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Abstract 
Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information 
in traditional laboratory notebooks or facilitating stylus-based structure entry on tablets or smartphones. However, 
the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition 
(OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) 
architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve 
the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder 
that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted 
features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic 
hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. 
A benchmark was performed using a real-world dataset of hand-drawn chemical structures to evaluate the model’s 
performance. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recogni-
tion accuracy compared to other approaches.

Scientific contribution 
The new DECIMER model presented here refines our previous research efforts and is currently the only open-source 
model tailored specifically for the recognition of hand-drawn chemical structures. The enhanced model performs 
better in handling variations in handwriting styles, line thicknesses, and background noise, making it suitable for real-
world applications. The DECIMER hand-drawn structure recognition model and its source code have been made avail-
able as an open-source package under a permissive license.
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Graphical Abstract

Introduction
Humans have used hand-drawing and hand-writing for 
most of our cultural history to create art and capture 
information. Digitising graphics is common, but captur-
ing their deeper meaning is much more challenging. With 
the advent of so-called deep learning algorithms, the 
interpretation of images has seen considerable advances, 
ranging from the interpretation of medical images to the 
annotation of personal photo collections.

A key application of deep learning methods in chem-
istry is mining printed and hand-written documents for 
information on chemical compounds. Mining of past 
publications, for example, can augment present open-
access databases [1]. While this information can often 
be found in printed literature, it is typically presented 
in unstructured, human-readable formats like text and 
images. Manually curating and organising this informa-
tion to fill the database gaps is error-prone and time-
consuming [2]. Therefore, automation is necessary to 
improve accuracy and efficiency [3]. A key task is detect-
ing and interpreting chemical structure depictions to 
translate them into machine-readable formats, com-
monly called Optical Chemical Structure Recognition 
(OCSR) [4].

Over the past few years, deep learning methods have 
been used extensively to conduct OCSR for detecting 
and converting chemical structure depictions from 
printed literature [4, 5]. With improvements in com-
puter vision and language models, the field has seen 
a lot of development [6]. Molecular structures can be 
represented in images in various ways, using many dif-
ferent drawing styles. When representations of a vari-
ety of depiction styles are included in the training data, 
a data-driven deep-learning approach can be applied 
to reach a high degree of robustness and flexibility. 

Rule-based OCSR algorithms that are not based on 
deep learning have been shown to lack robustness and 
tend to fail when small distortions are added to the 
images in common benchmark datasets [7].

In addition to mining chemical information from 
printed literature, information can also be found in 
hand-written laboratory notebooks that were never 
before attempted to be digitised and mined for chemi-
cal structure information. In these notebooks, chemical 
structures are typically manually drawn, which means 
there is an even higher degree of diversity in how 
molecular structures are depicted. Unless the chem-
ists choose to publish their novel findings together with 
related information in a publication, these hand-drawn 
structures are never converted into machine-readable 
formats. Recognising and interpreting hand-drawn 
chemical structures is challenging due to the variety of 
drawing styles and the complexity of each individual’s 
handwriting [8, 9]. Therefore, it is crucial to develop 
accurate tools for recognising and digitising hand-
drawn chemical structures. Digitising hand-written 
chemical structures enables high-quality data-driven 
research and preserves information for future use.

Like hand-written text recognition, hand-drawn 
chemical structure recognition can be categorised into 
online and offline recognition tasks [10]. Online chemi-
cal structure detection primarily denotes converting a 
chemical structure drawn on a digital medium, such as 
a tablet or personal computer, into a machine-readable 
format in real-time. If the detection is inaccurate, the 
user can adjust their drawing style to make the sys-
tem predict the molecule correctly. In contrast, offline 
chemical structure detection predominantly deals with 
previously drawn chemical structure images. These 
images exhibit a wide array of drawing styles, making it 
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considerably more challenging to recognise them with 
high confidence [11].

Taking these considerations into account, we present 
an advanced deep-learning method for accurate hand-
drawn chemical structure recognition. We introduce 
an encoder-decoder model that combines the Efficient-
NetV2 Convolutional Neural Network (CNN) with a 
Transformer Decoder-only model. This combination 
aims to identify and transform hand-drawn chemi-
cal structures into a machine-readable file format with 
higher confidence. Our approach builds upon the DEC-
IMER image transformer [6, 12], a deep learning-based 
OCSR method for extracting chemical structural data 
from printed literature. There is a growing interest in 
identifying hand-drawn chemical structure depictions, as 
this has the potential to streamline the automated digiti-
sation of laboratory notebooks [13].

OCSR methods can be broadly categorized into two 
main groups: rule-based methods and deep learning-
based methods [4]. Rule-based approaches typically 
involve a systematic sequence of processing steps, includ-
ing vectorisation, atom detection, bond classification, 
Optical Character Recognition (OCR) [14], graph com-
pilation, and post-processing. Various rule-based tech-
niques, such as OSRA [15], Imago [16], and MolVec [17], 
follow a procedure along those lines. In 2021, Clévert 
et al. showed that the performance of the openly available 
rule-based systems on commonly used benchmark data-
sets decreases drastically when slight image distortions 
are introduced [7]. Apparently, the parameters in the 
rule-based procedures can be overfit to specific depiction 
styles and do not necessarily perform well on all types of 
chemical structure depictions.

In recent years, deep learning-based OCSR methods 
have become increasingly popular [5], driven by advance-
ments in computer vision and powerful hardware for 
training complex models. Deep learning approaches 
excel in processing chemical structure depictions and 
can effectively process even distorted representations [7]. 
This capability provides a competitive edge when devel-
oping OCSR methods for hand-drawn chemical struc-
tures. Since deep learning algorithms can detect more 
complex patterns, they are an excellent choice for OCSR 
applications. Additionally, these methods can be trained 
with large amounts of diverse data, resulting in improved 
accuracy and reliability. Deep learning methods encom-
pass a range of both closed-source approaches, such as 
MSE-DUDL [18], MICER [19], Image2SMILES [20], 
ABC-Net [21], Image-to-Graph Transformers [22], 
IMG2SMI [23], Molecular-InChI [24], and DeepOCSR 
[25]. On the other hand, several open-source deep learn-
ing algorithms have been published, including ChemGra-
pher [26], DECIMER Image Transformer [12], ChemPix 

[11], SwinOCSR [27], Img2Mol [7], MolScribe [28], and 
MolGrapher [29].

While deep learning methods were initially developed 
for broad applicability across various types of chemical 
structure depictions, ChemPix was explicitly designed to 
recognise hand-drawn chemical structure drawings. One 
notable constraint of ChemPix is its limited functionality, 
as it exclusively handles drawings of hydrocarbons and is 
unsuited for other classes of chemical structure represen-
tations. In our recently published study about the DECI-
MER Image Transformer [6], we provided evidence to 
show that even though our deep learning model was not 
explicitly trained on hand-drawn chemical structure rep-
resentations, it exhibits a (limited) capability to interpret 
them. Compared with ChemPix, our model can recog-
nise various hand-drawn representations of small mol-
ecule structures that go beyond those of hydrocarbons. 
Furthermore, our findings suggest that the recognition 
performance of this model could be enhanced by training 
it on a dataset that contains a wide range of hand-drawn 
chemical structure images.

This work presents a working solution for translating 
hand-drawn chemical structures into SMILES represen-
tations of the depicted molecules [30]. It was specifically 
trained using artificial data generated by the open-source 
structure depiction toolkit RanDepict [31]. Its synthetic 
hand-drawn feature is capable of producing chemical 
structure representations that mimic hand-drawn chemi-
cal structure drawings [6]. The trained model has been 
benchmarked against the only available diverse hand-
drawn chemical structure dataset, DECIMER hand-
drawn images [32]. The approach followed here includes 
no hard-coded rules and is entirely data-driven. The 
model has been trained and tested only on openly avail-
able data sources.

Using this method, we can achieve recognition per-
formance with high confidence in hand-drawn chemi-
cal structure depictions. Furthermore, we improved the 
accuracy of the recognition results by enhancing the 
DECIMER Image Transformer model. To determine 
which encoder-decoder model performs best on the same 
data set, three different models with different configura-
tions of encoder-decoder architectures have been inves-
tigated in this study. Subsequently, the best-performing 
model was trained on datasets of hand-drawn-like chem-
ical structure depictions of four different sizes generated 
using RanDepict. Finally, the best-trained model was 
benchmarked against other deep learning-based OCSR 
methods using a hand-drawn chemical structure dataset. 
Compared to other openly available OCSR applications, 
our approach produces better results, with an accuracy 
of 73.25% and a Tanimoto average of 0.94. This approach 
can be used to develop accurate and robust OCSR 
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pipelines for real-world applications. Our hand-drawn 
chemical structure detection model, which we call the 
DECIMER hand-drawn model, has been incorporated 
into the DECIMER module and made publicly available. 
These resources are provided under permissive licenses 
and accompanied by comprehensive documentation.

Methods
Here, we introduce an improved version of the DECIMER 
model designed to recognise hand-drawn chemical struc-
tures. The model’s architecture is illustrated in Fig. 1. The 
final model consists of an EfficientNetV2-M encoder 
combined with a Transformer Decoder, specifically uti-
lising only the decoder component of the transformer. 

We employed the EfficientNet-V2 M model as a feature 
extractor by excluding the final fully connected layer 
and utilising the features generated by the last convolu-
tional layer. The dimensionality of the encoder output 
is (256, 512), which means it has a spatial dimension 
of 16 × 16 and 512 channels. This spatial feature map is 
reshaped into a sequence of length 256, where each ele-
ment is a 512-dimensional vector. The reshaped encoder 
output serves as the input to the transformer decoder. 
The transformer decoder generates an output sequence 
token-by-token, attending to the encoded image features 
and the previously generated tokens. Through this pro-
cess, the encoder analyses the chemical structure images 

Fig. 1 DECIMER hand-drawn chemical structure recognition OCSR model
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to generate a 2-dimensional feature vector, which the 
decoder subsequently transforms into a SMILES string.

Model selection
This work presents an analysis of three different encoder-
decoder models. All models feature a CNN encoder 
based on EfficientNet and a decoder based on the Trans-
former model [33]. The first model uses the original 
implementation from our recent publication [6]. It con-
tains an EfficientNetV2-M [34] model as an encoder and 
a Transformer model as a decoder. The second model 
uses an EfficientNetV1-B7 [35] encoder and a Trans-
former decoder. For the third model, EfficientNetV2-
M was used as the encoder. In models 2 and 3, only the 
decoder part of the Transformer model was utilised, 
while model 1 uses the complete Transformer model. The 
Transformer models have six decoder layers, eight atten-
tion heads, and an embedding dimension of 512 param-
eters. A detailed summary of these models can be seen 
in Table  1. All three models were implemented using 
Python and TensorFlow. The best-performing model was 
selected as the final model (see Table 1).

Training the models
In this study, we trained all our models on the Google 
Cloud Platform using the latest Tensor Processing Units 
(TPUs)—V4. TPUs were selected for this study based on 
our prior experience, which demonstrated significantly 
faster training times when compared to in-house Graphi-
cal Processing Units (GPUs). TensorFlow was the back-
end framework, leveraging the TensorFlow distributed 
training Application Programming Interface (API). The 
TPU V4 has enabled us to train larger models with more 
extensive training datasets, yielding improved results. 
Moreover, TPUs are more energy-efficient than GPUs, 
facilitating more effective resource utilisation during 
training.

Testing the models
The initial models were tested using common OCSR 
benchmark datasets to determine which model per-
formed best. It was then subjected to further testing later 
on (see below). The models were primarily evaluated for 
their ability to recognise chemical structure depictions 

accurately. This evaluation was based on two key met-
rics. First, we conducted a one-to-one string comparison 
using Canonical SMILES for both the original and pre-
dicted SMILES representations. This analysis provided 
insight into how effectively each model predicts chemi-
cal structures from input images of chemical structure 
depictions, with even a single character mismatch in 
the predicted SMILES string considered as an incorrect 
prediction.

Additionally, a Tanimoto [40] similarity calculation 
was performed using PubChem fingerprints, employing 
the Chemistry Development Kit (CDK) [41] implemen-
tation, to compare the original and predicted molecular 
structures. This approach helped to assess the similarity 
between the predicted chemical structure and the origi-
nal one, even when the model’s SMILES prediction was 
inaccurate. This method is particularly valuable because 
not all predicted molecules precisely match the original, 
and a quantitative measure aids in understanding the 
model’s performance in interpreting chemical structure 
depictions. As a result, this comprehensive evaluation 
approach enhances our understanding of the model’s 
generalisation capabilities.

Datasets
This section discusses the data sources and the genera-
tion of images and textual molecular representations for 
the datasets used for training the models.

Selection of molecules for the datasets
For training and testing models 1 to 3, the latest 
ChEMBL-32 database was utilised. ChEMBL [42] data-
base version 32 was acquired in the SDF (Structure-
Data File) format. The dataset was processed using the 
CDK SMILES parser functionality to generate canoni-
cal SMILES representations preserving stereochemical 
information. These SMILES strings and their correspond-
ing ChEMBL IDs were then stored in a text file. After 
analysing the frequency distribution of the length of the 
SMILES strings, those exceeding 300 characters were 
removed to eliminate rare, longer SMILES strings. The 
resulting dataset consisted of a total of 2,290,069 SMILES 
strings. The RDKit [43] implementation of the MaxMin 
algorithm [44] was used to select the training and 

Table 1 Configurations of the three tested DECIMER Image Transformer models

Model ID Encoder Decoder Batch size Epochs Average 
training time 
per epochType Architecture Type Architecture

1 EfficientNet-V2 M Transformer Encoder-Decoder 512 25 36 min

2 EfficientNet-V1 B7 Transformer Decoder only 512 25 57 min

3 EfficientNet-V2 M Transformer Decoder only 512 25 34 min
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validation datasets. This algorithm enables the selection 
of diverse data points for both the training and validation 
data sets. Consequently, the validation set can encom-
pass a chemical space that closely aligns with the training 
dataset, which will result in a thorough evaluation. This 
resulted in training and a test dataset of 2,187,669 and 
102,400 molecules, respectively. From the resulting train-
ing dataset, a subset of 1,024,000 molecules were picked 
for training the models in this experiment. These were 
used to train models 1 to 3 and later determine which 
model was suitable for further experiments.

Similarly, the whole PubChem [45] dataset was pro-
cessed to select nearly 100 million molecules for training 
and 100,000 data points for validation during training. 
Subsets of data were later used to train and test the best-
performing model for hand-written structure recognition 
from this dataset.

Training dataset generation
Various chemical structure depictions of the selected 
SMILES strings were generated using the RanDepict 
toolkit [31]. The images were created with a resolu-
tion of 512 × 512 pixels per image. Each data point was 
represented by two 8-bit PNG images—one with and 
one without any image augmentations, excluding hand-
drawn-like augmentations. The purpose of introduc-
ing augmentation on the images is to mimic real-world 

scanned pages and to add more complexity. The mod-
els were trained using a dataset consisting of 2,048,000 
images. These generated images were used as the input 
for the encoder, and the SMILES strings were defined as 
the desired decoder output. The SMILES strings were 
split into meaningful tokens using the Keras tokenizer. 
The resulting tokenisation scheme splits the input after 
heavy atoms (such as "C" and "O"), open and closed 
brackets (such as "(" and ")"), bond symbols (" = " and "#"), 
special characters(“.”, “-”,” + ”,”\”,”/”,”@”,”%” and”*”), as well as 
after every single-digit number. A start token " < start > " 
and an end token " < end > " were added to the beginning 
and end of each sequence, respectively. Each tokenised 
string was also padded using " < pad > " tokens.

The generated images with their corresponding 
tokenised SMILES strings were combined and converted 
into small chunks of TFRecord files of about 100  MB 
each. They were then moved to a Google Cloud bucket 
for training. Datasets were converted into TFRecord files 
primarily for training on Google Cloud using Tensor Pro-
cessing Units (TPUs).

Similarly, the PubChem dataset was used to gener-
ate the training dataset for the final model. Using the 
selected SMILES strings, hand-drawn-like synthetic 
chemical structure depictions were generated using 
RanDepict (see Fig. 2). Again, the image size was set to 
512 × 512, and the generated data and the tokenised 

Fig. 2 Examples of hand-drawn-like synthetic chemical structure depictions created for the Caffeine molecule through the use of RanDepict
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SMILES were saved into TFRecord files and moved to a 
Google Cloud bucket for training. Here, every molecule 
was depicted three times without augmentations and 
once with augmentations.

Training datasets
Training dataset to  train different model architec-
tures For training different model architectures and 
selecting the best one, a subset of 1 million data points 
was randomly selected from the curated ChEMBL data-
base, as mentioned in the section on molecule selection 
for the datasets. This subset of 1 million data points was 
used to train various combinations of model architectures 
and identify the best-performing model through an evalu-
ation process.

Training datasets for  DECIMER-Hand drawn 
model Two training datasets were generated from each 
ChEMBL and PubChem molecular structure datasets to 
further train the finalised model. Table 2 summarises the 
dataset sizes and the number of images with and without 
augmentations.

Datasets 1 and 2 are derived from the ChEMBL 
database and contain the same number of molecules 
(2,187,669). These molecules were selected as mentioned 
above. The difference between training datasets 1 and 2 is 
the number of images generated for each molecule. Data-
set 1 has one image with and one image without augmen-
tations per molecule, while Dataset 2 has four images 
without augmentations and two images with augmenta-
tions per molecule.

Datasets 3 and 4 are derived from the PubChem data-
base. Subsets were filtered out using the MaxMin algo-
rithm from the nearly 100 million molecules in the 
PubChem dataset. For Dataset 3, a subset of 9,510,000 
molecules was selected. For Dataset 4, a larger subset of 
38,040,000 molecules was selected, which also incorpo-
rates all the molecules from Dataset 3. For each molecule 
in Datasets 3 and 4, three images without augmentations 
and one with augmentations were generated.

There was no change in the number of molecules 
between datasets 1 and 2; however, there was a notable 

increase in the number of images depicted using each 
molecule. During the transition from Dataset 2 to Data-
set 3, both the quantity of molecules and the number of 
depictions grew. Furthermore, as the number of mol-
ecules expanded from Dataset 3 to Dataset 4, there was a 
corresponding increase in the volume of depicted images.

Testing datasets
The OCSR benchmark datasets were used to test the dif-
ferent model architectures in our first experiment. These 
are listed below,

• JPO: a set of 450 chemical structure images from the 
Japanese Patent Office [36]

• CLEF: a set of 992 chemical structure images from 
the Conference and Labs of the Evaluation Forum 
test set [37, 38]

• USPTO: a set of 5719 chemical structure depictions 
from the US Patent Office [36]

• UOB: the dataset of 5740 chemical structure depic-
tions compiled by the University of Birmingham [39]

As part of testing the finalised model and assessing 
whether a model can improve with increasing dataset 
size, the DECIMER-Hand drawn images benchmark 
dataset [32] was used.

Training implementation of DECIMER‑Hand Drawn model
The models were trained using TensorFlow version 
2.13.0. After the initial experiment, the final model was 
the Model 3 implementation. It consisted of an encoder 
with an EfficientNetV2-M model using default configu-
rations and a transformer decoder with 6 layers (refer to 
Fig.  1). These models underwent training for 25 epochs 
on a TPU V4-128 pod slice. Training employed focal loss 
and the Adam optimizer, complemented by a custom 
schedule for the learning rate, as specified in the original 
transformer paper [33]. A dropout rate of 0.1 was also 
used. To ensure compatibility with the encoder’s settings, 
the images were preprocessed to attain a size of 512 × 512 
before being fed into the encoder.

Table 2 Training dataset summary

Dataset ID Database No. of molecules No of images Without 
augmentations

No of images with 
augmentations

Total 
number of 
images

1 ChEMBL 2,187,669 2,187,669 2,187,669 4,375,338

2 ChEMBL 2,187,669 8,750,676 4,375,338 13,126,014

3 PubChem 9,510,000 28,530,000 9,510,000 38,040,000

4 PubChem 38,040,000 114,120,000 38,040,000 152,160,000
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Results and discussion
This section analyses the three models we first selected to 
identify which model architecture yields the best results 
on all benchmark datasets. Subsequently, the best-per-
forming model architecture was selected for the next 
experiment to determine whether the model’s accuracy 
could be improved with more training data.

Testing different model architectures
The performance of the three models on real-world 
images was evaluated using the OCSR benchmark data-
sets listed under testing the models. The model perfor-
mance is presented in Table  3, with ’P’ representing 
the percentage of identical predictions and ’T’ denot-
ing the average Tanimoto similarity calculated across 
all structures in a dataset. This table serves as the basis 
for determining the best-performing model, which was 
considered a candidate for subsequent stages of the 
experiment.

Model 1’s performance is poorer than Models 2 and 3: 
apparently, the usage of the entire Transformer model as 
a decoder leads to a reduction in performance compared 
to the decoder part of the Transformer architecture 
alone. By using only the Transformer decoder for decod-
ing and removing the encoder part of the transformer, 
we achieved much better performance on all the OCSR 
benchmark datasets. Model 3 slightly outperforms Model 
2. This is due to using EfficientNetV1 in Model 2, whereas 
Model 3 uses an updated architecture, EfficientNetV2. In 
general image recognition tasks, EfficientNetV2 outper-
forms EfficientNetV1 [34]. Additionally, due to the com-
pact architecture of EfficientNet-V2, Model 3 could train 
approximately 2 times faster than Model 2 (see Table 1). 
After assessing the performance metrics and the training 
times, the model architecture of Model 3 was picked for 
further experiments.

Improvement in model prediction with increasing dataset 
size
Here, the improvement of the accuracy of the model 
predictions with an increase in the training dataset size 
and the introduction of hand-drawn-like images in the 

training data was assessed. With the hand-drawn-like 
structure depictions, the complexity of the representa-
tions of the chemical structures was increased compared 
to the previously used clean depictions.

In this part of the experiment, we used the molecule 
datasets based on ChEMBL and PubChem described 
under methods in datasets. All of the images used for 
training the models in this experiment were generated 
by RanDepict, which generated synthetic hand-drawn 
images for training the models. The models were then 
tested on a dataset of real-world images to assess their 
performance. The DECIMER—Hand-drawn images data-
set [16], was used to evaluate the models’ performance. 
The dataset consists of 5088 chemical structure drawings 
sketched by 23 volunteers. The drawings reflect a wide 
range of drawing styles. The dataset helps us to under-
stand better how well the model that has been exclusively 
trained on artificially generated training data performs 
on real hand-drawn chemical structure images.

Performance on Hand‑drawn dataset
After training each model, it was tested against the DEC-
IMER hand-drawn chemical structure images dataset for 
accuracy and similarity. The number of valid predictions, 
i.e. the returned SMILES string was syntactically valid 
and could be parsed into a molecular structure, is also 
measured. Every generated SMILES string is validated by 
parsing it through the CDK SMILES parser. If the pars-
ing process fails, the SMILES string is marked as invalid. 
Table 4 provides the final average values for overall pre-
dictions by comparing each predicted structure with the 
original structure.

As expected, there is a significant improvement in per-
formance by tripling the amount of training data from 
Model 1 via Model 2 to Model 3, reaching a high percent-
age of valid predictions above 99%, a substantial accuracy 
of about 70%, and an average Tanimoto similarity of 0.93, 
indicating similar input and output structures. However, 
the next quadrupling of the training data for Model 4 only 
leads to a slight improvement in performance compared 
to Model 3, suggesting that the potential of the selected 
training data has been exhausted and that in the future 

Table 3 DECIMER Image Transformer model performance on OCSR benchmark datasets compared by identical predictions (P) and 
Tanimoto similarity (T)

The highlighted results in bold specify the best performing result in each benchmark dataset

JPO CLEF USPTO UOB Average

P (%) T P (%) T P (%) T P (%) T P (%) T

Model 1 47.78 0.86 62.00 0.94 56.78 0.95 78.55 0.97 61.28 0.93

Model 2 64.00 0.94 60.58 0.94 60.29 0.97 86.17 0.98 67.76 0.96

Model 3 62.67 0.94 63.51 0.95 64.01 0.97 86.88 0.99 69.27 0.96
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the diversity of the training data needs to be increased to 
address the weaknesses of the model specifically.

Performance comparison with other available methods
The final best model’s performance on the DECIMER 
Hand-Drawn Molecules dataset was compared with 
other available open-source OCSR methods. The tools 
were evaluated and compared by executing them on 
real-world hand-drawn images from the DECIMER 
Hand-Drawn dataset to provide valuable insights into 
the applicability of the available tools for processing 
real hand-drawn structure depictions. The summarised 
results of these comparisons are presented in Table  5. 
Our study incorporates both rule-based and deep-learn-
ing methods.

As can be seen from the above results, the DECIMER 
model performs much better overall than other deep 
learning models. According to the results, the rule-based 
methods perform significantly worse than all the cur-
rently available deep learning methods. It is primarily due 
to the handcrafted rules that were developed for chemi-
cal structure representations found in printed literature, 
as when we deployed them on a hand-drawn dataset, 
they were not able to function properly since they are not 
as flexible as the deep learning tools when it comes to 
processing hand-drawn chemical structures. While deep 

learning models tend to display a higher level of robust-
ness on this dataset, the number of valid predictions gen-
erated by these models is significantly higher than those 
generated by rule-based methods since deep learning 
models are likely to pick up on patterns, contexts and 
subtleties in the hand-drawn structures since they are 
more robust to noise and variability because they learn 
the patterns directly from the training data rather than 
having hardcoded rules. As a result, they can take advan-
tage of a lot more contextual data in the input to make 
predictions.

Conclusion
This study introduces an enhanced encoder-decoder 
model designed to recognise hand-drawn chemical struc-
tures. Leveraging recent advancements in computer 
vision and natural language processing, our model dem-
onstrates significantly improved accuracy, particularly 
when trained on extensive datasets which contain syn-
thetic hand-drawn images generated using RanDepict. 
Comparative analysis with already available open-source 
methods exhibits highly competitive performance when 
converting hand-drawn chemical structure depictions 
into computer-readable file format.

The DECIMER model for hand-drawn chemical struc-
ture recognition is now seamlessly integrated within the 

Table 4 Model performance with increasing dataset size against benchmark dataset

Model ID Dataset ID Total number of 
images

Percentage of valid 
predictions (%)

Model accuracy (%) Average 
Tanimoto 
similarity

1 1 4,375,338 96.21 5.09 0.490

2 2 13,126,014 97.41 26.08 0.690

3 3 38,040,000 99.67 70.34 0.939

4 4 152,160,000 99.72 73.25 0.942

Table 5 DECIMER model performance compared with all available open-source methods

OCSR tool Method Percentage of valid predictions 
(%)

Model accuracy (%) Average 
Tanimoto 
similarity

OSRA [15] Rule-based 54.66 0.57 0.17

Imago [16] Rule-based 43.14 2.99 0.22

MolVec [17] Rule-based 71.86 1.30 0.23

ChemGrapher [26] Deep Learning 69.56 N/A 0.09

Img2Mol [7] Deep Learning 98.96 5.25 0.52

SwinOCSR [27] Deep Learning 97.37 5.11 0.64

MolScribe [28] Deep Learning 95.66 7.65 0.59

MolGrapher [29] Deep Learning 99.94 10.81 0.51

DECIMER.ai [6] Deep Learning 96.07 26.98 0.69

DECIMER Deep Learning 99.72 73.25 0.94
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DECIMER modules and will soon be available to use in 
the Decimer.ai platform. By providing both the model 
and its source code to the broader public, we intend to 
make a substantial contribution to the field of chemical 
data mining. Furthermore, it will facilitate the develop-
ment of innovative applications and tools for extracting 
valuable information from laboratory notebooks.
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