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Abstract

One challenge that current de novo drug design models face is a disparity between the user’s expectations

and the actual output of the model in practical applications. Tailoring models to better align with chemists'implicit
knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-
based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists

that enables the collection of standardized and chemistry-specific feedback. Met i s is a Python-based open-

source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feed-
back on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly
interface for annotating preferences and specifying desired or undesired structural features. By providing chemists
the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit
knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents.
The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform
where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining
de novo design strategies. Met i s integrates with the existing de novo framework REINVENT, creating a closed-loop
system where human expertise can continuously inform and refine the generative models.

Scientific contribution

We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on sub-
structures and properties of small molecules. This tool can be used to learn the preferences of chemists in order

to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs

and projects and enables direct integration into de novo REINVENT runs. We believe that Met i s can facilitate the dis-
cussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking

or disliking a molecule.
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Introduction

De novo drug design, a process of creating novel molecu-
lar structures with desired biological properties, stands
as a cornerstone in the automation of the drug discovery
process [1]. It often makes use of reinforcement learning
to iteratively optimize molecules to achieve predefined
objectives, such as efficacy and safety profiles [2, 3]. Rein-
forcement learning (RL) is a paradigm in machine learn-
ing that involves training agents to make sequences of
decisions in an environment to maximize a cumulative
reward. RL has demonstrated remarkable success across
a wide range of applications outside of chemistry, ena-
bling agents to learn highly complex behaviors [4—6]. A
key to the successful training of an RL agent lies in the
design of a well-defined reward function, which serves
as a guide for the agent to achieve desirable behaviors.
Without a carefully crafted reward function, the agents
might not converge to desired behaviors. Additionally,
there is a risk of reward exploitation and hacking, where
the agent may find unintended shortcuts to maximize its
rewards, leading to an agent maximizing the reward in an
undesirable fashion [7, 8].

Creating a well-specified reward function is not only
difficult as it requires a deep understanding of the task
at hand, but the translation of that domain expertise into
a parametric function used to compute the reward can
pose a challenge. In many cases, domain experts struggle
with the translation part, as they have a good idea of what
an acceptable solution looks like, but they are not able to
translate this into an explicit function [9]. This leads to
the researcher having to spend extensive time on reward
engineering, to create a reward function that enables the
agent to learn the desired behavior.

One solution to the problem can be found in Human-
in-the-loop (HITL) Reinforcement Learning.[10] Here
somewhere in the training loop, human behavior or
feedback is used to better align the agent’s behavior with
the human’s expectations. An effective solution to that
problem involves learning the policy implicitly through
methodologies such as imitation learning and behavioral
cloning [11, 12]. In these approaches, the agent learns by
imitating the actions of an expert, allowing it to grasp the
nuances of the task without explicitly defining a reward
function. An alternative strategy is inverse reinforce-
ment learning, by inferring the underlying reward struc-
ture from observed expert behavior, the system learns
a reward model that should match more closely with
the expectation [13]. Lastly, preference learning can be
used to actively incorporate human feedback into the RL
training loop [9]. This integration can occur directly, as
demonstrated by methods like Deep Preference Optimi-
zation (DPO) [14], or indirectly through the creation of
a reward model based on human feedback [15]. In most
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applications, the user ranks two or more outputs by their
preferences and iteratively the model aligns with the
expectations of the user

In many popular de novo drug design frameworks, the
chemist must also express his preferences in the form of
a parametric reward function, that describes the prop-
erties that chemists expect the generated molecules to
have [16]. Chemists can struggle in defining well-speci-
fied reward functions. Organic and medicinal chemists
are often not overly familiar with potential molecular
descriptors that can be used to create a reward function.
Additionally, they are not trained to think about mol-
ecules as a sum of individual properties. Rather they eval-
uate the quality of molecules more holistically by looking
at the structural formula. This leads to a situation in
which the reward functions produce molecules that are
not aligned with the ideas of the chemists, and as a result,
extensive manual cleaning and filtering of the generated
molecules is necessary.

In generative chemistry, preference learning has been
applied to mitigate the underspecification of reward func-
tions. For instance, projects like MolSkill leverage human
preferences to guide the generation of molecules [17]. A
different study uses the liking or disliking of molecules to
extract which property ranges are acceptable to chemists
[18]. However, chemists often possess nuanced opinions
about molecules, extending beyond the binary decisions
of liking or disliking. They can provide valuable and spe-
cific feedback on properties and substructures, enabling
a more nuanced understanding of the desired molecular
characteristics. Collecting such specific feedback cannot
only align the de novo design agent with human prefer-
ences, but in the long-term one can elucidate the implicit
knowledge and experience of the chemist.

To capture this nuanced feedback from chemists, we
have developed Metis, a user interface that facilitates
the integration of specific and detailed human feedback
into the RL process. Metis enables chemists to commu-
nicate their preferences, concerns, and insights, thereby
enhancing the RL agent’s ability to generate molecules
that align more closely with the desired properties and
characteristics. Through Metis, we aim to provide an
interface that enables practical Human-in-the-loop de
novo drug design, ensuring a more effective and collabo-
rative approach to molecular generation. To our knowl-
edge Metis is the first GUI that allows the collection of
such detailed feedback. MolSkill uses a Javascript-based
UI in which two molecules are shown, the only input that
can be given by the user is which of the molecules they
prefer. In the work by Sundin and colleagues [18], a web
application built with Streamlit was built called Mo/Wall.
Here multiple molecules are shown to the user, each
of which they can rank on a Likert scale. Both of these
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Fig.1 View of the Metis GUI

GUIs do not allow feedback on specific properties or
substructures.

With Metis, our objective is to provide a first-of-its-
kind interface that enables practical Human-in-the-loop
(HITL) de novo drug design. Additionally, it should serve
as an initial step for research surrounding the method-
ology of HITL drug design, ultimately ensuring a more
effective and interactive approach to molecular genera-
tion and closing the gap between the chemist’s expecta-
tion and the generative model.

Application overview

Metis is designed to allow (medicinal) chemists to
provide feedback on small molecular structures. In
particular, it is focused on collecting feedback on De
novo-generated molecules. While chemists have gen-
eral pre-disposition towards specific substructures,
in practice the molecules are not evaluated in a vac-
uum. Rather, the chemists work in the context of a
specific project. Typically, these projects involve tar-
geting a specific protein for which an active molecule
needs to be developed. Additional constraints such
as solubility, selectivity, and toxicity may be speci-
fied. Given the dynamic nature of projects, a chemist’s
preferences may vary significantly from one project to
another. Hence, it is essential to collect and interpret
feedback within the context of the project. To account
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Fig. 2 Overview of iteratively aligning the de novo model
with the vision of the chemist using Metis

for this Metis, does not only allow the Chemist to
give feedback but can also provide project-relevant
information to the chemists. However, Metis can not
only be used to collect feedback but can also directly
integrate this feedback into a de novo drug design run,
which, if done in an iterative manner should align the
generated molecules with the preferences of the user
(Figs. 1, 2 and 3).

In the following the different components of Metis
will be introduced in more detail.
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Fig. 3 Showcase of the three windows the user can cycle through. a is the default window in which the user can select atoms to highlight. b the
explanation window shows the per atom contribution to the prediction of an ML model and ¢ is the window that shows the most similar active

compounds from the training set

Feedback to de novo design

Metis can seamlessly re-integrate feedback back into a de
novo design loop. The newly generated molecules using the
feedback will then automatically be loaded into Metis and
further feedback can be given. This loop allows the chemist
to iteratively fine-tune their feedback as well as the molecu-
lar generator. Over multiple feedback rounds, the de novo
design model should more closely align with the prefer-
ences of the chemist. Currently, Metis offers two meth-
ods for integrating user feedback into the de novo design
model. One approach involves utilizing a Reward Model, a
machine learning algorithm trained on the chemist’s feed-
back in the form of binary decision (like vs. dislike).. This
model predicts whether a given molecule will be favored or
disfavored by the chemist, thus contributing to the refine-
ment of the de novo model. Presently, Metis supports
all scikit-learn models utilizing an RDKit Morgan
fingerprint.

An alternative method is to directly build a reward func-
tion from the feedback of the user. This reward function
constitutes a sum of multiple equally weighted proper-
ties. At its core, it tries to minimize the presence of sub-
structures flagged by the chemist as liabilities and tries to
maximize the presence of favorable substructures. Addi-
tionally, it seeks to enhance similarity to liked molecules
up to a specified threshold while minimizing similarity to
disliked ones. In comparison to the reward model, the use
of a reward function enables the integration of more fine-
grained feedback that goes beyond liking versus disliking a
molecule.

The extact reward function g(x) is defined as such:

1 + _ + — +
gx) = gy x)—y ) +85(x) —§ () +0.56"(x) + pMS(x)

where y (%) and y~(x) calculate the number of liked/
disliked substructures in molecule x. §7(x), § (%), and
8% (x) calculate the Tanimoto similarity to liked, disliked
and sort of liked molecules using the ECFP4. The similar-
ity must be greater than 0.5 otherwise the resulting score
will be 0. Finally, MS(x) returns the molecular size, the
number of heavy atoms, ¢ is a double sigmoid function,
that defines the acceptable range of the molecular size.
The parameters are initialized to cover a wide range, but
as feedback is given on the molecular cutoff values are
iteratively updated in the direction of the feedback. The
reward function is then added to the regular user-defined
scoring function (fix)) that is used in the current REIN-
VENT run, thus the final scoring function S(x) amounts
to:

Sx) =f(x) +gx)

This is a rather simple form to translate feedback from
the human into a parametric function, but custom, more
advanced approaches can also be integrated into Metis.

For now, only REINVENT [19] is supported. In order
to make use of that feature, a working REINVENT Instal-
lation needs to be present on a remote machine, to which
the users have access through an SSH key.

Molecular display

The molecular display provides an image of the generated
molecule, for which feedback should be collected. Users
can click on atoms to highlight substructures within the
molecule. Additional tabs offer users more detailed infor-
mation about the molecule. The “Most Similar Active” tab
allows users to see known active molecules most similar
to the generated one, allowing chemists to judge whether
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the generated molecule is a sensible extension based on
already known information. Additionally, the “Explain-
ability” tab provides insights into why a scikit-learn [20]
QSAR model suggests a generated molecule as poten-
tially active, empowering chemists to make informed
decisions based on the model’s reasoning. Currently, only
the RDKits [21] native explainibility function developed
by Riniker and Landrum [22] is available. But an exten-
sion to other methods should be easy to implement.

Target product profile

The Target Product Profile window can be used to pre-
sent information on the project at hand. Here are rel-
evant properties and their relevancy can be explained.
Descriptors that relate to these properties can also be
shown for each molecule displayed.

Global liabilities

The Global Liability window collects feedback on the
overarching properties of a molecule. These global liabili-
ties encompass characteristics not tied to specific sub-
structures but rather arise from the molecule’s overall
structure. For instance, the molecule’s size falls under
this category. Additionally, it accommodates liabilities
challenging to assign to specific atoms, such as synthetic
accessibility, which can be easier to evaluate globally.
Chemists can assess each property showcased and deter-
mine if the molecule aligns with their conceptualization
of it or not. Crucially, within this window, chemists can
provide feedback on their overall preference, whether
they like or how much they like this molecule.Currently,
most of the feedback on specific liabilities can not be
integrated into the de novo design loop, as there is no
straightforward way to computationally assess this liabil-
ity. For example, permeability is difficult to predict. For,
easier properties, like the size of the molecule, the ini-
tial range of “allowed sizes” of molecules is very wide. As
feedback regarding size is given, the range is shifted. Even
if the feedback is not usable in a de novo design run, the
recording of it is very crucial, as given enough data one
can create rule-based or machine learning-based model
to predict these liabilities

Local Liabilities

Local Liabilities refer to liabilities of molecules that
can be directly mapped to specific local substructures.
Users have the flexibility to toggle between different
liabilities they wish to highlight within the molecule.
By selecting atoms in the molecular display, these sub-
structures can be associated with the corresponding
liability, each distinguished by a unique color. Addi-
tionally, users can create new labels, not predefined,
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by specifying their concerns for a particular substruc-
ture in a text field. Not technically a liability, but by
default Metis also provides the chemist the option
to highlight substructures that they like. The chemist
can also make a distinction of whether the feedback
he provides is feedback that is relevant only to the cur-
rent project, or whether the feedback is generally valid
across many projects. The highlighted substructures
are stored and saved by recording the atom indices
of highlighted atoms, additionally, the substructures
are directly mapped to a SMARTS pattern that is also
saved. Next to the atom and bond type, the SMARTS
pattern also recorded ring membership and the num-
ber of attached hydrogens for each atom. To ensure that
adequate information is recorded, the SMARTS pattern
is expanded to also include all atoms that are directly
connected to the highlighted substructure. This way
the feedback of the chemist can more adequately be
saved. The significance of this approach becomes evi-
dent when considering examples such as distinguishing
between amides and ketones. If a chemist is dissatis-
fied with a ketone, they are likely to flag the atom and
the double-bonded carbon but may overlook the two
additional carbons. Further down the line, this can
lead to desirable amides being flagged as liabilities. By
recording the expanded environment of a highlighted
substructure, such oversight is mitigated, ensuring that
chemists’ feedback is accurately represented.

Like with the global liabilities, we can currently not
distinguish in an de novo run between different kinds
of substructures “critiques” Liked substructures will
increase the rewards and disliked substructures will
decrease the reward of a given model, independently of
why the substructure was disliked.

Additional features

In the navigation bar at the bottom of the GUI, multiple
additional helpful buttons are provided. Most impor-
tantly, the “Next” and “Back” buttons allow the users to
switch between molecules that are supposed to be eval-
uated. The “Edit” button will open a molecular editor in
a separate window. The editor can be used by the user
to suggest an alternative molecule to the one that is
currently to be evaluated. The editor will open with the
current molecule already loaded. The molecular editor
that is used is the rdEditor[23] Changes made to the
molecule in the editor will then be stored separately in
the backend. The “History” button will also open a sep-
arate window, in which the chemist can scroll through
the already evaluated molecules. Lastly, the “Send” but-
ton, will start a new de novo run on a remote machine



Menke et al. Journal of Cheminformatics (2024) 16:100

Page 6 of 9

- N
GUI
(PySide2 & rdEditor) Prior
&
Initial Agents
Load Molecules Save Start
& Feedback 'Feedback Run Load
Send
Feedback Reward Model Updated Files
Dataframe Trainer %GNOVO F{Fietmote
(Pandas) Update (scikit-learn) Updated =]y o Slurm file einvent
] Model ¢ Reinvent JSON
) « QSAR Model.pkI
Sample Load Load

Initial QSAR
Model & Trainings
data

Generated

Molecules

-

Default reinvent.json

SSH information

Default slurm file

/

L

New Molecules
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using the feedback provided by the Chemist. A more
detailed description is found in the following section.

Customizability

Metis is designed to be customizable through a yaml
file, in which the users can specify which informa-
tion to show to the chemist, and what kind of feedback
can be given by the chemist. The exact liabilities can
be changed, but also complete GUI elements can be
removed if needed. A complete list of all settings and
their use, together with some examples are provided
with the GitHub Repository. The examples are designed
around a fictitious drug design project around designing
a MAPKI10 (JNK3) kinase inhibitor. For this, initial mol-
ecules were generated with REINVENT. The generated
molecules as well as the models are provided with exam-
ples. The examples provided three different setup files to
cover different use cases and complexities in setting up
the GUL

1. Ul Only Example In this example, Metis is only
used to collect feedback for generated structures.
No models are re-trained and no de novo run can be
started.

2. Reward Model Example In addition to setting up
the GUI, here the feedback is used to directly train
the reward model. However, still, no de novo run can
automatically be started. This setup can be useful, in
scenarios where one is only interested in building a

reward model or the reward model shall be used in a
different de novo environment.

3. De Novo Loop Example This example showcases all
the functionalities of Metis. The user feedback is
collected, a reward model is trained and subsequently
used to start a de novo run using REINVENT on a
remote machine. The newly generated structures are
then copied and loaded into Metis. While the other
two examples can be started immediately. This exam-
ple requires REINVENT installation on a remote
machine and some files need to be transferred.

As Metis is written in Python changes to modules
not “exposed” through the yaml settings file, can also
be changed by adding additional classes that follow the
design of already implemented classes. Examples of such
are classes that take care of the sampling of molecules, or
how the reward models are trained.

For the iterative re-training of the de novo models,
one could in theory use any de novo model. However,
Metis does soft-lock users to use REINVENT. The lim-
iting factor is that no unified standard for de novo design
tools has been proposed or adopted. Thus, most models
require different setups with different configuration files,
which then return their results in different file formats.
This makes it difficult to ensure operability between dif-
ferent models. While it is possible to use an alternative to
REINVENT, it would require significant modifications by
the user to the existing code of Metis.
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Implementation

Metis is written in Python and relies at its core on three
libraries. PySide2 [24] is a Python implementation of the Qt
Framework and is used to create the Graphical User Inter-
face (GUI) a user can interact with. The molecular drawing,
highlighting and editing capabilities are provided by rdEd-
itor [23]. Additionally, RDKit is used to manipulate, and
save molecular structures and information. Further core
libraries in use are pandas, numpy, and scikit-learn.

Figure 4 gives an overview of how the different parts of
Metis come together. The interface the user can inter-
act with is created using the aforementioned PySide2 and
rdEditor. Molecules and their associated feedback
reside within a custom extension of a pandas data frame.
This specialized data frame efficiently stores diverse forms
of feedback and translates between atom indices and their
corresponding SMARTS structure representations. The
molecules presented to the user are sampled from an ini-
tial set of molecules stored in a separate file.

The “Reward Model Trainer” class handles both the
training of the reward model and the creation of the
reward function. If a QSAR Model exists that needs fine-
tuning with user feedback, the trainer loads the QSAR
model along with its original training data and merges
it with the obtained feedback. Subsequently, the model
undergoes re-training using the combined dataset. In the
absence of an initial model, training commences from
scratch.

For a de novo run, the process involves initializing a
“De Novo Runner” class instance on a separate core.
This runner then generates input files for REINVENT
and transfers them, along with the updated model in a
“pickle” format, to the remote location via SSH. A remote
run is then initiated using SLURM. The “De Novo Run-
ner” remains in a waiting state until the REINVENT run
concludes, after which it retrieves the current state of the
Agent and the newly generated molecules back to the
local machine. From here, new molecules are selected to
be evaluated by the user.

In each iteration, the molecules, their feedback, the
reward models, and the de novo model are saved.

Installation

Metis is an open-source software that can be down-
loaded from https://github.com/JanoschMenke/metis.
After setting up the environment either manually or
through the use of the pyproject.toml file, the soft-
ware can be used. A more detailed description of the
setup and the settings is provided on the GitHub reposi-
tory, together with examples that should let the user get
started directly.

Page 7 of 9

License
Metis is published under the permissive MIT license.

Limitations

The sole reliance on Python, Pyside2, and RDKit makes
Metis very adaptable for all researchers in cheminfor-
matics and its adjacent fields. Most researchers code in
Python and are able to make their desired changes. How-
ever, this choice for PySide/Python, also makes Metis
not currently hostable on the web. This can be attributed
to the fact that PySide2 at its core uses C++ and cur-
rently does not have WebAssembly support. The second
limitation, previously mentioned, is that by default only
REINVENT as a de novo model is supported. While
it is not difficult for users to adapt the code to their
model of choice, many small changes need to be made,
as Metis is written with REINVENTS file formatting in
mind. Lastly, as mentioned previously much of the very
detailed feedback that is collected is currently used in the
de novo design loop, as the property for which we collect
feedback is not a property that can easily be measured
or predicted. However, collecting and saving this feed-
back is still valuable to build models later around such
properties.

Outlook

There are still some features not yet integrated that would
enhance the usability of Metis. We aim to upgrade the
support to the recently released REINVENT 4 [25] and
in the long-term provide some interface layer, which
makes it easier to also include non-REINVENT de novo
design tools. We also plan to expand support to scikit-
mol [26] models, which can be used to train the reward
model. This provides more customizability to the user with
regard to the selection of input features and model choice.
We further hope to extend support to the recently released
REINVENT 4 and while we do not think any de novo
design tool can be supported without manual editing of
the code we want to make the interface easier to manipu-
late so other de novo tools are easier to connect to Metis.

Conclusion

Here we introduce Metis, a Graphical User Interface,
that enables researchers to collect feedback on gener-
ated molecules that go beyond simple like or dislike.
Chemists can assign substructures specific liabilities,
flag concerning properties, and can suggest alternative
molecules to the generated ones. Metis also serves as a
platform to provide chemists with sufficient information
on the task to make informed decisions on the generated
compounds. As the feedback can be directly integrated
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within existing de novo Design loops, the GUI has its
practical application and can help end-users to fine-tune
and align the generative model with their ideas and pref-
erences. To our knowledge, no other application exists
that provides such functionality and Metis can serve
as a starting point for the community to develop and
test ideas on how elaborate chemical knowledge and the
feedback it gives rise to, can adequately be modeled and
integrated into existing deep learning models.
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