
Kleinschmidt and Lemmin ﻿
Journal of Cheminformatics (2024) 16:104
https://doi.org/10.1186/s13321-024-00900-6

SOFTWARE

BuildAMol: a versatile Python toolkit
for fragment‑based molecular design
Noah Kleinschmidt1 and Thomas Lemmin1* 

Abstract 

In recent years computational methods for molecular modeling have become a prime focus of computational biol-
ogy and cheminformatics. Many dedicated systems exist for modeling specific classes of molecules such as proteins
or small drug-like ligands. These are often heavily tailored toward the automated generation of molecular struc-
tures based on some meta-input by the user and are not intended for expert-driven structure assembly. Dedicated
manual or semi-automated assembly software tools exist for a variety of molecule classes but are limited in the scope
of structures they can produce. In this work we present BuildAMol, a highly flexible and extendable, general-purpose
fragment-based molecular assembly toolkit. Written in Python and featuring a well-documented, user-friendly API,
BuildAMol empowers researchers with a framework for detailed manual or semi-automated construction of diverse
molecular models. Unlike specialized software, BuildAMol caters to a broad range of applications. We demonstrate
its versatility across various use cases, encompassing generating metal complexes or the modeling of dendrimers
or integrated into a drug discovery pipeline. By providing a robust foundation for expert-driven model building, Buil-
dAMol holds promise as a valuable tool for the continuous integration and advancement of powerful deep learning
techniques.

Scientific contribution
BuildAMol introduces a cutting-edge framework for molecular modeling that seamlessly blends versatility with user-
friendly accessibility. This innovative toolkit integrates modeling, modification, optimization, and visualization func-
tions within a unified API, and facilitates collaboration with other cheminformatics libraries. BuildAMol, with its
shallow learning curve, serves as a versatile tool for various molecular applications while also laying the groundwork
for the development of specialized software tools, contributing to the progress of molecular research and innovation.

Keywords  Molecular modeling, Fragment-based molecular assembly, Supramolecular modeling, Python

Introduction
The field of computational modeling for molecular struc-
tures has undergone a period of rapid expansion, driven
by its growing importance in material sciences, pharma-
cology, and life sciences. This surge has led to the devel-
opment of a diverse range of software solutions aimed at

tackling various challenges in these fields. Furthermore,
the continuous integration and advancement of powerful
deep learning techniques within this domain promises
to significantly enhance the impact of in silico structural
modeling on future research applications.

Simplified molecular-input line-entry system (SMILES)
[1] descriptors are a widely used and dominant method
for generating three dimensional (3D) atomic structures
of molecules. Their popularity stems from their efficiency
and text-based format, making them well-suited for vari-
ous applications. Consequently, many deep learning-
based modeling tools heavily rely on SMILES strings as

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Journal of Cheminformatics

*Correspondence:
Thomas Lemmin
thomas.lemmin@unibe.ch
1 Institute of Biochemistry and Molecular Medicine, University of Bern,
Buehlstrasse 28, 3012 Bern, Switzerland

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00900-6&domain=pdf

Page 2 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104

both input and output formats. Software libraries like
RDKit [2] and Openbabel [3] effectively process SMILES
to build molecular structures. However, this preva-
lent “all-at-once” approach, where the entire structure
is constructed from a single SMILES string, presents
limitations. For complex molecules like polymers, it can
become computationally expensive. Additionally, limited
user control over the final structure restricts its adapta-
tion to specific research questions.

Fragment-based methods offer an alternative, by
assembling larger structures incrementally from smaller,
pre-defined components. This approach has gained
traction in automated de novo molecule design frame-
works like FRAME [4] and MolSLEPA [5], which focus
on ligand design and material sciences, respectively.
Beyond automated frameworks, fragment-based assem-
bly empowers expert-driven, manual molecule creation.
Users have control at each fragment addition, ensuring
the resulting structure aligns with specific requirements
at any intermediate stage of the building process. This
approach not only be useful for manual design but also
for refining predictions from deep learning models by
providing more control over the final structure.

While popular libraries like RDKit can handle frag-
ment assembly, they lack dedicated workflows for this
purpose. Some libraries are adept at the assembly of new
molecules from smaller components, such as the widely
used Python-based Stk [6] or the Julia-based Molecular-
Graph.jl [7]. Especially Stk stands as a prominent exam-
ple as its primary objective is to offer a comprehensive
API for fragment-based assembly. However, its focus lies
in material sciences, offering a powerful and generaliz-
able but still somewhat domain-specific interface. Other
Python libraries like mBuild [8] cater to specific software
ecosystems like MoSDeF [9] for molecular simulations.
While tools like Pygen-Structures [10] and Glycosyla-
tor [11] excel in constructing molecules from special-
ized data formats (CHARMM files) or specific molecule
classes (glycans), respectively. Although these tools pro-
vide valuable functions, they are typically specialized and
not easily adaptable for tasks beyond their original scope.

Here, we introduce BuildAMol, a general-purpose
Python library designed for fragment-based molecular
modeling. BuildAMol is designed to work on consumer-
grade machines and can be used to manually and semi-
automatically assemble models for diverse and complex
molecular structures. BuildAMol is not restricted to
specific molecule classes or limited by pre-defined
chemical reasoning but offers complete user freedom in
assembling fragments, akin to the familiar analog mol-
ecule building kits used by chemists. Furthermore, Buil-
dAMol’s functionalities extend beyond de novo assembly.
It enables modification and optimization of existing

structures, conformational sampling, generation of cus-
tomizable and interactive visualizations, and seamless
integration with other cheminformatics libraries. This
comprehensive suite of tools fosters a streamlined work-
flow for diverse applications. BuildAMol prioritizes user-
friendliness through a streamlined interface, minimizing
manual input while maximizing user control over the
assembly process.

Implementation
BuildAMol is designed for modularity and ease of use.
The six primary sub-packages of BuildAMol are: core,
graphs, optimizers, resources, structural, and utils, that
are automatically loaded upon importing the main Buil-
dAMol library. An optional seventh sub-package, (exten-
sions), provides specialized functionalities and needs to
be imported separately (Fig. 1).

Software overview
Core
The core sub-package of BuildAMol provides the essen-
tial framework for constructing molecular structures.
It provides foundational classes representing the build-
ing blocks of molecules (Atom and Residue), as well as
higher-level classes (Molecule and Linkage) to handle
the assembly process. BuildAMol leverages a hierarchi-
cal data structure, similar to the one used by Biopython
[13]. In this approach, complex molecules are organized
as a series of nested building blocks. For instance, indi-
vidual Atom objects are grouped into a Residue object
representing a molecular fragment. This hierarchical
organization allows for efficient access and manipulation
of specific parts within complex molecules, a significant
advantage for fragment-based assembly workflows.

BuildAMol simplifies user interaction by channeling
most operations through the Molecule class. This class
acts as a central hub, providing methods for users to
perform various actions on molecular structures. For
convenience, some frequently used functions, like read-
ing PDB files or connecting fragments, are available as
both standalone functions and methods within the Mol-
ecule class. The key distinction lies in their behavior:
standalone functions typically create a new copy of the
molecule, whereas methods directly modify the existing
molecule object. However, both functionalities can be
customized using optional arguments.

The Linkage class plays a crucial role in fragment
assembly workflows. It defines how atoms from differ-
ent molecules should be connected during the building
process. Additionally, the package offers convenient top-
level functions like acetylate or carboxylate to add spe-
cific functional groups to a molecule at defined positions.

Page 3 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104 	

Furthermore, BuildAMol introduces a unique oper-
ator-based syntax called “Molecular Arithmetics.” This
user-friendly syntax allows intuitive molecule assembly:
addition (+) facilitates combining fragments, subtraction
(-) enables the removal of substructures like atoms or res-
idues, and multiplication (*) allows for the construction
of regular polymers, offering a valuable short-hand nota-
tion to accelerate the modeling for users who do not wish
or require more elaborate customization in their assem-
bly workflow.

Graphs
BuildAMol implements molecular connectivity graphs
using NetworkX [14]. Graphs are available at the atom
level and as an abstraction at the residue level, primarily
for visualization or low-resolution optimization. Beyond
storing a molecule’s connectivity, these graphs serve
as inputs for BuildAMol’s in-house optimization suite
(Optimizers sub-package). Users typically will not inter-
act directly with the graphs package. Instead, they can
work with graph objects exported from the Molecule class
using methods such as Molecule.get_atom_graph or Mol-
ecule.get_residue_graph for conformational optimization.

Optimizers
BuildAMol provides several methods to perform con-
formational optimization on a target molecule. If the
RDKit library is available, BuildAMol can leverage its
forcefield-based optimization to automatically obtain
an energy-minimized conformation. BuildAMol pro-
vides its own customizable optimization environment
built using OpenAI Gym [15]. Various algorithms imple-
mented in NumPy [16], including genetic algorithms,
particle swarm optimization, simulated annealing, and
Scipy-based stochastic gradient descent are available. In
addition to the default setup provided by the Molecule.
optimize method and the top-level optimize, the user can
create custom optimization environments.

Resources
The built-in reference data for chemical compounds
relevant to fragment-based assembly are stored in the
Resources sub-package. This sub-package provides
numerous functions to query compounds, load existing
data or read new data from files, add molecules to the ref-
erence dataset, as well as save datasets to files. The default
reference data is a subset of the Protein-Data-Bank’s

Fig. 1  Software overview. A Graphical summary of BuildAMol, its seven packages, and their functional interplay. B Integrations with external
libraries and supported file formats. C Overview of built-in reference data. D Overview of supported molecular visualizations. All panels show
the small alternative reading frame peptide SPRWWPTCL of Intestinal carboxyl esterase found in Renal cell carcinoma [12]

Page 4 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104

Component Dictionary (PDBCD), containing a cho-
sen selection of 7630 molecules out of the nearly 40,000
available. To facilitate efficient access, the reference data
is further categorized into five individually loadable data-
sets: small_molecules, amino_acids, nucleotides, sugars,
and lipids. Additionally, users can load their own cus-
tom datasets in the mmCIF format for further flexibil-
ity. Beyond fragment data, we also included a selection
of molecular linkages derived from CHARMM topology
files (Patches). Custom linkage defined in the CHARMM
topology format can also be imported into the reference
dataset. Figure 1C provides a graphical summary of the
built-in reference data. For user convenience, all core
functionalities of the Resources sub-package are auto-
matically imported upon loading the main BuildAMol
library. This eliminates the need for manual interaction
with the sub-package itself in most use cases.

Structural
The Structural sub-package forms the core of Buil-
dAMol’s structural manipulation capabilities. It
encompasses functionalities related to atom-level manip-
ulations, including algorithms used to compute atomic
placements during fragment assembly. This sub-package
provides a rich set of functions and data classes for inter-
nal use, such as fundamental mathematical operations on
vectors and matrices, explicit computations on molecular
structures, and inference tasks like adding missing hydro-
gen atoms. The Structural sub-package serves as a foun-
dation for most other BuildAMol functionalities. Many
of its functionalities are also directly accessible through
methods of the Molecule class. Therefore, in most use
cases, users will not need to interact directly with the
Structural sub-package itself.

Utils
The Utils sub-package provides a collection of utility
functions and helpers that support BuildAMol’s internal
operations. This includes managing optional dependen-
cies, general constants, and the core functionalities for
molecular visualization.

BuildAMol’s built-in visualization leverages Plotly [17]
to generate interactive 3D representations of molecular
structures. These visualizations can be customized with
points, lines, annotations, and hover data to highlight
specific features or regions of interest. While Plotly is
the default option, BuildAMol offers additional visualiza-
tion support using RDKit (2D only), Py3DMol [18], and
NGLView [19], provided they are installed (Fig. 1D). All
visualization functionalities are conveniently accessible
through methods of the Molecule class, minimizing the
need for direct interaction with the Utils sub-package
itself.

Extensions
The Extensions sub-package serves as an open hub for
expanding BuildAMol’s functionalities. It currently pro-
vides dedicated implementations for specific modeling
problems. Currently, we implemented packages to gen-
erate linear and cyclic polycarbons, nanotubes, metal
complexes, rotaxanes, glycans, small peptides, fatty acids,
mono-, di-, and triacylglycerols, as well as phospho- and
sphingolipids.

Connecting molecules
BuildAMol leverages an atom-substitution strategy to
connect molecular fragments, enabling the direct spa-
tial positioning of one molecule relative to another. This
approach involves designating a set of four atoms, two
from each fragment. A rigid body transformation is then
employed to precisely align the fragments by superim-
posing two atoms from one fragment onto their counter-
parts in the other fragment. This ensures proper spatial
arrangement for bonding. Subsequently, a new bond is
formed between a designated atom from each fragment,
while the corresponding atoms used for alignment are
removed. This method ensures the resulting molecule
has realistic bond lengths and angles, provided both frag-
ment molecules are chemically sound.

While BuildAMol is able to generate a wide variety
of molecular structures, its atom-substitution strategy
introduces limitations for certain reaction types. Since it
requires an atomic “leaving group” for substitution, Buil-
dAMol cannot directly simulate reactions that do not
involve atom removal, such as the reduction of double
bonds. Additionally, the system is primarily designed to
create linear or branched structures. Although optimiza-
tion techniques can enable BuildAMol to generate cyclic
molecules, it is not the most efficient approach for this
specific task.

Two modes of fragment assembly
Superimposing fragments based on a single reference
bond offers a fast and convenient alignment method.
However, with only two points of reference, the relative
orientation of the fragments remains undefined, poten-
tially leading to sub-optimal conformations. BuildA-
Mol addresses this issue by providing two options. The
first approach requires defining a detailed Linkage. This
linkage specifies the internal coordinates, such as bond
lengths, angles, and dihedrals, for the atoms surround-
ing the newly formed bond. This additional geometric
information allows BuildAMol to place the fragment
precisely in the desired orientation. However, defining
such detailed geometry might not always be feasible or
necessary. Therefore, by default, BuildAMol will perform
a small-scale optimization around the new bond in order

Page 5 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104 	

to rotate the incoming fragment into a chemically sound
orientation.

In practice, the mode of assembly is automatically
determined by BuildAMol behind the scenes. To connect
molecules in BuildAMol the user may use the Molecule.
attach method or the top-level connect function. Alter-
natively, the user may use Molecular Arithmetics to “add”
molecules together using the + operator. A more detailed
description of the assembly modes is provided in the sup-
plementary materials.

Chemical reactions
While BuildAMol was not designed to simulate true
chemical reactions, it offers functionalities to achieve
similar outcomes for specific reaction types. This is
achieved by a user-extensible library of functional
groups. When reacting two fragments, functional groups
automatically infer the binder and deleter atoms needed
to link both fragments. Therefore, substitution reactions
can be imitated to a certain extent, by using either the
Molecule.react_with method or top-level react function
or the + operator. It is important to note that due to its
core principle of atom substitution, BuildAMol currently
cannot handle addition reactions, where a new bond is
formed without the removal of existing atoms.

The optimization suite
Conformational optimization
BuildAMol implements a torsional optimization scheme
to improve molecular conformations. By rotating a spe-
cific part of the molecule around a chosen bond’s axis,
a new conformation is generated. This approach inher-
ently avoids introducing invalid bond lengths or angles,
assuming the initial structure is valid. Also, compared to
traditional “translational” optimization, this “torsional”
approach typically explores a smaller search space. This
is because the number of bonds in a molecule is usually
less than, and can never exceed, the number of atoms.
Additionally, the search space can be further reduced
by strategically subsetting the bonds considered during
optimization.

We implemented a basic OpenAI Gym environment
named the Rotatron that accepts a molecular graph
(either at the atom or residue level) and an optional list
of rotatable edges to optimize. If not provided, rotat-
able edges are inferred directly from the graph. Using
the Rotatron as a parent class, we implemented three
optimization environments that use different heuristics
to evaluate a given conformation. (1) The DistanceRo-
tatron, which serves as the default optimization envi-
ronment in BuildAMol. It aims to maximize pairwise
distances between graph nodes in order to obtain a con-
formation with maximal spatial occupancy. Since the

heuristic computes distances between pairs of nodes, its
computational load can be heavy for large input graphs.
To address this, we developed (2) the OverlapRotatron.
This environment models all nodes between two rotat-
able edges, a so-called “rotation unit”, using a Gaussian
Mixture Model. The environment’s heuristic is set toward
minimizing the overlap between all Gaussians in order to
achieve a conformation with maximal spatial occupancy.
Both the DistanceRotatron and OverlapRotatron strictly
perform “unfolding” operations and are not suited for
optimizing molecules with prominent non-covalent
interactions such as Hydrogen bonds. To account for
cases where such purely geometric considerations may
not be sufficient for optimization, we also developed (3)
the ForceFieldRotatron. This environment uses RDKit’s
Merck Molecular Force Field (MMFF) to compute the
molecular energy of a particular conformation, which
directly serves as the optimization metric.

Circularization
At its core, BuildAMol was designed to create linear or
branched molecules rather than circular structures.
To create circular molecules, BuildAMol provides an
extended version of the Rotatron, named the Circula-
tron. This environment works on a linear molecule graph
alongside instructions on ultimately circularizing the
structure. The Circulatron then uses one of the three
above-mentioned environments to keep track of the
quality of generated conformations while trying to super-
impose binder and deleter atoms that must be provided
during initialization.

Spatial optimization
BuildAMol can also be used to construct multi-molecule
systems that require a molecule’s specific placement and
orientation in three-dimensional space. While methods
such as Molecule.move_to, Molecule.rotate, or Molecule.
align_to are designed to facilitate the manual arrange-
ment of a molecule in space, it can be difficult for a user
to identify the right location and orientation a priori.
Thus, to facilitate the placement of molecules in a par-
ticular system, we developed an optimization environ-
ment called the Translatron. This environment optimizes
a translation and rotation vector along all three pri-
mary spatial axes, which are applied to the entire mol-
ecule. Consequently, this environment will not alter the
molecule’s conformation but only its global placement
and orientation. To guide the optimization process, the
environment requires the user to provide a constraint
function that returns a metric the environment tries to
minimize. Thus, the user must define a suitable heuristic
function that describes the placement problem they want
to solve.

Page 6 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104

User‑guided optimization
While the three primary conformational optimization
environments employ a fixed heuristic that is not cus-
tomizable by the user, situations like those encountered
in the Circulatron may necessitate special considerations
during optimization. To address this, we introduced a
more versatile ConstraintRotatron class. This class acts as
a wrapper, utilizing one of the three main environments
to assess the created conformations. It also requires a
user-provided constraint function to enhance the heu-
ristic as per score = eval(s)+ constraint(s) , where eval is
the evaluation function of any optimization environment
and s denotes the current state that is evaluated. In this
way, users may direct the optimization process by their
specific needs.

Optimization algorithms
We implemented several classical optimization algo-
rithms directly in BuildAMol, including a genetic algo-
rithm (GA), a global-best particle swarm optimization
(PSO), and simulated annealing. Additionally, molecules
can be forwarded directly to SciPy’s minimize optimiza-
tion suite, where stochastic gradient descent (SGD) is
used by default, though any algorithm available within
the suite can be utilized.

Performance enhancements
Numba [20] is a Just-In-Time Compiler (JIT) to improve
the runtime efficiency of Python code and primarily
works with Numpy. We implemented several functions
of the optimization environment setup and optimization
algorithms as standard Numpy and Numba versions to
allow for a greater speed-up. BuildAMol also offers par-
allel computing using Python’s built-in multiprocessing
library to enhance performance for certain functions.

Results
Showcase of example molecules
To evaluate the performance of BuildAMol, we gener-
ated three different benchmark. We measured the runt-
ime after imports as well as the number of lines of code.
The lines of code were counted after formatting with the
Black formatter [21] and include import-lines but typi-
cally exclude intermediary visualizations added purely
for clarity in the tutorial code. The code for all exam-
ples is available in the BuildAMol documentation on
ReadTheDocs.

To demonstrate BuildAMol’s capability of building
a wide range of molecules with concise code, we con-
structed several structures from various molecular
classes and sizes (Fig. 2). This included a small rotaxane
[22], a glycan, a circular poly-Histidine, and two den-
drimers [23, 24].

The rotaxane was built using three fragments for
the axle and one single fragment for the ring. To align
the ring around the axle molecule, we wrote a Rotax-
aneBuilder class, which is available as part of the Exten-
sions. The complete example comprises 28 lines of code.

For the glycan model, all necessary fragments and link-
ages are available in the built-in reference dataset, and
the complete example comprises 11 lines of code.

The poly-histidine was initially created as a linear pep-
tide, which was then pseudo-circularized by connecting
the first and last residues. This unrealistic conformation
was optimized using RDKit’s optimization suite to obtain
the final circular structure. The code comprises 8 lines of
code.

The polyphenylene dendrimer was modeled using only
a single fragment molecule (benzene) and required 20
lines of code.

Finally, the open-resorcinarene dendrimer was built
from “inside” to “outside”, by incrementally attaching new
fragments to multiple residues and optimizing structural
intermediaries. The final code comprises 43 lines.

Comparing to Stk
To evaluate BuildAMol’s performance and capabili-
ties, we compared it to the Stk library, the closest exist-
ing software for molecular construction. We focused on
five diverse examples from the Stk documentation with
publicly available source code (Fig. 3). These examples
encompassed a wide range of molecular structures: (1)
an aminated cycloheptane ring, (2) a macrocycle of buty-
lamine molecules, (3) a metal complex, (4) a linear poly-
mer, and (5) a simple rotaxane with three cycles around a
linear axle.

Our evaluation included a comparison of code concise-
ness and runtime performance between BuildAMol and
Stk. The hardware used for this comparison was an octa-
core Intel Core i9 processor with 2.3 GHz clock speed
and 32 GB of RAM.

In every instance, using BuildAMol required fewer
lines of code to accomplish identical molecular con-
struction, typically resulting in a 50% decrease compared
to Stk code (Fig. 3, upper bar chart). While BuildAMol
demonstrated faster execution times in examples 1, 2,
and 4 (Fig. 3, lower bar chart), for example 5 (a rotaxane),
the execution time was comparable for both. The only
example where Stk clearly outperformed BuildAMol was
example 3, the metal complex. This can be attributed to
BuildAMol’s sequential optimizations for ligand place-
ment around the metal center. This approach is compu-
tationally expensive and can potentially lead to unstable
structures. In contrast, Stk utilizes a dedicated geomet-
ric approach for metal complex generation, resulting in
faster and more stable performance. It is important to

Page 7 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104 	

note, however, that the Stk-generated metal complex
exhibited misalignment in half of its Nitrogen atoms.

Since the Stk core library does not consider the
chemical validity of the generated structures and relies
on the external library Stko for structure optimization
Stko, we compared BuildAMol’s outputs to both the

raw and optimized structures from Stk or Stk+Stko.
In each case we optimized Stk-raw structures using
Stko’s UFF Force Field implementation. In most cases
Stk+Stko structure outputs were on par with those
of BuildAMol. In case of the metal complex (3) the
Nitrogen atoms were properly aligned but at the cost

Fig. 2  Example molecules. A A small rotaxane. B The glycan Man(a1-6)Man(a1-6)[Man(a1-3)]b-Man(b1-4)GlNAc(b1-4)GlNAc. C A circular peptide
of 20 Histidines. D A Polyphenylene dendrimer. E An open-resorcinarene dendrimer

Page 8 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104

of bond distortions in the ligands. In the case of the
rotaxane (5), after optimization with Stko, the axle
molecule’s distorted bonds were fixed, but the cycles
were colliding with the main axle.

Although BuildAMol is capable of generating mod-
els for all molecule classes supported by Stk, including
caged structures and macro-frameworks, it is impor-
tant to note that, currently, BuildAMol does not incor-
porate specific methods tailored toward modeling
these structures.

Benchmarking optimization
We evaluated the performance of different optimiza-
tion environments on a highly branched dendrimer,
composed of 657 atoms in total (Fig. 4). We optimized
the atom and residue graphs on a random subset of
15 bonds using each optimization environment and
global-best particle swarm optimization. We performed
20 parallel optimizations in each case and repeated
the entire workflow 20 times, resulting in a total of

Fig. 3  Comparing to Stk. The bar charts show the lines of code and total computation times required to model each of the five test molecules.
Output structures are shown for all cases in a side-by-side comparison

Page 9 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104 	

Fig. 4  Benchmarking optimization. A A graphical summary of the benchmarking workflow. We optimized the AtomGraph and ResidueGraph
of the input molecule 20 times in parallel with PSO using all three optimization environments, respectively. All optimizations were done on default
settings. B The number of clashes in the final conformations are shown as mode (upper) and mean + standard deviation (lower). C A more detailed
view of the distributions of clashes in final conformations split by graph and environment. D The total measured computation times (mean +
standard deviation) for environment setup and optimization. The code was run on an octa-core Intel Core i9 processor with 2.3GHz and 32 Gigabyte
of RAM. E The test molecule used for comparison between BuildAMol, Ginger, and Frog2. The 3D view shows the UFF-minimized conformation. F
Upper bar chart: UFF-based molecular energy of generated conformers. A black dashed line denotes the energy of the UFF-minimized conformer.
Lower bar chart: RMSD of generated conformers compared to the UFF-minimized conformation. Shown is the mean + standard deviation. G Visual
overlay of all generated conformers. The coloring matches the bar charts in F 

Page 10 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104

400 generated conformations for each combination of
graph and environment (Fig. 4A).

Our results indicate that, even without hyperparam-
eter tuning of the environments, BuildAMol produced
clash-free conformations reliably in almost all cases.
The mode of clashes in optimized conformations was
zero for all combinations of graph and environment
except for the ResidueGraph+ForceFieldRotatron and
ResidueGraph+OverlapRotatron (Fig. 4B). Inspection
of the distributions of clashes in the final conforma-
tions shows that the AtomGraph+DistanceRotatron and
AtomGraph+ForceFieldRotatron markedly tend toward
producing clash-free structures, while any combination
with the OverlapRotatron yields poorer results due to the
greater structural abstraction (Fig. 4C).

Noticeably poor performance is exhibited by theResidu
eGraph+ForceFieldRotatron, where the worst conforma-
tion comprises 40 clashes.This lack of performance can
be explained by the graph input. While the environment
computes molecular energy, which should be a highly
accurate metric for conformer evaluation, the input resi-
due graph is not a valid chemical structure and, therefore,
its molecular energy is a meaningless metric to optimize.
Hence, we strongly discourage users from optimizing
structures in this way.

While the DistanceRotatron showed the most consist-
ent behavior, it was also by far the slowest environment
to compute. Both the OverlapRotatron and ForceFieldRo-
tatron were roughly on par in terms of computation time
(Fig. 4D).

We also evaluated BuildAMol’s conformer genera-
tion capacities on a small drug-like molecule of 49 atoms
(Fig. 4E). We generated 50 conformers with default opti-
mization settings using the DistanceRotatron and auto-
matic edge selection. For comparison, we generated an
equivalent set of conformers using Ginger [25] and Frog2
[26]. Ginger uses a generative deep learning framework
paired with a force-field minimization, while Frog2 uti-
lizes a Monte Carlo sampling mechanism similar to
BuildAMol.

We evaluated the generated conformers by comput-
ing their molecular energy with RDKit’s Universal Force
Field (UFF). Additionally, we determined the atomic Root
Mean Square Deviation (RMSD) between each generated
conformer and the molecule’s UFF-minimized structure.

Since both BuildAMol and Frog2 employ a tor-
sional optimization scheme, their performances were
comparable. The generated conformations exhibited
approximately double the energy of the UFF-mini-
mized structure (Fig. 4F, upper bar chart). Since Ginger
employs an energy minimization step, the generated
conformers showed a lower energy level, similar to the
UFF-minimized one. However, all three tools produced

conformers with comparable RMSD values (Fig. 4F, lower
bar chart). Visual inspection showed that Frog2 pro-
duced many similar conformers resulting in a clustered
appearance (Fig. 4G), while both BuildAMol and Ginger
showed greater diversity in the produced conformations.
As expected, Ginger’s conformers closely resembled the
UFF-minimized structure, while BuildAMol’s conform-
ers tended to be elongated due to the DistanceRotatron
optimization.

While BuildAMol demonstrated comparable perfor-
mance to other conformer generation tools in our tests,
the use of dedicated software remains advantageous for
specific applications. For instance, small drug-like mol-
ecules can benefit from a wider range of specialized
options. Moreover, BuildAMol’s current limitations pre-
clude its effective application to macrocyclic molecules.
In such cases, tools like OpenEye’s OMEGA [27] are
recommended.

Extended use cases
While BuildAMol’s core functionality is the generation
of molecular models from smaller fragments, we also
explored more exotic use cases that go beyond “simple”
fragment-based molecular assembly. Here, we present
three different examples.

BuildAMol was primarily intended for solvated organic
molecules that have conformational freedom. As such,
modeling pseudo-crystalline structures was not our pri-
mary objective, especially in light of Stk which is able to
handle such structures well. Nevertheless, we demon-
strate that geometrically regular structures can be easily
created using BuildAMol by employing methods such
as align_to, move, and merge instead of attach which is
conventionally used to assemble fragments. Here we
demonstrate an example metal organic framework with
a pillard paddlewheel structure [28] which we modeled
from a metal complex fragment and benzene (Fig. 5A).
The metal complex was generated with Stk.

In a second example, we used BuildAMol’s parallel
optimization capacities to perform conformational sam-
pling. We repeatedly selected a random subset of bonds
within the target molecule and performed independent
optimizations on them. Figure 5B shows an overlay of 50
thus sampled partial conformations.

Finally, in the third case we created a simple automated
protein-ligand design pipeline using BuildAMol. To that
end, we prepared a small library of some 200 fragments
of small organic molecules. We then developed a class
to assemble fragments based on instructions encoded
numerically in Numpy arrays. The assembled molecules
were then passed to the software library dockstring [29]
to generate a docking score. For our example case, we
chose the dopamine D2 receptor (Uniprot ID F8VUV1),

Page 11 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104 	

which is bound by the drug Risperidone. Our “pipe-
line’s” main function would generate a molecule from a
Numpy array and return a docking score for use with an
optimization algorithm. For the example, we used Scipy’s
Nelder-Mead algorithm which we ran for five iterations

only. We repeated the test three times. Interestingly, our
simple pipeline was already able to generate molecules
that bind in the same pocket as Risperidone (Fig. 5C,
lower left panel). Moreover, our best prediction (the blue
ligand in Fig. 5C, lower left panel) showed some features

Fig. 5  Extended use cases. A A metal-organic framework constructed from benzene and a metal complex. B Conformational sampling
of a molecular compound. C Protein-ligand design. The upper panel shows the design workflow. Steps involving BuildAMol are highlighted
with the BuildAMol logo. Lower left panel: our designed ligand (light blue) and the true ligand Risperidone (sand-colored) are shown overlaid
on the dopamine D2 receptor. Lower right panel: modified versions of our ligand docked on the same protein

Page 12 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104

that were structurally similar to Riesperidone and pro-
duced a docking score of − 11.6, which is in a similar
range to Risperidone’s own docking score of − 11.9. As
a proof of concept to demonstrate BuildAMol in a work-
flow involving deep learning applications, we performed
a follow-up experiment where we created multiple
derivatives from the generated ligand by adding various
functional groups to one position. We then successfully
docked the derivatives using the deep learning tool Dif-
fDock [30], presenting a practical illustration of BuildA-
Mol’s compatibility with state-of-the-art deep learning
tools (Fig. 5C, lower right panel).

Conclusion
In this work, we presented BuildAMol, a versatile and
user-friendly Python library designed to empower
researchers in fragment-based molecular modeling. Buil-
dAMol caters to a broad range of applications, from de
novo assembly of complex molecules to the modifica-
tion and optimization of existing structures. Its focus on
user control and extensibility supports both manual and
semi-automated workflows, making it suitable for expert-
driven modeling tasks.

BuildAMol’s ability to handle diverse molecule
classes and integrate with established cheminformat-
ics libraries positions it as a valuable tool for various
scientific pursuits. By prioritizing user-friendliness and
offering a streamlined interface, BuildAMol minimizes
manual input while maximizing control over the molecu-
lar assembly process. Coupled with its extensibility, Buil-
dAMol is a promising platform for future advancements
in fragment-based modeling, particularly when inte-
grated with powerful deep-learning techniques. The con-
tinuous integration and advancement of these techniques
within this domain promise to significantly enhance the
impact of in silico structural modeling on future research
initiatives.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00900-6.

Supplementary Material 1.

Author contributions
N.K. designed, implemented, and tested the BuildAMol toolkit. N.K. and T.L.
wrote the manuscript.

Funding
This work has been supported by the Swiss National Science Foundation
(SNSF: PCEFP3_194606).

Availability of data and materials
The source code of BuildAMol is available via GitHub at https://​github.​com/​
NoahH​enrik​Klein​schmi​dt/​build​amol. Comprehensive documentation with

tutorials is also available on ReadTheDocs at https://​biobu​ild.​readt​hedocs.​io.
Code to recreate examples presented in this work is freely available via the
documentation or GitHub repository.

Declarations

Competing interests
The authors declare no competing interests.

Received: 28 June 2024 Accepted: 19 August 2024

References
	1.	 Weininger D (1988) SMILES, a chemical language and information system.

1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28(1):31–36. https://​doi.​org/​10.​1021/​ci000​57a005

	2.	 Landrum G, Tosco P, Kelley B, Ric, Cosgrove D, Sriniker, Gedeck, Vianello
R, NadineSchneider, Kawashima END, Jones G, Dalke A, Cole B, Swain
M, Turk S, AlexanderSavelyev, Vaucher A., Wójcikowski M, Take I, Probst
D, Ujihara K, Scalfani VF, Godin, Lehtivarjo J, Pahl A, Walker R, Berenger F.
jasondbiggs, strets123: Rdkit/rdkit: 2023_03_2 (Q1 2023) Release. https://​
doi.​org/​10.​5281/​zenodo.​80538​10

	3.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutch-
ison GR (2011) Open babel: An open chemical toolbox. J Cheminform
3(1):1–14

	4.	 Powers AS, Yu HH, Suriana P, Koodli RV, Lu T, Paggi JM, Dror RO (2023)
Geometric deep learning for structure-based ligand design. ACS Central
Sci 9(12):2257–2267. https://​doi.​org/​10.​1021/​acsce​ntsci.​3c005​72

	5.	 Li J, Sumita M, Tamura R, Tsuda K (2023) Interpretable fragment-based
molecule design with self-learning entropic population annealing. Adv
Intell Syst 5(10):2300189. https://​doi.​org/​10.​1002/​aisy.​20230​0189

	6.	 Turcani L, Tarzia A, Szczypiński FT, Jelfs KE (2021) stk: An extendable
Python framework for automated molecular and supramolecular struc-
ture assembly and discovery. J Chem Phys 154(21):214102. https://​doi.​
org/​10.​1063/5.​00497​08

	7.	 Matsuoka S, Holy T, Hhaensel Henle A, Skim R, McGrath T, Box W (2024)
mojaie/MolecularGraph.jl: v0.17.1 https://​doi.​org/​10.​5281/​zenodo.​12789​
286

	8.	 Klein C, Sallai J, Jones TJ, Iacovella CR, McCabe C, Cummings PT (2016) A
hierarchical, component based approach to screening properties of soft
matter https://​doi.​org/​10.​1007/​978-​981-​10-​1128-3_5

	9.	 Cummings PT, McCabe C, Iacovella CR, Ledeczi A, Jankowski E, Jayaraman
A, Palmer JC, Maginn EJ, Glotzer SC, Anderson JA, Ilja Siepmann J, Potoff J,
Matsumoto RA, Gilmer JB, DeFever RS, Singh R, Crawford B (2021) Open-
source molecular modeling software in chemical engineering focusing
on the molecular simulation design framework. AIChE J 67(3):17206.
https://​doi.​org/​10.​1002/​aic.​17206

	10.	 Hesketh T (2020) pygen-structures: A python package to generate 3d
molecular structures for simulations using the charmm forcefield. J Open
Source Softw 5(48):2157. https://​doi.​org/​10.​21105/​joss.​02157

	11.	 Lemmin T, Soto C (2019) Glycosylator: a python framework for the rapid
modeling of glycans. BMC Bioinform 20(1):513. https://​doi.​org/​10.​1186/​
s12859-​019-​3097-6

	12.	 Ho O, Green WR (2006) Alternative translational products and cryptic t
cell epitopes: expecting the unexpected. The Journal of Immunology
177(12):8283–8289

	13.	 Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg
I, Hamelryck T, Kauff F, Wilczynski B, Hoon MJL (2009) Biopython: freely
available Python tools for computational molecular biology and bioinfor-
matics. Bioinformatics 25(11):1422–1423. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btp163

	14.	 Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynam-
ics, and function using networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States)

	15.	 Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J,
Zaremba W (2016) OpenAI Gym. cite arxiv:​1606.​01540

https://doi.org/10.1186/s13321-024-00900-6
https://doi.org/10.1186/s13321-024-00900-6
https://github.com/NoahHenrikKleinschmidt/buildamol
https://github.com/NoahHenrikKleinschmidt/buildamol
https://biobuild.readthedocs.io
https://doi.org/10.1021/ci00057a005
https://doi.org/10.5281/zenodo.8053810
https://doi.org/10.5281/zenodo.8053810
https://doi.org/10.1021/acscentsci.3c00572
https://doi.org/10.1002/aisy.202300189
https://doi.org/10.1063/5.0049708
https://doi.org/10.1063/5.0049708
https://doi.org/10.5281/zenodo.12789286
https://doi.org/10.5281/zenodo.12789286
https://doi.org/10.1007/978-981-10-1128-3_5
https://doi.org/10.1002/aic.17206
https://doi.org/10.21105/joss.02157
https://doi.org/10.1186/s12859-019-3097-6
https://doi.org/10.1186/s12859-019-3097-6
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
http://arxiv.org/abs/1606.01540

Page 13 of 13Kleinschmidt and Lemmin ﻿Journal of Cheminformatics (2024) 16:104 	

	16.	 Harris CR, Millman KJ, Walt SJ, Gommers R, Virtanen P, Cournapeau D,
Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, Kerkwijk MH,
Brett M, Haldane A, Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Shep-
pard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020)
Array programming with NumPy. Nature 585(7825):357–362. https://​doi.​
org/​10.​1038/​s41586-​020-​2649-2

	17.	 Inc., P.T.: Collaborative Data Science. https://​plot.​ly
	18.	 Rego N, Koes D (2014) 3Dmol.js: molecular visualization with WebGL.

Bioinformatics 31(8):1322–1324. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btu829

	19.	 Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW (2018) NGL
viewer: web-based molecular graphics for large complexes. Bioinformat-
ics 34(21):3755–3758. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty419

	20.	 Lam SK, Pitrou A, Seibert S (2015) Numba: A llvm-based python jit
compiler. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, pp. 1–6

	21.	 Langa, L., contributors to Black: Black: The Uncompromising Python Code
Formatter. https://​github.​com/​psf/​black

	22.	 Tian C, Fielden SDP, Whitehead GFS, Vitorica-Yrezabal IJ, Leigh DA (2020)
Weak functional group interactions revealed through metal-free active
template rotaxane synthesis. Nat Commun 11(1):744. https://​doi.​org/​10.​
1038/​s41467-​020-​14576-7

	23.	 Bauer RE, Enkelmann V, Wiesler UM, Berresheim AJ, Müllen K (2002)
Single-crystal structures of polyphenylene dendrimers. Chem Eur
J 8(17):3858–3864. https://​doi.​org/​10.​1002/​1521-​3765(20020​902)8:​
17(3858::​AID-​CHEM3​858)3.​0.​CO;2-5

	24.	 Pedro-Hernandez DL, Martinez-Garcia M (2022) Synthesis of open-resor-
cinarene dendrimers with l-serine (ibuprofen) derivatives. Curr Org Chem
26(1):71–80

	25.	 Raush E, Abagyan R, Totrov M (2024) Efficient generation of conformer
ensembles using internal coordinates and a generative directional graph
convolution neural network. J Chem Theory Comput 20(9):4054–4063.
https://​doi.​org/​10.​1021/​acs.​jctc.​4c002​80

	26.	 Miteva MA, Guyon F, Tuffery P (2010) Frog2: efficient 3D conformation
ensemble generator for small compounds. Nucleic Acids Res 38(Web
Server), 622–627 https://​doi.​org/​10.​1093/​nar/​gkq325

	27.	 Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010)
Conformer generation with OMEGA: algorithm and validation using high
quality structures from the protein databank and Cambridge structural
database. J Chem Inf Model 50(4):572–584. https://​doi.​org/​10.​1021/​ci100​
031x

	28.	 Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014)
Beyond post-synthesis modification: evolution of metal-organic frame-
works via building block replacement. Chem Soc Rev 43:5896–5912.
https://​doi.​org/​10.​1039/​C4CS0​0067F

	29.	 García-Ortegón M, Simm GNC, Tripp AJ, Hernández-Lobato JM, Bender
A, Bacallado S (2022) Dockstring: easy molecular docking yields better
benchmarks for ligand design. J Chem Inf Model 62(15):3486–3502.
https://​doi.​org/​10.​1021/​acs.​jcim.​1c013​34

	30.	 Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T (2023) Diffdock: Diffusion
steps, twists, and turns for molecular docking. In: International Confer-
ence on Learning Representations (ICLR)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://plot.ly
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1093/bioinformatics/bty419
https://github.com/psf/black
https://doi.org/10.1038/s41467-020-14576-7
https://doi.org/10.1038/s41467-020-14576-7
https://doi.org/10.1002/1521-3765(20020902)8:17(3858::AID-CHEM3858)3.0.CO;2-5
https://doi.org/10.1002/1521-3765(20020902)8:17(3858::AID-CHEM3858)3.0.CO;2-5
https://doi.org/10.1021/acs.jctc.4c00280
https://doi.org/10.1093/nar/gkq325
https://doi.org/10.1021/ci100031x
https://doi.org/10.1021/ci100031x
https://doi.org/10.1039/C4CS00067F
https://doi.org/10.1021/acs.jcim.1c01334

	BuildAMol: a versatile Python toolkit for fragment-based molecular design
	Abstract
	Introduction
	Implementation
	Software overview
	Core
	Graphs
	Optimizers
	Resources
	Structural
	Utils
	Extensions

	Connecting molecules
	Two modes of fragment assembly
	Chemical reactions

	The optimization suite
	Conformational optimization
	Circularization
	Spatial optimization
	User-guided optimization
	Optimization algorithms
	Performance enhancements

	Results
	Showcase of example molecules
	Comparing to Stk
	Benchmarking optimization
	Extended use cases

	Conclusion
	References

