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Abstract 

Nuclear receptors (NRs) play a crucial role as biological targets in drug discovery. However, determining which com-
pounds can act as endocrine disruptors and modulate the function of NRs with a reduced amount of candidate drugs 
is a challenging task. Moreover, the computational methods for NR-binding activity prediction mostly focus on a sin-
gle receptor at a time, which may limit their effectiveness. Hence, the transfer of learned knowledge among multiple 
NRs can improve the performance of molecular predictors and lead to the development of more effective drugs. In 
this research, we integrate graph neural networks (GNNs) and Transformers to introduce a few-shot GNN-Transformer, 
Meta-GTNRP to predict the binding activity of compounds using the combined information of different NRs and iden-
tify potential NR-modulators with limited data. The Meta-GTNRP model captures the local information in graph-
structured data and preserves the global-semantic structure of molecular graph embeddings for NR-binding activity 
prediction. Furthermore, a few-shot meta-learning approach is proposed to optimize model parameters for different 
NR-binding tasks and leverage the complementarity among multiple NR-specific tasks to predict binding activity 
of compounds for each NR with just a few labeled molecules. Experiments with a compound database containing 
annotations on the binding activity for 11 NRs shows that Meta-GTNRP outperforms other graph-based approaches. 
The data and code are available at: https:// github. com/ ltorr es97/ Meta- GTNRP.

Scientific contribution
The proposed few-shot GNN-Transformer model, Meta-GTNRP captures the local structure of molecular graphs 
and preserves the global-semantic information of graph embeddings to predict the NR-binding activity of com-
pounds with limited available data; A few-shot meta-learning framework adapts model parameters across NR-specific 
tasks for different NRs in a joint learning procedure to predict the binding activity of compounds for each NR with just 
a few labeled molecules in highly imbalanced data scenarios; Meta-GTNRP is a data-efficient approach that combines 
the strengths of GNNs and Transformers to predict the NR-binding properties of compounds through an optimized 
meta-learning procedure and deliver robust results valuable to identify potential NR-based drug candidates.

Keywords Graph Neural Network, Transformer, Few-shot Learning, Meta-Learning, Nuclear Receptor Binding Activity 
Prediction, Drug Discovery

Introduction
Nuclear receptors (NRs) are a family of transcription 
factors that play a crucial role in regulating various bio-
logical processes including cell growth, development, 
and metabolism [1, 2]. Their biochemical significance 
has promoted to a great deal of research in the fields of 
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toxicology and medicinal chemistry, with many drug dis-
covery projects using machine learning (ML) to select 
compounds for the development of NR-based drugs. 
Nonetheless, discovering novel NR-modulators with high 
affinity and specificity is difficult due to structural simi-
larities and shared domains among multiple NRs [3–5].

Ongoing research in computational toxicology is 
focused on developing in silico methods to modulate the 
activity for a group of NRs or the selectivity among spe-
cific NRs. Several ML models of chemical activity against 
multiple NRs have begun to emerge to predict vari-
ous NR-modulators with the potential to target various 
diseases [6]. However, there is limited research on the 
impact of using distinct types of NRs to design quanti-
tative structure-activity relationship (QSAR) models for 
a given target receptor. In addition, current computa-
tional approaches are centered around a single receptor, 
and there hasn’t been an attempt to transfer the learned 
knowledge across multiple NRs [7].

One potential approach for NR-modulation with QSAR 
is multi-task learning. In the case of NRs, multi-task 
learning can be applied to train a model across multiple 
related tasks and evaluate the NR-activity with different 
ligands, or to infer the effects of NR-ligands in differ-
ent tissues [8, 9]. In drug discovery, where high-quality 
labeled information is limited, meta-learning is particu-
larly useful as it allows to learn across few-shot tasks for 
different molecular properties and improve generaliza-
tion with few labeled compounds [10–14]. Hence, multi-
task meta-learning can improve the accuracy of QSAR 
models to predict the activity of compounds on specific 
biological targets with limited data [15–19].

Compounds can be represented using molecule 
graphs, with nodes representing the atoms, and edges 
describing the chemical bonds [20]. Graph neural net-
works (GNNs) update node-edge embeddings in graph-
structured data with neighborhood aggregation to 
output a graph-level embedding useful for molecular 
property discovery [21, 22]. However, standard GNNs 
only aggregate local dependencies and are incapable of 
capturing the broader aspects of node-edge connec-
tions significant for compound classification. Alterna-
tively, Transformers have been developed to tackle this 
issue by learning long-range dependencies while main-
taining the global structure of molecular embeddings. 
These models attend to multiple positions to preserve 
global-semantic information in molecule embeddings 
and generalize for different molecular properties [23, 
24]. Vision Transformers (ViT) extend standard Trans-
former attention to propagate sequences of visual 
tokens and obtain improved performances on image 
classification tasks [25]. Recent advancements in ViT 
approaches have derived multiple hybrid architectures 

that combine them with different neural network mod-
els [26]. Nevertheless, the potential of ViT networks is 
still to be revealed in molecule representation learn-
ing when inferring the NR-binding activity of chemical 
compounds for NR-based drug discovery.

To address this challenge, a novel few-shot GNN-
Transformer, Meta-GTNRP is introduced for NR-bind-
ing activity prediction using limited labeled compounds. 
The proposed approach considers compounds as graph-
structured data encoding the local-to-global context 
of molecule structures for NR-binding activity predic-
tion. In addition, a meta-learning approach is proposed 
to optimize model parameters in multiple few-shot 
tasks and predict their specific NR-binding proper-
ties with limited data. In this research, we make use of 
a Nuclear Receptor Activity (NURA) database [27] to 
describe the experimentally-derived binding, agonist 
and antagonist activities against various human NRs. 
Multiple experiments with NR-activity data demonstrate 
that Meta-GTNRP achieves an improved performance 
on NR-activity tasks over the conventional graph-based 
approaches.

Related work
Few‑shot learning for NR‑binding activity prediction
Few-shot learning (FSL) is a meta-learning approach that 
focuses on generalizing with reduced amounts of super-
vised information. FSL has found recent applications in 
compound discovery by predicting clinically-relevant 
properties using limited high quality data. Here, the goal 
of FSL is to adapt model parameters for different molecu-
lar tasks (meta-training) and use them to predict impor-
tant molecular property tasks using small sets of labeled 
compounds (meta-testing) [28, 29]. FSL methods can be 
classified in two categories: metric-based models [30] 
learn a distance metric that captures the relationship 
between task-specific support sets and separate query 
sets, enabling effective transfer of knowledge for different 
few-shot tasks. On the other hand, optimization-based 
methods [31] adapt model parameters within different 
tasks represented by task-specific support sets and gen-
eralize for novel representations in separate query sets 
using few gradient steps. In this research, we introduce 
an optimization-based meta-learning approach to learn 
across different NR-tasks and generalize to new NR-
binding meta-testing tasks. In meta-training, few-shot 
models are trained using NR-specific support sets to 
adapt model parameters for different NR-specific tasks 
by computing gradients and losses in disjoint query sets 
of molecules. In meta-testing, these parameters are used 
to infer the NR-binding properties of compounds for new 
NR tasks using limited data.
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Graph representation learning
Representing molecules using graph-structured data 
can more accurately depict the relationships among 
atoms important to predict NR-binding properties [32]. 
GNNs work with molecule graphs to encode molecules 
and use a set of nodes to represent the atoms and a set 
of edges to describe chemical bonds between atoms. 
Through a message-passing approach, GNNs aggregate 
node-edge information to compute molecule graph 
embeddings, capturing the molecule’s overall structure 
in a multi-dimensional graph embedding space. More 
specifically, graph convolutional networks (GCNs) [33] 
incorporate a convolutional operation which aggregates 
local information and updates node-edge embeddings, 
similar to convolutional filters used in convolutional 
layers. An alternative technique, called GraphSAGE 
[34], utilizes a node-centric inductive training approach 
to learn the node embeddings in large molecule graph 
structures for unseen graph features. In addition, graph 
isomorphism networks (GIN) [35] are powerful GNN 
frameworks that extend the Weisfeiler-Lehman (WL) 
isomorphism test, demonstrating impressive results 
on different downstream applications. In a pioneering 
study, Hu et  al. [36] have pre-trained GNNs to learn 
local information and obtain improved performances 
across various chemical property tasks. Based on this 
method, Guo et al. [37] proposed a novel meta-learning 
approach that allows GNNs to fast adapt across tasks 
using task-specific weights to meet self-supervised 
objectives in molecular property discovery.

Transformer networks
Transformer networks, introduced by Vaswani et  al. 
[38], are natural language processing (NLP) models that 
leverage self-attention to learn from sequential data 
and retain its global structure. The attention mecha-
nism can be complemented using feed-forward (FF) 
layers, making it a commonly used method for vari-
ous NLP tasks. Vision Transformers (ViT) introduce a 
new application of Transformers to generalize in image 
classification tasks. Dosovitskiy et al. [39] develop this 
novel approach, to outperform the conventional con-
volutional networks by treating inputs as sequences of 
non-overlapping image tokens known as patches. ViT 
blocks include multi-head self-attention layers and FF 
networks which model long-range dependencies among 
patches for computer vision tasks [40, 41]. In mol-
ecule discovery, the application ViT networks has not 
been extensively studied. In this research, we develop 
a few-shot graph-based ViT architecture which com-
bines the local context of molecule graphs with global-
semantic information captured by attention operations 

to effectively predict the NR-binding properties using 
reduced amounts of labeled compounds.

Nuclear receptor data
In this work, data is collected using a public compound 
repository known as NURA (NUclear Receptor Activ-
ity) database [27], which includes public information on 
the activity of 15,247 compounds on 11 human NRs. The 
database contains information of compounds collected 
from sources such as ChEMBL25 [42], BindingDB [43], 
NR-DBIND [44] and Tox21 [45] to express the chemical 
structure using SMILES strings (Simplified Molecular 
Input Line Entry System) [46]. In this study, molecules 
are represented using molecular graphs obtained from 
SMILES using the RDKit.Chem library [47] which are 
pre-processed, so that SMILES are canonicalized and 
duplicates are removed. This curated dataset refers to 
the in vitro bioactivity data of compounds on 11 nuclear 
receptors (NRs), selected based on their biological sig-
nificance and availability on public databases including 
the following: androgen receptor (AR), estrogen recep-
tor α (ERA), estrogen receptor β (ERB), progesterone 
receptor (PR), glucocorticoid receptor (GR), peroxisome 
proliferator-activated receptor α (PPARA), peroxisome 
proliferator-activated receptor γ (PPARG), peroxisome 
proliferator-activated receptor δ (PPARD), pregnane X 
receptor (PXR), retinoid X receptor (RXR) and farnesoid 
X receptor (FXR). Thus, the dataset comprises meas-
urements of bioactivity against 11 NRs such as binding 
activity, agonist activity and antagonist activity. In each 
case, compounds are assigned an activity label, given 
their experimental bioactivities against specific NRs: (1) 
“active”, if bioactivity is equal to or lower than 10,000 
nM (positive); (2) “weakly active”, for bioactivity between 
10,000 and 100,000 nM (positive); (3) “inactive”, for bio-
activity values greater than 100,000 nM (negative); (4) 
“inconclusive”, for compounds having conflicting labels 
for all 3 cases; (5) “missing”, for compounds having miss-
ing information for at least one case. In our experiments, 
we merge both “active” and “weakly active” into a posi-
tive label and “inactive” into a negative label for binding 
(BIN), agonist (AGO) and antagonist (ANT) activity clas-
sification tasks and compounds with “inconclusive” and 
“missing” labels are excluded. Table 1 below reports the 
distribution of compounds for all 11 NR activity labels 
and for all NR binding (BIN), agonist (AGO) and antago-
nist (ANT) activity classification tasks.

Methods
Graph neural network module (GNN)
Molecular graphs are graph-structured representations 
of atoms and their connections via chemical bonds within 
a molecule. Molecular graphs are denoted by G = (V ,E) , 
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with V  the set of nodes v (atoms) and E the set of edges e 
(chemical bonds). Edges are defined by e = (v,u) , where v 
and u are nodes interconnected in a neighborhood N (v) . 
Graph neural networks (GNNs) use a neighborhood 
aggregation function to update node embeddings hv and 
build graph embedding representations hG used in mol-
ecule classification. In this research, a GIN with LGIN = 5 
layers is proposed as an embedding network to detect the 
local dependencies in molecular graphs G and compute 
graph embeddings hG . The GIN performs AGGREGATE 
and COMBINE steps as a sum of node and edge features. 
Node embeddings hv are updated for each message-pass-
ing iteration l by

with mN (v) the “message” propagated throughout GNN 
layers, hlu the embeddings for neighboring nodes, and 
hle the embedding for the edge between nodes u and v . 
After node-edge aggregation, multiple message-pass-
ing iterations l update node embeddings hlv using prior 
representations of that node hl−1

v  and embeddings of its 
neighboring nodes hl−1

u  with u ∈ N (v) . The UPDATE step 
applies multi-layer perceptrons MLP to introduce non-
linearity followed by non-linear activation σ = ReLU

At the final layer LGIN = 5 , a READOUT step pools 
node embeddings to produce a graph-level embed-
ding hG . This graph embedding is obtained by aver-
aging node representations hv using a mean-pooling 
operation, hG = mean({hLGINv : v ∈ V }) . Input node-edge 

(1)
ml

N (v) = AGGREGATEl({hl−1
u , ∀u ∈ N (v)}, {hl−1

e : e = (v,u)})

(2)hlv = σ(MLPl(COMBINEl(hl−1
v ,ml

N (v))))

(3)hlv = ReLU(MLPl(
∑

u∈N (v)∪v
hl−1
u +

∑
e=(v,u):u∈N (v)∪v

hl−1
e )).

embedding features (h0v , h0e ) are described by multiple 
atom-bond attributes including atom type (AT), atom 
chirality (AC) with h0v = {vAT , vAC} , and bond type (BT), 
bond direction (BD) with h0e = {eBT , eBD} . Pre-trained 
GNNs of Hu et al. (2020) [36] are leveraged to pre-train 
the GIN model for better initialization. In this setting, we 
consider 5 GIN layers and an embedding size of 300. A 
schematic of the GNN-Transformer architecture is pre-
sented in Fig. 1.1

Transformer prediction module (TR)
In our research, we investigate how to combine Trans-
formers and GNNs to better discriminate the global-
semantic context and long-range dependencies within 
molecule graph embeddings hG for NR-binding activity 
prediction. A Transformer network with LT = 5 blocks 
is introduced to convert graph embeddings hG into token 
embeddings hT . This prediction module operates as a 
vision Transformer (ViT) [35, 48] that accepts graph 
embedding hG transformed into sequences of  patches 
considering a space of dimension D = N × P2 where N  
is the number of patch tokens and P the size of individual 
patch tokens. The Transformer accepts embeddings x 
converted into sequences of patches xp

(4)T (x) = [x1p, x
2
p, . . . , x

N
p ]

Table 1 Distribution of positive and negative samples for binding, agonist and antagonist activity labels for all 11 nuclear receptors

NR Binding (BIN) Agonism (AGO) Antagonism (ANT)

Positive Negative Positive Negative Positive Negative

AR 1523 5130 634 5578 1167 4942

ERA 1464 4861 937 5060 684 5160

ERB 1225 5554 334 5744 453 5133

PR 1305 5040 376 5670 1289 4400

GR 1900 5228 778 5384 847 4577

PPARA 1352 15 1084 14 18 1

PPARG 1904 5458 1510 5223 241 5249

PPARD 782 5742 689 5663 52 5561

PXR 1327 3866 1319 3866 10 0

RXR 1006 4569 263 4549 1 3

FXR 658 5272 457 5349 267 4829

1 In the figure, individual nodes are represented by blue circles, while neigh-
boring nodes are illustrated by black circles. In addition, blue and white 
squares denote node and graph embeddings hv and hG . The AGGREGATE, 
COMBINE, UPDATE steps are performed simultaneously for all nodes 
v ∈ V  within the graph. Here, we consider graph operations for LGIN = 5 
GIN layers, and a READOUT step is performed at the final GIN layer. 
The vision Transformer (ViT) computes token embeddings hT using graph 
embeddings hG of size 300.
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where xip denotes the i-th patch vector. Specifically, 
the Transformer converts graph embeddings hG into 
N = (⌊ 300P ⌋)2 patch tokens of size P . Token embeddings 
hT (x) = T (x).K  are produced by a linear projection 
K ∈ R

P2×D of patch vectors xip in a Transformer dimen-
sion D . The Transformer propagates token embeddings 
hT in MSA layers. MSA takes three inputs: queries q , keys 
k and values v stacked in matrices (Q,K ,V ) to calculate a 
dot-product attention between queries q in Q and keys k 
in K  . MSA considers a softmax operation to obtain the 
attention weights for values v in V  . In addition, MSA lay-
ers include H projection heads and attention values are 
calculated by

where (WQ
j ,WK

j ,WV
j ) are the projection matrices of 

(Q,K ,V ) for each attention head j . Transformer blocks 
use MSA layers followed by feed-forward networks 
( FFN  ). FFN  include a point-wise ( PW  ) convolutional 
operation to undersample Q and K  and model the local 
context of token embeddings more efficiently. Then, 
a convolution operation is applied to the Q , K  and V  

(5)
MSA(Q,K ,V ) = CONCAT (head1, . . . , headH )W

(6)

headj = Attention(QWQ
j ,KWK

j ,VWV
j )

= softmax(
QWQ

j (KWK
j )T

√
D

)VWV
j

matrices using a depth-wise ( DW  ) separable convolution 
with kernel size s = 3 followed by batch normalization 
and a PW  convolution operation. The MSA and FFN  lay-
ers are preceded by a layer normalization (LN ) followed 
by residual connections. The individual patch tokens xp 
are propagated across multiple Transformer blocks l to 
obtain the token embedding representations hT given by

where l = {1, . . . , LT } , hlT are the deep token embedding 
representations, K  are the linear projections of individual 
patch tokens and positional embeddings with K ∈ R

P2×D 
and Kpos ∈ R

(N+1)×D and where y is an output vector. 
Then, a MLP followed by a sigmoid activation function 
is applied to the the output cls token to predict a molecu-
lar label for different NR-binding activity prediction tasks 
(with an output value ∈ {0, 1} ). The Transformer predic-
tion module of Meta-GTNRP has the main hyper-param-
eters displayed in Table 2.

(7)h0T = [x1pK , x2pK , x3pK , . . . , xNp K ] + Kpos

(8)hl
∗
T = MSA(LN (hl−1

T ))+ hl−1
T

(9)hlT = FFN (LN (hl
∗
T ))+ hl

∗
T

(10)y = LN (h
LT
T )

Fig. 1 Graphical depiction of the two-module GNN-Transformer architecture, Meta-GTNRP
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Few‑shot meta‑learning framework for NR‑binding activity 
prediction
In this research, a few-shot meta-learning framework 
built upon two distinct neural network modules is 
introduced to learn complementary information across 
few-shot tasks for NR-binding activity prediction. This 
strategy leverages the relationship among different NRs 
by the means of integrating information of NR-specific 
predictive tasks with a joint learning procedure. This 
framework is composed of two main components: a GNN 
and a Transformer (TR) modules. Both of these meta-
models update model parameters for different few-shot 
tasks (meta-training) for 10 different NRs using random 
support sets for training and query sets with remaining 
samples for evaluation. Then, these parameters are lever-
aged to infer the binding activity of compounds against a 
1 new specific NR (meta-testing) [30, 31]. In this frame-
work, molecules are organized across meta-training tasks 
to optimize the model parameters by evaluating the bind-
ing activity of compounds for 10 different NRs. Then, 
the parameters obtained in meta-training are leveraged 
to infer the binding activity of compounds for 1 new 
NR, in a new meta-testing task. The main objective is to 
predict the binding activity of compounds for 1 specific 
NR using the NR-binding information of other 10 NR-
binding tasks, so that {fθ (G), gθ∗(hG)} : S ⇒ {0, 1} ∈ Y  , 
where S is the chemical space of molecule graphs G , hG 
is the output graph embedding space of a GNN fθ , gθ∗ is 
a Transformer (TR), and Y  the labels for each individual 
NR. A GIN model fθ with parameters θ and a TR model 

gθ∗ with parameters θ∗ learn across different few-shot 
tasks t ∈ {1 . . . ,NNR−train} for each individual NR. For 
each meta-task, meta-models fθ and gθ∗ are trained using 
random support sets St of molecule graphs GSti

 and eval-
uated using query sets Qt of graphs GQti

.
In meta-training, support sets with size k are ran-

domly sampled as the input for a GNN f (θ) and TR 
g(θ∗) models to obtain the support losses LGNN

t  , LTR
t  

for each individual NR across meta-training tasks 
t ∈ {1 . . . ,NNR−train} with NNR−train = 10 . Support 
losses are used to iteratively update parameters θ → θ ′ , 
θ∗ → θ∗

′ . Then, the GNN and TR models compute 
query losses LGNN ′

t ,LTR′
t  with the remaining n samples 

for a specific task. At this stage, to update parameters 
θ , θ∗ we consider few gradient steps

where α and α∗ are the step sizes for gradient descent 
updates. Then, in meta-testing, support sets with k 
random samples is obtained for 1 new NR-specific test 
task t = NNR−train + NNR−test and parameters θ , θ∗ are 
initialized using model parameters obtained in meta-
training, θ → θ ′ , θ∗ → θ∗

′ with NNR−test = 1 . Then, 
GNN and TR models are evaluated using query sets 
of new molecules with the remainder of the samples 
n for this test task, for predicting the binding activity 
of compounds for 1 specific NR with just a few labeled 
compounds. In this meta-learning framework, the NR 
data is divided into a set of meta-training and meta-
testing tasks for different NRs. During the meta-train-
ing phase, a set of meta-training tasks for 10 different 
NRs are performed. For each task, a random support 
set of size (k+, k−) ( k+ positive and k− negative sam-
ples) is sampled for training, and a disjoint query set is 
sampled for evaluation. More specifically, we compute 
the gradient of the loss with respect to Meta-GTNRP 
parameters using just a few examples from that task 
and update model parameters such that it performs 
well on the query set of this task. The updated param-
eters obtained in meta-training are then used to ini-
tialize Meta-GTNRP to predict a query set of new 
compounds of a new NR meta-testing task with limited 
data. This meta-learning framework is illustrated in 
Fig. 2 with the algorithm shown below.

(11)θt = θ − α▽θL
GNN
t (θ)

(12)θ∗t = θ∗ − α∗
▽θ∗L

TR
t (θ∗)

Table 2 Main hyper-parameters of the Transformer module

Hyper‑parameter Value

Input dim 300

Patch size (P) 30

Number of patches (N) 100

Number of attention heads 5

Linear transform dim (D) 128

MLP dim 256

Conv kernel size 3

Number of blocks (LT ) 5

Batch size 10

Pooling Mean pool

Learning rate 1e
−5

Optimizer Adam
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Algorithm 1 Meta-GTNRP: Few-shot GNN-Transformer Meta-Learning Framework

Loss function for NR‑binding activity prediction
The loss function for the GNN and Transformer mod-
els, LGNN  and LTR is a binary cross-entropy loss. 
However, to answer the issue of class imbalance in 
NR-binding activity prediction, a weighted loss signifi-
cantly penalizes the misclassifications with rare-class 
instances. Hence, the cross-entropy loss includes a 
weight w for a minority class and is formalized by

where y′ are the predictions and y the binding activity 
labels with n the number of datapoints. Since we observe 
different positive–negative ratios for individual NR tasks, 
the value w is obtained by exploring different values 
within an appropriate range. Thus, we establish a value 

(13)L = −
1

n

n∑
i=1

w yi log(y
′
i)+ (1− yi) log(1− y′i)

of w = 5 due to a task-specific variability among NR-spe-
cific predictive tasks.

Baseline methods
The proposed few-shot GNN-Transformer model, 
Meta-GTNRP is compared with other 3 types of GNNs: 

1. GIN - top-performing GNN method that applies the 
Weisfeiler-Lehman (WL) isomorphism test to aggre-
gate important parts of the node’s neighborhood 
[35];

2. GCN - updates node embeddings using convolution 
for neighborhood aggregation similar to convolu-
tional filters found in convolutional networks [33];
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3. GraphSAGE - uses an inductive framework based on 
a node-centric training method to update node fea-
tures within unseen graph representations [34].

These GNN baselines are obtained by the removal of 
the Transformer component of Meta-GTNRP and 
are also trained and evaluated using a few-shot meta-
learning approach to ensure a comparable performance 
across few-shot tasks in the 5-shot and 10-shot settings. 
These GNN models also use pre-trained models of Hu 
et al. [36] for improved initialization and are optimized 
using a standard binary cross-entropy loss function.

The graph-based baselines and Meta-GTNRP are 
implemented in Python 3.9.16 and PyTorch 1.13.0 with 
CUDA 11.6, along with functions in Scikit-learn 1.2.2, 
Numpy 1.22.3, Pandas 1.5.3 and RDKit 2022.03.5. The 
best GNN and Meta-GTNRP models are selected at the 
epoch giving the best ROC-AUC score in the query set 
of the final meta-testing task and we allow it to run for 
at most 1000 epochs. Additionally, we consider update 
steps of 5 for meta-training and 10 for meta-testing. 
In addition, we consider GNN models with a total of 5 
message-passing layers and a graph embedding dimen-
sion of 300.

The GNN baseline models are trained and evalu-
ated using a few-shot meta-learning approach [31] in 

the 5-shot and 10-shot settings. Similarly to the Meta-
GTNRP model, for NR-binding activity prediction tasks, 
we consider 10 meta-training tasks for 10 different NRs 
and 1 final meta-testing task for the remaining NR. For 
NR-agonist and NR-antagonist activity prediction tasks, 
we also consider the single-task (ST) models considering 
1 meta-training task and 1 final meta-testing task. This 
experimental setup ensures a comparable performance 
between Meta-GTNRP and the GNN baselines.

Nuclear receptor binding activity experiments
In this study, we evaluate the binary classification of 
compounds across few-shot tasks for NR-binding activ-
ity prediction. For a total of 11 NRs, the proposed Meta-
GTNRP model considers 10 meta-training tasks for 10 
different NRs and is evaluated on 1 final meta-testing 
task for a specific NR with limited available data (see 
Fig. 2). Specifically, we calculate seven performance met-
rics on the query set of a test task for each of 11 differ-
ent NRs: Sensitivity (Sn), Specificity (Sp), Precision (Pr), 
Accuracy (Acc), ROC-AUC score, and F1 score (F1s). 
ROC-AUC is the main performance metric and com-
putes the area under the receiver operating characteristic 
curve to evaluate the performance in imbalanced scenar-
ios for NR-binding activity prediction. Here, we conduct 
5-shot and 10-shot experiments with random support 

Fig. 2 Schematic of the GNN-Transformer meta-learning framework for NR-binding activity prediction. This framework is composed by two neural 
networks a GNN f  and a Transformer (TR) g with parameters θ and θ ′ , respectively. In meta-training, few-shot tasks t  include random support sets 
St with positive samples k+ , negative samples k− provided for training. Then, the remaining n data points are used as query sets Qt for evaluation. 
The GNN and TR models, f  and g consider 10 few-shot tasks for 10 different NRs in meta-training. Then, in meta-testing, the updated parameters 
obtained are used to initialize the Meta-GTNRP model to predict the NR-binding activity of new compounds in query sets of 1 new NR task using 
random support sets of size (k+ , k−) for k-shot experiments
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sets of size (5+, 5−) and (10+, 10−) for each individual 
NR, respectively. Experiments are repeated 30 times, 
using random support sets each time, to obtain a robust 
estimate of performance for each metric. In Table 3, we 
report the mean and standard deviations of ROC-AUC 
results obtained by the Meta-GTNRP model consider-
ing 10 tasks in meta-training for 10 different NRs across 
30 experiments with (5+, 5−) (5-shot) and (10+, 10−) 
(10-shot) random support sets and evaluated on 1 meta-
testing task for 1 specific NR. In bold, we show the best 
ROC-AUC results for each NR-specific test task. The 
△ column shows the difference in performance results 
of the proposed model and graph-based baselines. In 
the Supplementary Material, figures show scatter plots 
overlaid by boxplots show the ROC-AUC scores and 
standard deviations obtained across 30 experiments 
with 5-shot and 10-shot random supports sets for 
NR-binding activity prediction tasks on 11 different 
NRs. The full performance results for each metric are 
shown in Tables also displayed in the Supplementary 
Material section.

Transfer‑learning agonist and antagonist activity 
experiments
In our experiments, we also test the ability of the Meta-
GTNRP model to transfer the knowledge of a single NR-
binding task for one individual NR to predict the agonist 
or antagonist activity of compounds on that specific NR 
(see Fig. 3). The main goal is to evaluate the generaliza-
tion power of the Meta-GTRNP model by the means of 
single-task (ST) models obtained using the NR-binding 
information to determine which compounds have ago-
nist and antagonist activity for individual NRs. Here, we 
conduct few-shot experiments to transfer the learning of 
ST models trained on NR-binding activity information to 
predict the NR-specific agonist and antagonist activity 
with limited data.

In this case, we conduct 5-shot and 10-shot experi-
ments for ST models trained on a single NR-binding 
activity task to predict the agonist or antagonist activity 
for that specific NR on a single NR agonist or antago-
nist activity test task. These experiments are repeated 30 
times, using random support sets each time. In Tables 4 

Table 3 Average ROC-AUC scores obtained across 30 experiments with random support sets of size (5+, 5−) (5-shot) and (10+, 10−) 
(10-shot) by Meta-GTNRP and few-shot GNN baselines in NR-binding activity prediction for 11 different NRs

Bold indicate the highest ROC-AUC scores for each NR task

Binding activity (BIN)

NR GIN GCN GraphSAGE Meta‑GTNRP (GIN+TR) △

5‑shot (5+, 5−)

 PR 0.8812± 0.0110 0.8634± 0.0353 0.8831± 0.0332 0.9409± 0.0007 +0.0578

 PXR 0.6080± 0.0147 0.6649± 0.0412 0.6486± 0.0387 0.6662± 0.0036 +0.0013

 RXR 0.6128± 0.0354 0.8194± 0.0323 0.8537± 0.0189 0.7630± 0.0439 −0.0907

 GR 0.8313± 0.0256 0.8363± 0.0348 0.8352± 0.0273 0.9082± 0.0014 +0.0719

 AR 0.7652± 0.0253 0.8277± 0.0469 0.8101± 0.0525 0.8745± 0.0023 +0.0468

 ERA 0.8759± 0.0143 0.8474± 0.0342 0.8442± 0.0170 0.9012± 0.0045 +0.0253

 ERB 0.9273± 0.0081 0.8832± 0.0235 0.8717± 0.0170 0.9308± 0.0032 +0.0035

 FXR 0.7452± 0.0170 0.7937± 0.0260 0.7995± 0.0389 0.8605± 0.0037 +0.0610

 PPARD 0.9136± 0.0154 0.8853± 0.0292 0.9298± 0.0203 0.9315± 0.0043 +0.0017

 PPARG 0.7901± 0.0279 0.8226± 0.0454 0.8610± 0.0250 0.8936± 0.0044 +0.0326

 PPARA 0.5771± 0.0408 0.6648± 0.0595 0.7115± 0.0798 0.6238± 0.0563 −0.0877

10-shot (10+, 10−)

 PR 0.9143± 0.0148 0.8887± 0.0221 0.9062± 0.0124 0.9458± 0.0016 +0.0315

 PXR 0.6328± 0.0263 0.6573± 0.0372 0.6630± 0.0375 0.7046± 0.0029 +0.0416

 RXR 0.7978± 0.0414 0.7832± 0.0375 0.8598± 0.0160 0.8392± 0.0186 −0.0206

 GR 0.8713± 0.0185 0.8463± 0.0410 0.8646± 0.0128 0.8967± 0.0035 +0.0254

 AR 0.8356± 0.0305 0.8238± 0.0530 0.8452± 0.0287 0.8912± 0.0033 +0.0460

 ERA 0.8910± 0.0136 0.8493± 0.0196 0.8589± 0.0125 0.9013± 0.0053 +0.0103

 ERB 0.9255± 0.0108 0.8631± 0.0455 0.8896± 0.0145 0.9318± 0.0039 +0.0063

 FXR 0.7997± 0.0214 0.7657± 0.0605 0.8162± 0.0221 0.8686± 0.0032 +0.0524

 PPARD 0.9247± 0.0221 0.8686± 0.0748 0.9157± 0.0281 0.8999± 0.0093 −0.0257

 PPARG 0.8395± 0.0191 0.8171± 0.0481 0.8763± 0.0166 0.8904± 0.0073 +0.0141

 PPARA 0.6957± 0.1088 0.7401± 0.1004 0.6892± 0.1224 0.6068± 0.0931 −0.1333
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and 5, we report the mean and standard deviations of 
ROC-AUC results for the agonist and antagonist activ-
ity predictions made by ST models across 30 experiments 
with (5+, 5−) (5-shot) and (10+, 10−) (10-shot) random 
support sets, considering 1 NR-specific binding task 
in meta-training and evaluated on 1 agonist or antago-
nist meta-testing task for that specific NR, respectively. 
In bold, we present the best ROC-AUC results for each 
individual NR-specific test task. The △ column shows 
the difference in performance results of the proposed 
model and graph-based baselines. In the Supplementary 
Material, figures show scatter plots overlaid by boxplots 
show ROC-AUC scores and standard deviations obtained 
across 30 experiments with 5-shot and and 10-shot ran-
dom supports sets in agonist and antagonist activity pre-
diction on 11 different NRs. The full performance results 
using different metrics are shown in Tables also displayed 
in the Supplementary Material.

Statistical significance analysis of performance 
results
In this work, ROC-AUC (Receiver Operating Charac-
teristic-Area Under the Curve) scores evaluate the per-
formance of the Meta-GTNRP model and graph-based 
baselines. The ROC-AUC score is a widely used metric 
to measure the ability to distinguish between positive 
and negative samples and, particularly useful to meas-
ure performance in limited imbalanced data. However, 
simply reporting the ROC-AUC scores alone may not be 

sufficient to draw conclusions about the significance of 
the performance difference between different models.

To address this issue, we performed a statistical sig-
nificance analysis to determine whether the differences in 
the ROC-AUC scores between the Meta-GTNRP model 
and GNN baselines are statistically significant or merely 
due to chance. This analysis compared the ROC-AUC 
results obtained using a statistical significance test. The 
p-values calculated indicate the probability of observing 
such a difference by chance alone, and a threshold level 
of significance ( α = 0.05 ) is used to determine whether 
the difference is statistically significant. The first step 
was to compute a normality test to determine if ROC-
AUC scores for each pair of performance results are nor-
mally distributed. We used a normality test provided by 
the SciPy library [49] based on the D’Agostino-Pearson 
omnibus test [50, 51], which combines skewness and kur-
tosis measurements to provide a p-value that indicates 
the likelihood that the data is normally distributed. The 
null hypothesis for this test is that the data is normally 
distributed. Hence, if the p-value is less than the signifi-
cance level ( p < 0.05 ), we can reject the null hypothesis 
and conclude that the data is not normally distributed. 
Otherwise, we fail to reject the null hypothesis, indicat-
ing that ROC-AUC results are more likely to follow a 
normal distribution.

Next, we assessed the descriptive statistic of the nor-
mality test to evaluate whether the variance among both 
distributions was the same. We found a difference in 

Fig. 3 Schematic of the meta-learning framework for NR-agonist and NR-antagonist activity prediction. In this experiment, we consider 2 few-shot 
tasks, 1 meta-training task with NR-binding information and 1 meta-testing task for NR-agonist or NR-antagonist activity prediction. In our proposed 
framework, both GNN and Transformer models, f  and g consider a NR-binding task in meta-training to build single-task (ST) models evaluated 
on the corresponding NR-specific agonist or antagonist test task. The model performance is assessed on the query set of a new NR-agonist 
or NR-antagonist meta-testing task using a random support set of size (k+ , k−) for k-shot experiments
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variance between both distributions for all model results. 
To test the statistical significance between each pair of 
results, we used a modified version of the Student t-test if 
both distributions are more likely to be normal. This ver-
sion of the t-test, known as Welch’s t-test, is used when 
there is unequal variance between the two distributions 
being compared. If the distributions are unlikely to fol-
low a normal distribution, we apply the Mann–Whitney 
U non-parametric test. In the statistical significance test, 
p-values are calculated considering the hypothesis:

H0: Performance results are likely drawn from the 
same distribution;
H1: Performance results are likely drawn from differ-
ent distributions (reject H0).

The calculated p-values are used to assess the statistical 
significance of the mean differences between the two distri-
butions, considering a significance level of α = 0.05 . If the 
p < 0.05 , we reject the null hypothesis (H0) and conclude 

that there is evidence to support the alternative hypoth-
esis (H1), indicating that the observed result is statistically 
significant. In Table  6, we report the significance analysis 
of ROC-AUC scores obtained across 30 experiments by 
Meta-GTNRP with respect to GNN baselines in the 5-shot 
and 10-shot settings for the NR-binding, NR-agonist and 
NR-antagonist activity prediction tasks. The results show 
that all the p-values are lower than the significance level, 
leading us to reject the null hypothesis and conclude that 
the ROC-AUC results of Meta-GTNRP are statistically sig-
nificant when compared with the GNN baselines.

This analysis enabled us to determine the significance 
of the performance differences between Meta-GTNRP 
and GNN baselines, allowing us to draw important con-
clusions about the effectiveness of the Meta-GTNRP 
model in NR-activity prediction tasks. In addition, the 
statistical significance analysis provided valuable insights 
for comparing the performance of few-shot models, 
offering robust evidence to support the validity of our 
findings.

Table 4 Average ROC-AUC scores obtained across 30 experiments with random support sets of size (5+, 5−) (5-shot) and (10+, 10−) 
(10-shot) by the single-task (ST) Meta-GTNRP models and single-task (ST) GNN baselines considering 1 NR binding task in meta-
training and 1 NR agonist task in meta-testing

Bold indicate the highest ROC-AUC scores for each NR task

Agonist activity (AGO)

NR GIN GCN GraphSAGE Meta‑GTNRP (GIN+TR) △

5‑shot (5+, 5−)

 PR 0.9556± 0.0091 0.9086± 0.0318 0.9188± 0.0210 0.9617± 0.0005 +0.0061

 PXR 0.8370± 0.0140 0.7800± 0.0184 0.7854± 0.0199 0.8636± 0.0008 +0.0266

 RXR 0.7290± 0.0100 0.6440± 0.0310 0.6772± 0.0110 0.7236± 0.0047 −0.0054

 GR 0.9513± 0.0009 0.9164± 0.0221 0.9220± 0.0176 0.9478± 0.0006 −0.0035

 AR 0.8622± 0.0020 0.8090± 0.0419 0.8176± 0.0289 0.8606± 0.0015 −0.0016

 ERA 0.7213± 0.0071 0.6982± 0.0128 0.7093± 0.0116 0.7278± 0.0025 +0.0065

 ERB 0.9134± 0.0069 0.8714± 0.0381 0.8804± 0.0233 0.9205± 0.0013 +0.0071

 FXR 0.9190± 0.0075 0.8620± 0.0317 0.8885± 0.0078 0.9303± 0.0021 +0.0113

 PPARD 0.9515± 0.0007 0.9154± 0.0214 0.9324± 0.0085 0.9492± 0.0007 −0.0023

 PPARG 0.9433± 0.0012 0.8975± 0.0155 0.9114± 0.0109 0.9403± 0.0011 −0.0030

 PPARA 0.9605± 0.0268 0.9401± 0.1010 0.9563± 0.0248 0.9622± 0.0415 +0.0017

10-shot (10+, 10−)

 PR 0.9474± 0.0094 0.8263± 0.1612 0.9112± 0.0272 0.9543± 0.0018 +0.0069

 PXR 0.8362± 0.0079 0.7737± 0.0334 0.7955± 0.0094 0.8589± 0.0018 +0.0227

 RXR 0.7349± 0.0160 0.6522± 0.0384 0.6771± 0.0151 0.7274± 0.0061 −0.0075

 GR 0.9518± 0.0011 0.9030± 0.0339 0.9173± 0.0199 0.9460± 0.0008 −0.0058

 AR 0.8614± 0.0018 0.7839± 0.0672 0.8197± 0.0267 0.8574± 0.0025 −0.0040

 ERA 0.7257± 0.0068 0.6809± 0.0233 0.7123± 0.0131 0.7388± 0.0022 +0.0131

 ERB 0.9182± 0.0078 0.8252± 0.0985 0.8908± 0.0129 0.9213± 0.0017 +0.0031

 FXR 0.9261± 0.0094 0.8623± 0.0257 0.8823± 0.0119 0.9208± 0.0030 −0.0053

 PPARD 0.9549± 0.0026 0.8984± 0.0951 0.9255± 0.0115 0.9488± 0.0008 −0.0061

 PPARG 0.9432± 0.0013 0.8643± 0.0749 0.9086± 0.0092 0.9410± 0.0009 −0.0022

 PPARA 0.9611± 0.0582 0.6728± 0.1404 0.8899± 0.0989 0.9680± 0.0808 +0.0069
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Discussion
In this work, we introduce a few-shot GNN-Trans-
former, Meta-GTNRP to predict the NR-binding proper-
ties across 11 different NR tasks using limited available 
data. The proposed few-shot two-module meta-learning 
framework combines information of 10 NR-specific 
meta-training tasks to predict the NR-binding activity of 
compounds for 1 new NR in a final meta-testing task. It 
is demonstrated that Meta-GTNRP achieves a superior 
performance in NR-binding activity prediction over the 
standard GNN methods.

In Table  3, we report the average ROC-AUC scores 
obtained across 30 experiments with (5+, 5−) (5-shot) 
and (10+, 10−) (10-shot) random support sets for mod-
els considering 10 meta-training NR tasks in meta to pre-
dict the binding activity of compounds for 1 remaining 
NR meta-testing task. The results show that the proposed 
Meta-GTNRP model outperforms the GNN baseline 
methods (GIN, GCN, GraphSAGE) for the majority of 
NR test tasks in the 5-shot and 10-shot settings. The pro-
posed approach achieves a superior performance taking 
into account the class imbalance scenarios across tasks 
and the lack of labeled information for each individ-
ual NR. In general, the Meta-GTNRP model shows the 
best ROC-AUC results and high Sn and Sp values, thus 

correctly predicting a high proportion of both active and 
non-active binders. The standard deviations reported 
also indicate a smaller variance, which ensures a stable 
performance and more robust results across 5-shot and 
10-shot experiments (see Figures in the Supplementary 
Material). Inversely, GIN, GCN and GraphSAGE produce 
unstable performances and high-variance predictions 
across NR test tasks, which means that they may gener-
alize well in some cases, but collapse for the majority of 
NR-binding experiments.

In our experiments, we also test the ability of the Meta-
GTNRP model considering a single NR-binding task in 
meta-training to predict the NR agonist and antagonist 
activity results for a specific NR. The goal is to evalu-
ate the performance of single-task (ST) models for each 
individual NR and compare the performance in NR ago-
nist and antagonist activity prediction with the standard 
GNN baselines. There are relevant differences in perfor-
mance yielded by ST-models for each NR in NR-agonist 
and NR-antagonist predictive tasks. Nonetheless, in 
5-shot and 10-shot experiments, the ROC-AUC scores 
in Table  4 show that the Meta-GTNRP model exhibits 
higher and more robust results in NR-agonist activity 
prediction for most NR test tasks when compared with 
the graph-based baselines. Similarly, Meta-GTNRP also 

Table 5 Average ROC-AUC scores obtained across 30 experiments with random support sets of size (5+, 5−) (5-shot) and (10+, 10−) 
(10-shot) by the single-task (ST) Meta-GTNRP models and single-task (ST) GNN baselines considering a 1 NR binding task in meta-
training and 1 NR antagonist task in meta-testing

PXR, RXR and PPARA have insufficient data to obtain conclusive ROC-AUC results in the 5-shot and 10-shot settings

Bold indicate the highest ROC-AUC scores for each NR task

Antagonist activity (ANT)

NR GIN GCN GraphSAGE Meta‑GTNRP (GIN+TR) △

5‑shot (5+, 5−)

 PR 0.7738± 0.0061 0.7522± 0.0267 0.7682± 0.0188 0.7933± 0.0038 +0.0195

 GR 0.8739± 0.0035 0.8256± 0.0245 0.8463± 0.0152 0.8802± 0.0016 +0.0063

 AR 0.8037± 0.0058 0.7724± 0.0220 0.7817± 0.0181 0.8173± 0.0043 +0.0136

 ERA 0.7326± 0.0079 0.7179± 0.0178 0.7199± 0.0196 0.7596± 0.0076 +0.0270

 ERB 0.7255± 0.0084 0.6916± 0.0155 0.7091± 0.0139 0.7303± 0.0059 +0.0048

 FXR 0.7199± 0.0161 0.7113± 0.0335 0.7165± 0.0238 0.7280± 0.0077 +0.0081

 PPARD 0.6876± 0.0273 0.6303± 0.0376 0.6330± 0.0278 0.6571± 0.0212 −0.0305

 PPARG 0.6669± 0.0128 0.6227± 0.0292 0.6183± 0.0192 0.6563± 0.0093 −0.0106

10-shot (10+, 10−)

 PR 0.7854± 0.0117 0.7514± 0.0227 0.7689± 0.0152 0.7923± 0.0068 +0.0069

 GR 0.8755± 0.0063 0.8067± 0.0618 0.8375± 0.0127 0.8813± 0.0014 +0.0058

 AR 0.8091± 0.0063 0.7501± 0.0291 0.7802± 0.0211 0.8105± 0.0029 +0.0014

 ERA 0.7408± 0.0134 0.6874± 0.0515 0.7297± 0.0128 0.7526± 0.0066 +0.0118

 ERB 0.7326± 0.0085 0.6787± 0.0520 0.7192± 0.0168 0.7422± 0.0052 +0.0096

 FXR 0.7271± 0.0128 0.6885± 0.0340 0.7227± 0.0238 0.7331± 0.0089 +0.0060

 PPARD 0.7133± 0.0293 0.6691± 0.0348 0.6366± 0.0480 0.6885± 0.0295 −0.0248

 PPARG 0.7233± 0.0172 0.6072± 0.0287 0.6345± 0.0149 0.6920± 0.0088 −0.0313
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performs better in NR-antagonist activity prediction for 
most NR tasks across 5-shot and 10-shot experiments as 
shown in Table 5. It is important to note that individual 
NRs that include higher class imbalance or limited data 
are more likely expected to negatively affect predictive 
performance.

This study addresses key challenges related to class 
imbalance and limited data when predicting the activity 
of compounds for specific NRs. Class imbalance, where 
certain classes are underrepresented, biases predictive 
models toward the majority class, leading to misclas-
sification and high-variance predictions in the minority 
class. This is particularly problematic in drug discovery. 
Limited data aggravates this issue, providing insufficient 
samples for effective learning, which results in poor gen-
eralization, especially for NRs with just a few labeled 
compounds.

When quantifying the class imbalance across differ-
ent NRs, we found significant disparities. For instances, 
PPARA reveals an extreme class imbalance with only 15 

negative samples compared to 1352 positive samples for 
binding activity prediction tasks or 14 negative samples 
compared to 1084 positive samples for agonist activity 
prediction tasks. Similarly, RXR is heavily imbalanced in 
agonist activity prediction tasks with only 263 positives 
and 4549 negative samples. This imbalance results in 
lower sensitivity and higher false-negative rates for these 
NRs, causing predictive models to underperform on the 
minority class.

Moreover, limited available data for specific NRs, such 
as PXR and RXR, also poses a significant challenge for 
predictive models. PXR, for instance, has only 1327 posi-
tive samples and 3866 negative samples for binding activ-
ity predictive tasks, leading to potential overfitting issues 
and reduced predictive performance. Similarly, RXR also 
suffers from limited data with only 1006 positive and 
4569 negative samples for binding activity prediction 
tasks, which can hinder the ability of predictive models to 
generalize more effectively.

Table 6 p-value results of the statistical significance test for 5-shot and 10-shot experiments in NR-binding (BIN), NR-agonist (AGO) 
and NR-antagonist (ANT) activity prediction tasks

NR Binding activity (BIN) Agonist activity (AGO) Antagonist activity (ANT)

Meta‑GTNRP

GIN GCN GraphSAGE GIN GCN GraphSAGE GIN GCN GraphSAGE

5-shot (5+, 5−)

 PR 2.6770e − 23 9.2155e − 13 2.0132e − 10 1.2168e − 09 2.7862e − 11 2.7862e − 11 1.8126e − 19 3.0161e − 11 9.2787e − 10

 PXR 1.7833e − 20 1.7632e − 02 1.8875e − 02 2.7263e − 11 2.9785e − 11 2.9766e − 11 − − −

 RXR 1.2914e − 20 3.0939e − 06 7.8179e − 13 1.0821e − 02 1.0815e − 14 3.7008e − 23 − − −

 GR 3.1254e − 16 3.8332e − 12 2.9953e − 11 3.6642e − 21 2.7565e − 11 2.7547e − 11 4.2228e − 11 3.0047e − 11 3.0010e − 11

 AR 1.3406e − 22 1.0879e − 10 2.9991e − 11 1.9951e − 04 3.0123e − 11 3.0123e − 11 2.8950e − 14 3.3239e − 12 3.0085e − 11

 ERA 7.3051e − 11 3.0066e − 11 3.0047e − 11 3.4432e − 05 3.0104e − 11 1.1843e − 09 1.7275e − 19 2.0412e − 14 3.0123e − 11

 ERB 3.6243e − 02 3.0066e − 11 1.9035e − 18 2.8250e − 04 2.9841e − 11 2.9766e − 11 1.5539e − 02 4.1490e − 15 2.4780e − 10

 FXR 2.0997e − 27 1.1764e − 14 2.3701e − 10 3.4482e − 09 1.2652e − 12 2.9860e − 11 1.2996e − 02 1.2062e − 02 1.6185e − 02

 PPARD 7.1381e − 07 4.0696e − 11 4.8388e − 02 9.2552e − 10 2.9617e − 11 2.9543e − 11 1.2073e − 05 1.4178e − 03 4.0686e − 04

 PPARG 4.2933e − 19 3.0161e − 11 3.6829e − 11 5.4190e − 10 2.9561e − 11 2.9506e − 11 6.0748e − 04 2.4901e − 08 2.4595e − 12

 PPARA 5.6073e − 04 8.1525e − 03 9.1655e − 06 1.0758e − 02 2.1905e − 02 3.0340e − 03 − − −

10-shot (10+, 10−)

 PR 1.6004e − 12 2.9822e − 11 2.9859e − 11 4.6075e − 04 3.0047e − 11 3.0047e − 11 7.7693e − 03 4.7821e − 11 2.1317e − 09

 PXR 2.7126e − 15 1.1776e − 07 1.3261e − 06 3.0010e − 11 3.0029e − 11 3.0010e − 11 − − −

 RXR 1.5926e − 07 4.7701e − 09 1.0267e − 06 2.2382e − 02 3.0161e − 11 3.0732e − 19 − − −

 GR 2.7440e − 08 2.2112e − 07 1.0078e − 14 5.9087e − 29 2.9487e − 11 2.9468e − 11 2.5832e − 05 2.9935e − 11 2.9935e − 11

 AR 5.9845e − 11 2.9972e − 11 3.3155e − 11 9.3443e − 09 3.0085e − 11 3.0066e − 11 6.6613e − 03 2.9898e − 12 3.0123e − 11

 ERA 4.6858e − 04 1.8965e − 15 3.0142e − 11 7.5240e − 12 3.0123e − 11 3.0104e − 11 1.0052e − 04 3.0142e − 11 5.2512e − 11

 ERB 5.0692e − 03 3.0142e − 11 1.1401e − 16 4.2498e − 02 2.9972e − 11 2.9953e − 11 3.9184e − 06 3.0142e − 11 4.6032e − 10

 FXR 2.5994e − 17 2.9972e − 11 8.8757e − 14 6.0097e − 03 3.0161e − 11 6.8654e − 18 3.6582e − 02 6.0280e − 08 3.1330e − 02

 PPARD 1.6262e − 06 2.4376e − 03 1.5376e − 04 1.1017e − 13 2.9137e − 11 2.9100e − 11 1.8108e − 03 1.9491e − 02 7.1099e − 06

 PPARG 5.3717e − 16 3.0161e − 11 6.7283e − 06 2.1728e − 09 2.9822e − 11 2.9822e − 11 2.7335e − 11 4.5529e − 17 6.2620e − 23

 PPARA 1.2437e − 03 1.6889e − 06 4.8922e − 03 3.8543e − 07 4.0779e − 13 1.4713e − 03 − − −
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Meta-GTNRP mitigates the challenges of low-data 
and class imbalance by adopting a few-shot meta-learn-
ing approach based on model-agnostic meta-learning 
(MAML) [31]. In meta-training, this strategy learns 
across few-shot tasks ( k-shot) for different NRs using 
random support sets of (k+, k−) samples for training 
and a disjoint query set with the remaining samples for 
evaluation. Consequently, by considering support sets 
in a balanced manner with the same number of positive 
(k+) and negative (k−) samples, with each class is equally 
represented, Meta-GTNRP learns to handle imbalanced 
data more effectively. In addition, support sets include a 
small number of representative k samples for the model 
to learn from, making it well-suited for situations with 
limited available data.

Therefore, Meta-GTNRP applies a few-shot meta-
learning approach to address the challenges posed by 
class imbalance and limited data in NR activity predic-
tion. This meta-learning strategy facilitates the transfer 
of learned knowledge across NR-specific few-shot tasks 
in meta-training and the updated parameters are used 
to initialize Meta-GTNRP and generalize to new com-
pounds for new NR tasks in meta-testing. This approach 
improves the performance of Meta-GTNRP, when there 
is limited data available and high class imbalance, with-
out having a significant negative impact on predictive 
performance.

The performance of Meta-GTNRP on PPARA is nota-
bly distinct due to several challenges: the extreme class 
imbalance and limited data for PPARA hinders the ability 
to learn the minority class dependencies. In addition, the 
complexity introduced by the Transformer component 
exacerbates performance issues on such small and imbal-
anced data. PPARA’s unique ligand-binding domain, 
which interacts with diverse ligands, adds complexity 
to this prediction task, as the model struggles to cap-
ture this diversity with limited data. To improve perfor-
mance on PPARA, strategies such as data augmentation, 
a PPARA-specific weighted loss function, or reducing 
model complexity could be considered. However, these 
adaptations may negatively impact the performance on 
other NR tasks, as the model might not generalize well 
to data with different distributions. Thus, it is essential to 
balance optimizing for PPARA with maintaining perfor-
mance across all NRs.

The complexity of Meta-GTNRP also poses challenges 
for scalability, particularly with larger datasets and more 
diverse NR activity prediction tasks. Future research 
will focus on optimizing Meta-GTNRP for scalability by 
exploring techniques to improve efficiency and better 
manage computational resources. This will potentially 
make the model more adaptable to new NR-based drug 

discovery applications. Another potential limitation is the 
sensitivity of Meta-GTNRP to hyperparameter settings, 
requiring additional fine-tuning for broader generaliza-
tion to new NRs. Consequently, employing alternative 
hyperparameter tuning methods and conducting sen-
sitivity analyses will be crucial for achieving robust and 
generalizable performance across new and diverse NR 
activity prediction tasks.

Despite these challenges, Meta-GTNRP has the poten-
tial to transfer the learned knowledge among multiple 
NRs to help in the discovery of compounds that target 
other NRs involved in different biological processes. 
Meta-GTNRP can help researchers to accelerate drug 
discovery, making it more efficient to identify NR-mod-
ulators with limited data, which is crucial for developing 
therapies for multiple diseases. This makes Meta-GTNRP 
a useful tool in the field of computational drug discovery, 
offering new opportunities for the identification of NR-
based drug candidates.

t‑SNE visualization experiments in NR‑binding 
activity prediction
To better show the effectiveness of our proposed 
approach in NR-binding activity prediction over graph-
based baselines, we visualize the token embeddings hT 
computed by Meta-GTNRP and graph embeddings hG 
obtained by the GNN baselines across each one of 11 NR-
binding tasks for 5-shot experiments. Therefore, we com-
puted the t-distributed stochastic neighbor embeddings 
(t-SNE) [52] implemented in Scikit-learn with the follow-
ing parameters: n_components = 2, perplexity = 50 and 
learning rate = 300 for Meta-GTNRP and standard GNN 
methods. The t-SNE cluster plots are displayed in Fig. 4 
(5-shot) for 11 different NRs, where red dots denote posi-
tive samples and blue dots describe negative samples.

In Fig.  4, positive and negative compounds predicted 
by the baselines GIN, GCN and GraphSAGE are mixed 
up together, indicating that they have limited ability to 
distinguish between active and non-active binders for dif-
ferent NRs, respectively. Conversely, the Meta-GTNRP 
model obtains well-defined clusters of non-active bind-
ers progressively separating from active binders in the 
low-dimensional feature space for most NR-binding 
activity tasks. In addition, Meta-GTNRP shows clusters 
of negative datapoints (blue dots) closer to each other, 
well-separated from positive datapoints (red dots) with 
some overlapping to express a sense of global connectiv-
ity among active and non-active binders. Hence, for most 
NR-binding tasks, it is clear that Meta-GTNRP outper-
forms the GNN baselines in discriminating both positive 
and negative samples for NR-binding activity prediction.
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Analysis of structural alerts in NR‑binding activity 
prediction
Structural alerts (SA) are molecular substrutures which 
help to identify key molecular fragments and functional 
groups with an important role in NR-binding activity. 
These structural fragments are often used to indicate bio-
logical activity, but can also be used to illustrate a pos-
sible mode of action for a certain compound. Therefore, 
the combination of structural alerts and predictive mod-
els can offer a robust solution to understand the predic-
tion through a more interpretable approach. In this case, 
we analyse the results obtained for the structural alerts 
to identify the key substructures responsible for NR-
binding activity. In this experiment, we obtain different 
types of molecular substructures identified using predic-
tions of Meta-GTNRP for each specific NR considering 
10 other different NR tasks in meta-training. The signifi-
cant molecular substructures are identified using Bio-
alerts [53], a Python package for the derivation of SAs 
using bioactivity data. The probability of a substructure 
to be a structural alert is given by the probability density 
function of the binomial distribution and p-values are 
calculated to assess the statistical significance using the 
predictions of Meta-GTNRP for each NR. The threshold 
frequency is set to 0.70, and the other parameters were 
set to default (p− value ≤ 0.05, nb ≥ 50) . In Fig.  5, we 
show the main substructures obtained using the predic-
tions of Meta-GTNRP for each specific NR significant in 
NR-binding activity 5-shot experiments. The structural 
features that were developed for the workflow are sum-
marized below for each NR studied.

The structural alerts (SAs) identified for various nuclear 
receptors (NRs) reveal both shared and unique molecu-
lar features that influence the ligand NR-binding and NR 
activation. For PR, GR, and AR, several key structural 
elements are shared, reflecting their steroid-based nature. 
In PR, the 3-keto groups of most pregnane-based ligands 
are crucial for the ligand-receptor binding. These groups 
establish vital hydrogen bonds (H-bonds) with amino 
acid residues in the PR ligand-binding domain (LBD), 
making them essential for the PR activity. The removal 
or replacement of this 3-keto group significantly reduces 
the NR-binding activity [54–57]. Similarly, in GR, ketone 
groups play a central role, forming key H-bonds with 
the arginine and glutamine residues in the LBD, which 
enhances the NR affinity. The structural alerts for GR 
ligands also emphasize the importance of backbone ring 
structures with oxygen or nitrogen groups that contrib-
ute to more stable ligand-receptor interactions [58]. For 
AR, the 3-keto group and OH groups are critical for the 
androgenic activity, facilitating interactions with key 
amino acid residues such as the T877 AR side chains in 
the AR LBD [59]. Additionally, nonsteroidal ligands such 

Fig. 4 t-SNE visualizations of token embeddings hT  generated 
by Meta-GTNRP and graph embeddings hG obtained by GNN 
baselines for 5-shot experiments. In this figure, blue dots denote 
negative samples and red dots represent positive samples for each 
NR-binding activity task
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as quinolones, hydantoin, and bicalutamide derivatives 
can also bind effectively to the AR, allowing for flexible 
structural modifications used to develop potential drug 
candidates for the treatment of androgen-sensitive pros-
tate cancer [60, 61].

PXR and RXR ligands exhibit distinct features. PXR 
ligands are characterized by scaffold ring structures and 
oxygen functional groups, particularly ketones, which are 
essential for ligand-receptor interactions via H-bonding 
within the PXR ligand-binding pocket [58, 62]. In con-
trast, RXR ligands are generally lipophilic and include 

functional groups like double-bond oxygens or carboxylic 
acids that interact with arginine and serine residues in the 
RXR LBD [63]. These ligands typically contain aromatic 
or aliphatic ring structures, such as the cyclohexene 
group in retinoic acid, which aligns with the structural 
alerts identified for this specific NR [58].

ER ligands share similarities with those of RXR. Both 
ERA and ERB ligands rely on ring structures and oxy-
gen or nitrogen functional groups to establish hydro-
gen bonds within the ER LBD, which are crucial for an 
effective ligand-receptor interaction [64]. These shared 

Fig. 5 Analysis of structural alerts (SA) and representative molecular structures in NR-binding activity experiments. Each subfigure shows 
the significant substructures to determine NR-binding activity for each specific NR obtained using the predictions of the Meta-GTNRP model 
for 5-shot experiments
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structural patterns across different NR families highlight 
the conserved features required for the NR activation.

FXR, however, displays more diverse structural alerts. 
While hydrogen bonding with arginine and histidine resi-
dues via carboxylic groups is a common feature, the SAs for 
FXR also show functional groups like nitrogen, sulfur, and 
halogens connected to aromatic and aliphatic rings [58, 65]. 
This diversity suggests that FXR can accommodate a broader 
range of chemical structures compared to other NRs.

Lastly, PPAR ligands represent a distinct class of NRs. 
The three PPAR isoforms (PPARA, PPARD, and PPARG) 
prefer diaromatic scaffolds with specific functional 
groups tailored to each PPAR isoform activity. Unlike the 
steroidal NRs, the PPAR ligands often lack a steroid back-
bone but still maintain structural motifs necessary for 
NR activation. For example, the PPARG agonists are used 
to manage insulin resistance, while PPARA and PPARD 
primarily regulate glucose metabolism. In addition, fatty 
acid- and retinoid-like ligands with moderate PPAR affin-
ity are also observed among the identified SAs [58, 66].

The structural alerts and their representative structures 
obtained for different NRs identified key molecular frag-
ments and functional groups playing significant roles in 
NR-binding activity. These substructures are critical for 
understanding the biological activity of compounds and 
their potential modulator properties for specific NRs. 
The most significant molecular substructures reveal both 
similarities and differences in the structural alerts across 
various NRs, highlighting distinct and common features 
that influence the NR-binding activity.

It is important to note that the frequency of ligand 
structures appearing across NRs can be attributed to 
several factors inherent to the original data and the bio-
logical nature of the NRs. Certain substructures, such as 
the 3-keto groups in PR, GR, and AR, appear frequently 
due to their critical role in establishing stable interac-
tions through H-bonding within the NR ligand-binding 
domains. Conversely, the diversity of structural alerts for 
FXR suggests that its ligand-binding domain can accom-
modate a broader range of chemical structures. This 
variability of structural alerts is indicative of potential 
selective NR modulation and highlights the adaptability 
of these NRs to different chemical environments.

Conclusion
Nuclear receptors (NRs) are important biological tar-
gets that modulate the binding activity of drug-like com-
pounds. In this work, the goal is to take into account the 
individual contribution of different NRs and leverage 
their complementarity to predict the NR-binding proper-
ties of compounds with high sensitivity and high specific-
ity with imbalanced and limited data, which is crucial in 
drug discovery.

In this paper, we propose a few-shot GNN-Trans-
former, Meta-GTNRP to capture local information of 
molecular graphs and preserve the global structure of 
graph embeddings using a two-module meta-learning 
framework for NR-binding activity prediction with lim-
ited data. This few-shot learning strategy combines the 
information of 11 individual predictive tasks for 11 dif-
ferent NRs in a joint learning procedure to predict the 
binding, agonist and antagonist activity with just a few 
labeled compounds in highly imbalanced scenarios. The 
results yielded by Meta-GTNRP provide strong evidence 
that meta-learning is a data-efficient approach to model 
the NR-binding activity of compounds across few-shot 
tasks, when there is a limited data available, without hav-
ing a negative impact on predictive performance. The 
ROC-AUC results show that Meta-GTNRP generalizes 
well to new NR tasks with a smaller variance, showing 
a superior performance over the standard graph-based 
methods. Hence, the proposed Meta-GTNRP framework 
is an effective method to predict the NR-binding proper-
ties of compounds through an optimized meta-learning 
procedure, delivering faster and more robust results 
with just a few labeled compounds. This approach can 
be used to identify potential NR-based drug candidates 
with limited available data, making Meta-GTNRP a valu-
able tool to accelerate the process of drug discovery and 
development.
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