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Abstract 

Background Previous deep learning methods for predicting protein binding pockets mainly employed 3D convolu-
tion, yet an abundance of convolution operations may lead the model to excessively prioritize local information, thus 
overlooking global information. Moreover, it is essential for us to account for the influence of diverse protein folding 
structural classes. Because proteins classified differently structurally exhibit varying biological functions, whereas 
those within the same structural class share similar functional attributes.

Results We proposed LVPocket, a novel method that synergistically captures both local and global information 
of protein structure through the integration of Transformer encoders, which help the model achieve better perfor-
mance in binding pockets prediction. And then we tailored prediction models for data of four distinct structural 
classes of proteins using the transfer learning. The four fine-tuned models were trained on the baseline LVPocket 
model which was trained on the sc-PDB dataset. LVPocket exhibits superior performance on three independent 
datasets compared to current state-of-the-art methods. Additionally, the fine-tuned model outperforms the baseline 
model in terms of performance.

Scientific contribution 

We present a novel model structure for predicting protein binding pockets that provides a solution for relying 
on extensive convolutional computation while neglecting global information about protein structures. Furthermore, 
we tackle the impact of different protein folding structures on binding pocket prediction tasks through the applica-
tion of transfer learning methods.
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Graphical Abstract

Introduction
Proteins are essential components of human cells and 
are involved in various biological processes within the 
organism. They play critical roles, such as facilitating the 
transportation of substances, modulating the immune 
system, catalyzing reactions, and regulating physiologi-
cal processes. The identification of protein binding pock-
ets is crucial for guiding drug design, protein function 
research. The critical step in Traditional Structure-Based 
Drug Design (SBDD) is to identify potential drug-binding 
pockets on the target protein and determine the amino 
acids that constitute these binding pockets [1]. Once the 
protein drug-binding pockets are identified, specific new 
small molecules can be designed and generated, thereby 
guiding and accelerating the drug design process.

The complex spatial configuration resulting from pro-
tein folding leads to an uneven protein surface, which in 
turn gives rise to the formation of cavities. These cavities 
are often the sites where drugs bind to proteins [2]. Pro-
tein binding pockets are cavities located on the protein’s 
surface or interior, which can bind specifically to ligands. 
In addition, some protein binding pockets have drugga-
bility and play a crucial functional role. The amino acid 
residues around the binding pocket determine its shape, 
position, physicochemical properties, and functions [2].

Traditional methods for detecting binding pockets 
encompass geometry-based, energy-based, and tem-
plate-based techniques. Geometry-based methods typi-
cally detect surface pockets in proteins using their 3D 

structure and rank them based on binding ability. Fpocket 
[3] is a geometry-based algorithm that utilizes Voronoi 
tessellation and alpha spheres clustering to detect pro-
tein pockets. The ConCavity [4], CriticalFinder [5] and 
POCKET [6] are also the classical geometry-based meth-
ods. The FTSite [7] is a successful energy-based methods 
that places 16 different probes on the protein grid and 
clusters them to predict binding sites. The Q-SiteFinder 
[8], AutoSite [9], EASYMIFs, SITEHOUND [10], SiteMap 
[11] are also the successful energy-based methods. FIND-
SITE [12] is a successful template-based method, identi-
fying template proteins that bind to ligands in the PDB 
database and overlaying the template onto target proteins 
to ascertain binding sites. The LBias [13], and LIBRA [14] 
are other successful template-based methods.

In recent years, the advancement of artificial intel-
ligence technology has led to the emergence of numer-
ous new prediction methods for protein binding pockets, 
leveraging machine learning and deep learning. P2Rank 
[15] is a machine learning-based method for predict-
ing binding sites from protein structures. P2Rank uti-
lizes a random forest classifier to infer the coordination 
of local chemical neighborhoods near protein surfaces. 
DeepSite [16] is a deep learning method which is based 
on 3D convolutional neural networks. Kalasanty [17], a 
deep learning prediction method, is built upon the U-Net 
[18] architecture and utilizes a 3D image segmentation 
method for predicting protein pockets. PUResNet [19] 
is another deep learning method for predicting protein 
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binding pockets, constructing a prediction model by inte-
grating ResNet [20] and U-Net. DeepSurf [21] is a sur-
face-based deep learning approach that predicts protein 
binding pockets by combining surface-based represen-
tations. PointSite [22], a point cloud segmentation tool, 
identifies protein binding pockets using a deep learning 
method that leverages the local connectivity of atoms 
within the protein. DeepPocket [23] combines geometric 
structure method with deep learning method. It utilizes 
3D convolutional neural networks for the rescoring of 
pockets identified by Fpocket and further segments these 
identified cavities on the protein surface.

While protein binding pockets reside within the local 
structural domains of proteins, their characteristics are 
also influenced by the global protein structure. Thus, 
deep learning models should not focus solely on local 
information during feature learning but should also con-
sider global information. These above approaches utilized 
3D grids to represent protein structures and employed 
numerous 3D convolution operations for feature learn-
ing, which neglected the global information of the pro-
tein data. It is widely acknowledged that excessive use 
of convolutional computations can result in the model 
learning features that are overly concentrated and limited 
to specific locations. In response, we proposed a novel 
method which focused on reinforcing the learning of 
global information within protein 3D structure data. In 
our model, we incorporate V-Net [24], residual connec-
tions and Transformer encoder to concurrently capture 
both local and global information from protein data.

The 3D structure of proteins is widely recognized for its 
complexity, exhibiting significant dissimilarities among 
various protein structures. From a biological perspec-
tive, structural classification is crucial for comprehending 
the fundamental principles governing protein structure, 
function, and evolution [25]. Moreover, structure clas-
sification provides a valuable source of data for diverse 
analyses. However, in previous studies on protein pocket 
prediction, the impact of different structure classes 
formed by protein folding was not taken into account. 
Therefore, our study employs transfer learning to fine-
tune models for different categories of protein structures. 
Our approach involves protein structure classification 
using the SCOP (Structural Classification of Proteins) 
database [26], constructing a protein binding pocket pre-
diction model, and fine-tuning individual pocket predic-
tion models for each structural categories by employing 
distinct parameters. Simultaneously, we have developed a 
protein structural classifier to assist people in identifying 
the structural classification of proteins. Figure  1 shows 
the workflow of LVPocket prediction.

Methods
Dataset preparation
The training dataset for our study was derived from the 
sc-PDB database [27], which includes the data of pro-
teins, ligands, and pockets. The binding pockets are rep-
resented by 3D pocket shapes generated using VolSite 
[28]. The sc-PDB dataset (v.2017) consists of 17,594 pro-
tein–ligand complexes, corresponding to 16,612 protein 
structures and 5540 UniProt IDs. According to SCOP 
database, we classify the proteins into four groups based 
on the type of protein structure: (1) proteins that are 
predominantly alpha-helical (all α), (2) proteins contain-
ing predominantly beta-strands (all β), (3) proteins with 
alternating alpha-helices and beta-strands (α + β), (4) 
proteins with segregated alpha-helices and beta-strands 
(α/β), and the detail statistics are shown in Table 1. The 
Refined, SC6K and KV3K dataset are the test datasets 
which is to evaluate the generalization ability of our 
model. It  is  noteworthy that the protein binding pock-
ets in these three test datasets were all generated using 
different tools, but the same parameters were based on 
ligands. Which could well verify the scalability of our 
model. The introduction is as follows:

• Refined: It derived from DeepPocket, a compilation 
of Refined subsets from v2007, v2013, v2015, and 
v2016 from PDBbind database [29]. It contains 2793 
protein–ligand complexes and the protein binding 
pockets were generated by the VolSite. We classified 
the proteins into four classes based on their struc-
ture, as detailed in Table 1.

• SC6K: It also obtained from DeepPocket, which con-
sists of 6285 protein–ligand complexes from the PDB 
(Protein Data Bank) database [30] between January 
1, 2018, and February 28, 2020. The protein binding 
pockets in this dataset are generated by the IChem 
Toolkit [31]. The specifics of protein structural clas-
sification are elucidated in Table 1.

• KV3K: It was constructed by ourselves and curated 
directly from the PDB database, up until April 1, 
2023. Then, we filtered the collected dataset accord-
ing to the following criteria: (1) Removed duplicate 
data from the training dataset sc-PDB and other test 
datasets; (2) Eliminated complex polymeric proteins 
which contain more than 7 chains; (3) Excluded pro-
teins that had read errors detected by OpenBabel 
[32]; (4) Removed proteins for which a ligand could 
not be parsed by KVFinder Toolkit [33]. Subse-
quently, we utilized the KVFinder Toolkit to generate 
protein binding pockets, employing the same filters 
and site selection algorithm as those used with the 
sc-PDB dataset. The dataset comprises 3134 protein–
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ligand complexes, and detailed structural classifica-
tion statistics are presented in Table 1.

To prevent data leakage, we removed the same pro-
tein data from the sc-PDB dataset as the above three 
test datasets. Additionally, due to a reading error in 
Open Babel, certain proteins were discarded, the PDB 

ID of the removed protein can be found in Supplemen-
tary Information.

Finally, 15,860 protein structures, aligning with 5473 
UniProt entries, were employed for the training phase. 
Then we artificially select 1/10 data as the internal vali-
dation set during the training process and make sure all 
structures of a single protein must be in this set. This 
setup was necessary to avoid data leakage [17].

Fig. 1 The workflow of our work. The input file consists of the 3D protein structure, followed by a data cleaning process. Subsequently, we extract 
the atomic coordinates from the protein and construct feature tensors comprising 18 attributes derived from these coordinates. Following this, we 
use a classifier to determine protein structure classification and then select a fine-tuned model or a baseline model based on the protein structure, 
which then receives the feature tensor of protein as input. Lastly, the model generates the predicted binding pockets

Table 1 The classification statistics of SCOP in sc-PDB, Refined, SC6K and KV3K datasets

α β α and β α or β SCOP classify Original

scPDB 2061 2133 3847 5281 13,322 17,594

Refined 271 666 615 765 2472 2793

SC6K 339 214 497 877 1927 6285

KV3K 668 438 592 612 2310 3134
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Data processing
Prior to inputting the data into the model, we conducted 
operations on the 3D structural protein files, including 
the removal of water molecules and fragmented small 
molecules [23] to obtain pure protein structure data by 
using the Biopython library [34].

After cleaning the protein file, the prepared data under-
goes tfbio program [35] to extract features such as atomic 
type and atomic property. Table  2 presents the nine 
atomic type features utilized in this study, which include 
boron, carbon, nitrogen, oxygen, phosphorus, sulphur, 
selenium, halogen, and metal atoms, and the detailed 
description of the nine atomic property features, namely 
hybridization, hydrophobicity, partial charge, heter-
oatoms, non-hydrogens, acceptor, aromatic, donor, and 
ring. The 18 atomic features were used to depict a pro-
tein by the tfbio program. To acquire the atomic features 
of a protein in 3D space, the positional coordinates of 
the atoms within the protein need to be obtained. These 
coordinates are represented by a two-dimensional array 
of size N*3, where N represents the number of atoms in 
the 3D protein file, and 3 represents the three-dimen-
sional coordinates (x, y, z) of the atom. After determining 
the atom coordinates within the protein, the 3D protein 
structure was regarded as a 3D grid with dimensions of 
36 × 36 × 36 × 18. A 3D grid measuring 36 × 36 × 36 was 
positioned at the center of the protein, with a distance 
of 70  Å in each direction. The grid representation of 
protein is the same as Kalasanty and PUResNet. In this 
36 × 36 × 36 grid, each atom is assigned a unique value 
according to its properties at the corresponding voxel, 
while non-atomic voxels are set to 0. Consequently, the 
3D protein structure is represented by a tensor of size 
36 × 36 × 36 × 18, where each 36 × 36 × 36 3D tensor cor-
responds to an atomic feature. The 3D file of the protein 
binding pockets was represented using a same-sized 3D 
grid. For each voxel in the grid, a value of 1 was assigned 
if it belonged to a pocket, otherwise it was assigned 0.

Finally, the processed 3D protein gird data will be input 
to the training model, and the 3D grid data of binding 
pockets will be input to the model as labels.

Model Structure
LVPocket is constructed on the foundational framework 
of the V-Net model, incorporating concepts from resid-
ual connections and the Transformer [36] model. The 
V-Net model offers an end-to-end 3D image segmen-
tation approach that effectively address the significant 
imbalance between foreground and background voxels. 
In this context, we utilized the V-Net model to predict 
protein binding pockets. In order to mitigate the loss 
of original data features caused by an excessive num-
ber of convolutional layers, we have introduced residual 
connections. The intermediate tensor generated dur-
ing encoding is passed from the encoder to the decoder 
through the residual connection, enabling the decoder to 
more refer to the input information during decoding.

The initial V-Net model predominantly focused on 
localized feature extraction from the data. Consequently, 
we enhanced the encoder section by introducing an addi-
tional pathway involving a limited number of convolution 
operations. This augmentation aimed to extract global 
information from the original data. Recognized for its 
exceptional capacity to directly capture global data infor-
mation, the Transformer model surpasses conventional 
convolution operations. Therefore, we added two Former 
layers in our model, which combined 3D convolution 
with the encoder of transformer to maximize the extrac-
tion of global protein feature information. To balance 
data information concentration and computational com-
plexity, we placed two Former layers in the middle posi-
tion of the two encoder paths.

Diverging from the original Transformer encoder, our 
Former layer integrates a 3D convolutional layer with a 
kernel size of 1 × 1 × 1 to capture comprehensive global 
information. Since input tensor consist of 18 36 × 36 × 36 

Table 2 The nine atomic type features and nine atomic property features of proteins

Atom type Description Property Description

B Boron atom Hybridization The atom’s hybridization in the protein

C Carbon atom Hydrophobic The hydrophobicity and hydrophilicity of an atom

N Nitrogen atom Partial charge The partial charge of an atom

O Oxygen atom Heteroatoms The number of heteroatoms attached to an atom

P Phosphorus atom Non-hydrogens The number of non-hydrogens attached to an atom

S Sulphur atom Acceptor The non-acceptor and acceptor atoms in the protein

Se Selenium atom Aromatic The aliphatic and aromatic atoms in the protein

F、Cl、Br、I Halogen atom Donor The donor and non-donor atoms in the protein

Atomic number: 3,4,11,12,13,19 ~ 32,37 
~ 51,55 ~ 84,87 ~ 104

Metal atom Ring The atoms in and not in ring in the protein
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grids, we flattened the 36 × 36 × 36 tensor into one-
dimensional form to facilitate the computation of multi-
head attention. The formulas of multi-head attention are 
as follow:

The X is the input tensor, the Q, K, V represent the que-
ries, keys and values of the input tensor, and the dk repre-
sents the dimension of the Q, K, V. The headi represents 
the i-th attention head.

LVPocket consists of two primary components: an 
encoder and a decoder, as illustrated in Fig.  2, with a 
detailed structure. Firstly, the encoder section consists of 
two distinct pathways. The ‘L’ pathway on the left extracts 
global information by integrating former layer and 3D 
convolution operations. Conversely, the left section of 
the V-Net encoder focuses on capturing local protein 
information using abundant 3D convolution operations. 
Furthermore, an information exchange takes place 
between these two pathways. After undergoing 8 convo-
lutions in the encoder part of the V-Net and the former 

(1)Attention(Q,K ,V ) = softmax(
QKT

√

dk
)V

(2)headi = Attention(XQi, XKi, XVi)

(3)MultiHead(X) = Concat
(

head1, . . . . . . , headi
)

layer, the data is transmitted to the ‘L’ pathway. Then it is 
concatenated with the tensor passing though the former 
layer of the ‘L’ pathway. Subsequently, the ultimate output 
from the two encoder pathways is concatenated and used 
as the input for the decoder. These two encoder pathways 
enable the model to concurrently integrate global and 
local information pertaining the 3D protein structure.

Model training
We employ the Dice Loss function, derived from the 
Dice Coefficient, as the loss function [37]. Formula (4) 
illustrates the relationship between them. The Dice Coef-
ficient is a statistic used to assess the similarity between 
two samples by quantifying their overlap, with with a 
value range of [0,1]. Formula (5) presents its definition, 
where |X ∩ Y| represents the intersection of sets X and Y, 
and |X| and |Y| represent the number of elements in the 
respective sets. In the task of predicting protein binding 
pockets, |X | and |Y| correspond to the actual and pre-
dicted protein pockets, respectively. Formula (6) presents 
the detailed equation for the Dice Loss, in which y repre-
sents the predicted value of the model, t represents the 
actual value, and i, j, and k represent the three-dimen-
sional coordinates of the atom. The interference factor is 
represented by ɛ.

Fig. 2 The detailed model structure of LVPocket. The orange arrow signifies a 3D convolution operation with a kernel size of 5 × 5 × 5 and a prelu 
activation calculation. The green arrow represents a 3D convolution operation with a kernel size of 2 × 2 × 1 and a prelu activation calculation. The 
red arrow represents a 3D convolution operation with a kernel size of 1 × 1 × 1 and a sigmoid activation calculation. The purple arrow denotes a 3D 
convtranspose operation with a prelu activation calculation, and the dark blue arrow indicates the Former layer. The blue rectangle represents 
the data block, and the grey arrow represents the data transfer operation
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Throughout the training process of the baseline 
model, we employed the breakpoint continuation train-
ing method. The loss value on the internal validation set 
served as an indicator for the selection of hyperparam-
eters for the model. We fine-tuned the model by lever-
aging the pre-trained baseline model and incorporating 
SCOP classification data from the sc-PDB dataset.

When training the model, we used an NVIDIA A100 
GPU. The baseline model underwent training for 1800 
epochs, while the four SCOP models (all α, all β, α + β, 
α/β) were fine-tuned for 100, 200, 400, and 500 epochs, 
respectively. The batch size was set to 10, with each com-
putation round taking 105 s.

Evaluation metrics
Three main metrics are used to evaluate the performance 
of protein binding pocket detection algorithms. These 
metrics evaluate the algorithm’s ability in detecting the 
position and shape of the binding pockets. These metrics 
include:

• Distance to the center of the binding pocket (DCC) 
[17, 19, 23]. It is the distance between the center of 
the predicted binding pocket and the center of the 
real protein binding pocket. If the distance is less 
than 4  Å, it will be determined to be a successfully 
predicted pocket. We calculate the success rate of the 
entire prediction dataset by DCC. This is shown in 
Eq. (7).

(4)Dice Loss = 1− Dice Coefficient.

(5)Dice Coefficient =
2|X ∩ Y |

|X | + |Y |
.

(6)C
(

y, t
)

= 1−
2
∑

i,j,k

(

yi,j,k · ti,j,k
)

+ ε

∑

i,j,k

(

yi,j,k + ti,j,k
)

+ ε

.

(7)

Success Rate =
Number of pocket having DCC ≤ 4 Å

Total number of pockets

• Discretized volume overlap (DVO) [17, 19, 23]. It 
is the ratio between the volumetric intersection 
between the predicted (Vpbs) and actual binding site 
(Vabs) to their union. The volume is the set of voxels 
with a value of 1. We calculate it by the Jaccard index 
formula, as shown in Eq. (8).

• Distance to any atom of the ligand (DCA) [23]. It is 
defined as the minimum distance between the pre-
dicted pocket center and any atom within the ligand. 
Predictions with DCA ≤ 4 Å are considered success-
ful.

The SCOP classifier
The model structure of the classifier, along with evalua-
tion performance information, can be found in the Addi-
tional file.

Results and discussion
The comparison between baseline model and other 
methods
In order to comprehensively evaluate the performance of 
the model, we compared baseline model with three deep 
learning methods Kalasanty, PUResNet, and DeepPocket 
using the three aforementioned metrics on the Refined, 
SC6K and KV3K datasets. We employed open-source 
code and trained model files from these completed 
methods for predicting protein pockets. We inputted 
the protein data from the three test datasets into differ-
ent models for prediction, and then compared their pre-
dicted pockets with the actual binding pockets in the test 
datasets.

We conducted a comparison of DCC success rate and 
DCA success rate for both the methods on the Refined, 
SC6K and KV3K datasets, as detailed in Table  3. When 
DCC ≤ 4  Å, LVPocket attains the highest success rate 
among the three datasets. When DCA ≤ 4  Å, LVPocket 
demonstrates the highest success rate on the Refined and 

(8)DVO =
Vpbs ∩ Vabs

Vpbs ∪ Vabs

Table 3 The success rate of LVPocket and other methods when DCC, DCA ≤ 4 Å

Refined SC6K KV3K

DCC (%) DCA (%) DCC (%) DCA (%) DCC (%) DCA (%)

Kalasanty 58.06 71.75 45.70 73.51 63.45 71.76

PUResNet 60.56 69.93 61.93 78.07 64.95 72.87

DeepPocket 70.08 77.48 56.25 79.28 66.60 74.53

LVPocket 70.27 77.75 62.60 78.11 71.94 77.28
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KV3K datasets. On the SC6K dataset, its success rate closely 
approaches that of DeepPocket, outperforming other meth-
ods. DVO values were calculated for predicted pockets with 
DCC ≤ 4 Å. Table 4 displays the number of binding pockets 
predicted by different methods when DVO ≥ 0.4. A higher 
DVO value indicates a greater similarity between the pre-
dicted pocket shape and the actual pocket shape.

In general, the predictions of LVPocket are closer to 
real protein binding pockets in comparison to other 
methods. We believe that LVPocket captures more glob-
ally useful information through the introduction of 
another encoder path, and the Former plays an important 
role.

The ablation experiment and visualization comparison 
with V‑Net
In our initial endeavors, we utilized the V-Net model for 
the training of 3D structural protein data. Nevertheless, 
the model’s performance proved to be unsatisfactory. A 
thorough examination of the encoder section revealed 
an excessive number of convolutional layers. This con-
figuration caused the model to predominantly empha-
size local information within the 3D protein structure, 
neglecting global information. To address this issue, we 
introduced an additional pathway to the encoder, with 
the aim of enhancing its ability to capture global infor-
mation. Ultimately, we integrated a novel encoding path-
way into the V-Net model’s encoder section, resulting 
in a model structure shaped like ‘LV.’ Subsequently, we 
drew inspiration from the Transformer model and gained 
insights into its advantages in extracting global informa-
tion from data. We constructed a new layer, the Former 
layer, which is modified by the encoder of Transformer. 
To assess the effectiveness of the modifications to the 
V-Net, we conducted ablation experiments on the inter-
nal validation dataset, comparing them based on loss 
value, DCC, DCA, average DVO and predicted pockets 
count metrics. The internal validation dataset contains a 
total of 1586 entries data and the three models of V-Net, 
LV-Net(without Former layer) and LV-Net(with Former 
layer) predicted the number of binding pockets on the 
internal validation dataset to be 1460, 1520, 1583, which 
indicates the generation ability of LV-Net(with Former 

layer) in learning global information. The results of the 
ablation experiments demonstrated the effectiveness 
of our modifications and optimizations to the V-Net, as 
presented in Table 5.

Figure  3 provides a visualization comparison of bind-
ing pockets predicted by LV-Net (with Former layer) and 
V-Net on three complex proteins. LV-Net (with Former 
layer) demonstrates a comparative advantage when deal-
ing with the complex protein structures. Such as the pro-
tein 4Y08 (PDB ID), 7ENL (PDB ID) and 8CGT (PDB 
ID), the predicted pocket of LVPocket is coincident with 
the real pockets, but the predicted pocket of V-Net is far 
from the real pocket.

The comparison between baseline model and SCOP 
models
The SCOP models build upon the baseline model by fine-
tuning the model parameters for SCOP data in order to 
increase prediction specificity. We performed SCOP 
classification on the Refined, SC6K and KV3K datasets, 
employing SCOP models to predict protein pockets 
accordingly, and compared the performance in identify-
ing binding pockets with the baseline model on three test 
datasets.

The DCC success rate in all SCOP classifications are 
reported in Table 6, the fine-tuned model exhibits supe-
rior success rates to the baseline model when DCC 
is ≤ 4  Å. The DCC visual comparison of baseline model 
and other SCOP fine-tuned model are shown in Addi-
tional Fig. 3. Notably, the success rates of α/β classifica-
tions are inferior compared to other classes. We deduce 
that the reason for this is that the proteins in α/β class are 
more complex than others. We also calculated the DCA 
success rate metric on the baseline model and fine-tun-
ing model as presented in Table  7. Similarly, the SCOP 
fine-tuned models surpassing the baseline model, and 
the DCA visual comparison of LVPocket and SCOP fine-
tuned model are shown in Additional Fig. 4. Table 8 dis-
plays the number of the predicted pockets with baseline 
model and four fine-tuned models on the Refined, SC6K 
and KV3K datasets. It is evident that the performance of 
fine-tuned model has a certain improvement.

Table 4 The number of the predicted pockets with different 
methods when DVO ≥ 0.4

Refined SC6K KV3K

Kalasanty 24 92 473

PUResNet 922 1347 904

DeepPocket 315 284 634

LVPocket 1009 1380 870

Table 5 The results of ablation experiments

V‑Net LV‑Net (without 
Former layer)

LV‑Net (with 
Former layer)

LOSS 0.34 0.32 0.31

DCC 0.73 0.74 0.77

DCA 0.83 0.85 0.88

Average DVO 0.42 0.43 0.44

Pockets Count 1460 1520 1583
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In summary, a comparison with the baseline model 
demonstrating that after fine-tuning, the performance of 
the SCOP fine-tuned model significantly outperforms the 
baseline model. Notably, even in the most complex pro-
tein class α/β, fine-tuned model exhibits superior predic-
tions compared to the baseline model. The experiment 

comparing the baseline model and SCOP models aims 
to demonstrate our idea that variations among different 
protein folding structural classes affect protein binding 
pocket prediction. And we believe that our idea can also 
be applied in other concurrent methods.

Fig. 3 The comparison of the ability of dealing with complex proteins between LV-Net and V-NET. The blue pentagrams are the position of real 
protein binding pockets, the yellow triangles are the position of pocket predicted by LV-Net and the red dots are the position of pocket predicted 
by V-Net

Table 6 When DCC ≤ 4 Å, the success rate of baseline model and fine-tuned model

Refined SC6K KV3K

Base line (%) Fine‑tuned (%) Base line (%) Fine‑tuned (%) Base line (%) Fine‑tuned (%)

α 72.87 77.24 63.12 64.17 73.39 74.80

β 77.62 79.42 67.30 68.45 74.37 77.78

α and β 72.16 76.27 70.97 71.78 78.67 80.56

α or β 65.19 69.41 62.85 64.44 59.19 60.45

Table 7 When DCA ≤ 4 Å, the success rate of baseline model and fine-tuned model

Refined SC6K KV3K

Base line (%) Fine‑tuned (%) Base line (%) Fine‑tuned (%) Base line (%) Fine‑tuned (%)

α 77.38 80.01 70.17 71.43 79.19 80.48

β 84.69 86.20 75.81 78.07 77.16 80.72

α and β 81.51 85.98 81.14 83.40 83.73 85.53

α or β 70.21 72.77 80.76 81.07 65.06 66.56
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Application of transfer learning strategy
Our study stands out from previous approaches by con-
sidering the influence of protein secondary structure 
classification on dealing with the protein data. The chal-
lenge in learning model features is intricately linked to 
the complexity inherent in protein structures. To address 
this, we classified proteins into four SCOP classes, ena-
bling the model to discern distinctive features within 
each class. This approach significantly augments the 
model’s specificity. Our specific methodology involves 
fine-tuning a pre-trained baseline model using classi-
fied data. This process allows the model to focus on fea-
tures associated with a specific structural class, leading 
to improved prediction performance of model in that 
structural class. In some cases, the baseline model failed 
to accurately predict the positions of specific protein 
binding pockets, whereas the SCOP fine-tuned model 
excelled. As depicted in Fig. 4, for proteins 2WK6 (PDB 
ID), 1IGJ (PDB ID), 3G5K (PDB ID), and 3EB1 (PDB 
ID), the baseline model inaccurately predicted the bind-
ing pocket, while the fine-tuned model exhibited precise 
predictions. For proteins 4Z6H (PDB ID), 2V58 (PDB 
ID), 2WER (PDB ID), and 4B6R (PDB ID), although the 
baseline model generated a prediction pocket, it deviated 
significantly from the real pocket.

Considering this the method of transfer learning can 
be extended to protein data with other classification 
standards. For instance, in the task of predicting binding 
pockets for protein kinases (PK), the model can undergo 
fine-tuning using protein data, resulting in a highly spe-
cific pocket prediction model tailored for PK proteins.

Analysis of protein multi‑pocket prediction results
LVPocket possesses the ability to generate either a sin-
gle or multiple protein pockets for a given protein. Fig-
ure  5-a illustrates accurate prediction by LVPocket of a 
single binding pocket for the 1DKQ (PDB ID), aligning 
with the real pocket. In certain instances, LVPocket pre-
dicts two binding pockets for a protein, with one aligning 
accurately and the other not. However, we posited that the 
non-coinciding binding pocket may signify an undiscov-
ered novel binding pocket for the protein. This speculation 
arises from the acknowledgment that presently identified 
protein binding pockets are not exhaustive, as depicted 
in Fig. 5-b, Fig. 5-c, Fig. 5-d. Naturally, there are instances 
where both of LVPocket’s predicted pockets align perfectly 
with the two real pockets, as shown in Fig. 5-e, Fig. 5-f. In 
scenarios where LVPocket predicts multiple protein bind-
ing pockets, the presence of at least one predicted pocket 
coinciding with the real pocket holds greater significance. 
This is because if one predicted pocket aligns with the real 

Fig. 4 The visualization of the prediction pockets of baseline model and SCOP fine-tuned model. The green grid is the prediction pocket 
of fine-tuned model, the gray grid is the prediction pocket of baseline model and the red and blue spheres represent the real pocket in the protein

Table 8 The number of the predicted pockets with baseline model and four fine-tuned models when DVO ≥ 0.4

Refined SC6K KV3K

Base line Fine‑tuned Base line Fine‑tuned Base line Fine‑tuned

α 111 120 92 95 186 188

β 313 319 54 60 90 93

α and β 280 306 137 142 180 182

α or β 172 210 155 168 114 122
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pocket, it serves as evidence of LVPocket’s could accurately 
deal with this protein. Furthermore, the additional binding 
pockets predicted by LVPocket provide valuable reference 
points.

Conclusion
In this study, we introduced a innovative model struc-
ture for predicting protein binding pockets, incorpo-
rating the transfer learning to enhance the prediction 
performance on different protein structure. Comparisons 
with similar existing methods have demonstrated that 
heightened focus on global information in protein struc-
ture data enhances the predictive performance of the 
model. Our SCOP fine-tuned model exhibits significant 
improvements compared to the baseline model. While 
our model adeptly handles the 3D structures of intricate 
proteins, there remains room for refinement in predict-
ing binding pockets, particularly for complex polymeric 
proteins. Based on our study, we consider it is crucial 
to explore methods for enhancing the accuracy of pre-
dictions for complex polymeric proteins. Currently, our 
predicted protein binding pockets only include their 3D 
spatial coordinates. Our future research aims to identify 
the types of atoms suitable for placement at each position 
within the protein binding pocket.
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