bioactivities 
available for each molecule (type III signatures). Thus, 
we processed the whole CC (i.e. 25 different bioactivity 
types for about 1 M molecules) to systematically identify 
groups of stereoisomers that might exhibit distinct bio-
activities. In brief, we first identified stereoisomers using 
their InChIKey strings and we then applied several filters 
to ensure that the actual differences between compounds 
were exclusively due to stereochemical variations (see 
Supplementary Information for further details). Then, 
we selectively removed molecules that were not exhaus-
tively characterized, in order to work with enantiomeri-
cally pure compounds and prevent the analysis of results 
derived from racemic mixtures (Fig.  1a). We eventu-
ally identified 23,830 groups of stereoisomers, involving 
57,989 compounds, across the different CC bioactiv-
ity spaces. We found most stereoisomeric groups with 
experimental information in the target binding space (B4) 
and in the network spaces derived from B4 (i.e. C3–5, 
Fig S1). We thus focused our study on the B4 space, 
which contains over 600,000 molecules, and we identi-
fied 15,370 groups of stereoisomers, involving 32,705 

(See figure on next page.)
Fig. 1  Stereoisomerism and bioactivity. a Computational pipeline to identify groups of stereoisomers in the CC chemical universe. b Number 
of unique stereoisomeric compounds with experimentally identified protein targets in the CC B4 space, number of stereoisomer groups, 
and number of groups with at least 2 compounds with non-identical binding profiles. c Number of groups (y-axis, top) having the specified 
number of stereoisomers (x-axis). Proportion of these groups (y-axis, bottom) having the specified number of distinct binding profiles (i.e. ~ 60% 
of the groups of 2 isomers have a unique binding profile). d Distributions of Jaccard distances (binding profiles) between pairs of compounds 
sharing 0, ≥ 1 targets and stereoisomer pairs. All distributions are significantly different from each other (Mann–Whitney p-value ~ 0). e Illustrative 
example of a stereoisomer group including 3 small molecules with their corresponding target binding profiles, using the annotation of type 0 
signatures (i.e. 0: no binding; 1: weak binding and 2: strong binding)
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compounds (Fig. 1b). We then analyzed the binding pro-
files for all these compounds, and found 6022 groups that 
had at least 2 stereoisomers with non-identical binding 

profiles. We also observed that the majority of the groups 
(14,181, ~ 92%) contained only 2 stereoisomers (Fig.  1c, 
top), in 38% of which both compounds showed distinct 

Fig. 1  (See legend on previous page.)
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binding profiles (Fig. 1c, bottom). Analogously, we iden-
tified 562 groups containing 3 stereoisomers: 230 (41%), 
195 (35%) and 137 (24%) of them showing 1, 2 and 3 dis-
tinct binding profiles, respectively. Finally, we observed 
that the distribution of Jaccard distances between bind-
ing profiles within stereoisomeric groups was skewed 
towards low values (i.e. more similar profiles) compared 
with random pairs, while pairs of compounds sharing at 
least one target were somewhere in the middle (Fig. 1d). 
Figure 1e shows, as an illustrative example, a group of 3 
stereoisomers with non-identical binding profiles, where 
compounds A and C weakly and strongly bind with the 
Beta-1 adrenergic receptor (ADRB1; 2nd position in the 
profile), respectively, whilst compound B does not bind it. 
Note that inactive compound-target interactions might 
be false negatives due to, for instance, a limited sensitiv-
ity of the detection methods or non-tested enantiomers.

Design and evaluation of stereochemically‑aware 
Signaturizers
Our analyses showed that most stereoisomer pairs 
(60.4%) had identical target profiles but, perhaps more 
interestingly, the remaining 8081 pairs (39.6%) showed 
distinct binding against protein targets (Fig. 2a). We also 
observed that CC type III signatures captured differences 
between stereoisomer pairs (Fig. 2b). However, these dif-
ferences were fully missed by the Signaturizers (Fig. 2c), 
as they were trained on 2D representations of the chemi-
cal molecules (i.e. ECFP4 [16]), highlighting the need to 
develop new descriptors able to distinguish stereoiso-
mer-specific bioactivities.

To overcome the limitations of the original Signatur-
izers, we trained new deep-networks using 3D-aware 
molecular representations (i.e. Signaturizers3D, Fig. 2e). 
We first generated 3D conformations for all CC mol-
ecules, coupled them with their type III signatures, and 
used them to fine-tune the pre-trained Uni-Mol model 
[17]. In brief, for all molecules in the CC, we generated 

and optimized a single 3D conformation per compound 
using the ETKDG method [18] and the Merck Molecu-
lar Force Field (MMFF94) from RDKit. After removing 
hydrogens, all coordinates and atom-types for each mol-
ecule were used to fine-tune the pre-trained Uni-Mol 
model as a multitarget regression problem, so that we 
could directly infer pre-calculated CC type III signatures 
(128 dimensions). Specific details regarding the training 
of the models are provided in the Supplementary Infor-
mation. We then evaluated the capability of Signatur-
izers3D to distinguish stereoisomers by generating B4 
signatures for the 32,705 compounds identified as stere-
oisomers in the CC B4 space and calculating distances 
between them. We found that, opposed to the original 
Signaturizers, virtually all pairs of stereoisomers (99.9%) 
exhibited non-identical 3D signatures (Fig.  2f ), show-
casing the ability of our new models to capture slight 
differences in the stereochemistry of the compounds. 
Next, we followed a strict approach to assess the ability 
of Signaturizers3D to recapitulate k-nearest neighbor 
(kNN) compounds at type III signature level; this is to 
evaluate their capacity to retain the structure of the origi-
nal data similarity. In brief, in a standard kNN recovery 
task, negative pairs are chosen randomly and can dif-
fer significantly from positive pairs (Fig S2a). We used 
the same strategy to evaluate the capacity of the new 
descriptors to retain traceable biological information 
(e.g. type 0 signatures), in the form of compound-target 
pairs (Fig S2b). Under this scenario, both Signaturizers 
and Signaturizers3D could almost perfectly distinguish 
close from distant molecules at type III and 0 signatures 
level. To make the assessment more stringent and realis-
tic, we selected the negatives within a close distance of 
the molecule under evaluation, making the discernment 
between positive and negative pairs a more difficult task 
(Fig S2c; see Supplementary Information). In this case, 
we observed that, indeed, Signaturizers3D were able to 

Fig. 2  Stereochemically-aware bioactivity descriptors. a Distribution of target binding profile Jaccard distances (CC B4 type 0 signatures) 
between stereoisomer pairs (20,386 pairs). b Distribution of CC B4 type III signature cosine distances between stereoisomer pairs. c Distribution 
of Signaturizer cosine distances between stereoisomer pairs. d Graphical scheme of the signaturization process of distinct stereoisomers 
((S)-(+)-citalopram and (R)-(−)-citalopram) with the Signaturizer. Molecules are first represented by 2D-based fingerprints (ECFP4, 3D information 
is lost) and then input to a neural network. Since ECFP4 for both stereoisomers are identical, output signatures are also identical. e Graphical scheme 
of the signaturization process of distinct stereoisomers ((S)-(+)-citalopram and (R)-(−)-citalopram) with the novel Signaturizer3D. 3D conformations 
are first generated for both molecules and the corresponding molecular representations are input to the Signaturizer3D fine-tuned neural 
network. Since molecular representations for both stereoisomers are different, output signatures are also different. f Distribution of Signaturizer3D 
cosine distances between stereoisomer pairs. g Recapitulation of B4 signature type III kNNs (×3 80/20 splits) using the original Signaturizer 
and the Signaturizer3D. Nearest neighbors are defined as those molecules with a B4 cosine distance to the evaluated compound in the 0.001 
percentile of the distribution (p-value ~ 10–5). h Recapitulation of B4 signature type 0 kNNs using the original Signaturizer and the Signaturizer3D. 
Nearest neighbors are defined as those molecules with a B4 cosine distance to the evaluated compound in the 0.1 percentile of the distribution 
(p-value ~ 10–3). To speed up the comparisons, positive (NN) and negative (non-NN) pairs were subsampled (10 × 2.5 k compounds) from the CC B4 
space

(See figure on next page.)
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better recapitulate type III and 0 signatures than the orig-
inal ECFP4-based Signaturizers (Fig. 2g, h).

Conclusions
We have systematically assessed the relationship between 
stereoisomerism and bioactivity on a large scale, focusing 
on compound-target binding events. Subsequently, we 

Fig. 2  (See legend on previous page.)



Page 6 of 6Comajuncosa‑Creus et al. Journal of Cheminformatics           (2024) 16:70 

used our findings to train the second generation of Signa-
turizers, which are now stereochemically-aware, thereby 
providing an even more faithful and accurate representa-
tion of complex small molecule bioactivity properties.

The Signaturizer3D package
An open source Python package to generate 3D-aware 
CC bioactivity signatures is available at https://​gitla​
bsbnb.​irbba​rcelo​na.​org/​packa​ges/​Signa​turiz​er3d. The 
package includes model weights for each of the 25 CC 
spaces and can be used to characterize molecules using 
SMILES or coordinates from existing conformers as 
input. The models are implemented in Pytorch and sup-
port inference on a GPU or CPU. The average time to 
generate CC signatures from SMILES is 16.3 s per 1000 
molecules on an NVIDIA GeForce RTX 3090.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00867-4.
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