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Abstract 

This paper proposes a novel multi‑view ensemble predictor model that is designed to address the challenge 
of determining synergistic drug combinations by predicting both the synergy score value values and synergy class 
label of drug combinations with cancer cell lines. The proposed methodology involves representing drug features 
through four distinct views: Simplified Molecular‑Input Line‑Entry System (SMILES) features, molecular graph features, 
fingerprint features, and drug‑target features. On the other hand, cell line features are captured through four views: 
gene expression features, copy number features, mutation features, and proteomics features. To prevent overfitting 
of the model, two techniques are employed. First, each view feature of a drug is paired with each corresponding cell 
line view and input into a multi‑task attention deep learning model. This multi‑task model is trained to simultane‑
ously predict both the synergy score value and synergy class label. This process results in sixteen input view features 
being fed into the multi‑task model, producing sixteen prediction values. Subsequently, these prediction values are 
utilized as inputs for an ensemble model, which outputs the final prediction value. The ‘MVME’ model is assessed 
using the O’Neil dataset, which includes 38 distinct drugs combined across 39 distinct cancer cell lines to output 
22,737 drug combination pairs. For the synergy score value, the proposed model scores a mean square error (MSE) 
of 206.57, a root mean square error (RMSE) of 14.30, and a Pearson score of 0.76. For the synergy class label, the model 
scores 0.90 for accuracy, 0.96 for precision, 0.57 for kappa, 0.96 for the area under the ROC curve (ROC‑AUC), and 0.88 
for the area under the precision‑recall curve (PR‑AUC).

Scientific contribution 

This paper presents an enhanced synergistic drug combination model by utilizing four different feature views 
for drugs and four views for cancer cell lines. Each view is then input into a multi‑task deep learning model to predict 
both the synergy score and class label simultaneously. To address the challenge of managing diverse views and their 
corresponding prediction values while avoiding overfitting, an ensemble model is applied.
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Introduction
Addressing various biochemical processes within cells in 
complex diseases is limited by the effectiveness of a single 
drug targeting a single entity. Consequently, drug com-
bination therapy, wherein multiple drugs are combined 
to produce improved therapeutic outcomes beyond the 
capabilities of individual pharmaceuticals, emerges as 
a viable strategy to overcome this limitation. The added 
advantage of reducing adverse effects by reducing the 
amount of drug needed for each treatment further 
enhances its appeal. Over several decades, the effective-
ness of drug combination treatment has been demon-
strated, specifically regarding the pervasive issue of drug 
resistance in cancer. So, identifying the best drug combi-
nation becomes a crucial endeavor with numerous impli-
cations for clinical, translational, and economic research. 
The efficacy of these drug combinations is significantly 
influenced by the synergy score value.

It is impractical to evaluate the synergy of drug com-
binations by experimental studies when dealing with a 
large number of drug combinations in high-throughput 
screens. Not only are such experiments perilous, but they 
are also costly, time-intensive, and demand consider-
able technical expertise, research experience, and human 
resources. So, deep learning models have become useful 
instruments in the field of biomedicine, offering more 
scalable and efficient simulation and analysis of bio-
medical data. Various approaches have been proposed to 
develop simulation models able to forecast effective drug 
combinations. These approaches leverage diverse factors, 
including cell line omics data as [1, 2], structural network 
interactions as [3, 4], and chemical drug properties as [5]. 
However, accurately determining synergistic drug combi-
nations remains an ongoing research challenge, necessi-
tating the development of more precise models.

This paper proposes a model not only enhances accu-
racy in predicting synergistic drug combinations com-
pared to existing techniques but also holds significant 
potential for advancing drug discovery and development. 
By offering more reliable predictions, the model can 
streamline the early stages of drug screening, reduce the 
costs associated with experimental validation, and accel-
erate the identification of promising drug combinations. 
These improvements could lead to more efficient devel-
opment pipelines and quicker delivery of effective treat-
ments to patients, ultimately transforming the landscape 
of therapeutic innovation.

The proposes model is ‘MAEM’ a Multi-task Attention 
Ensemble Model designed for the concurrent predic-
tion of drug combinations’ synergy class label and syn-
ergy score value with an ensemble model to address the 
overfitting issue. Initially, multi-views of drug features are 
utilized, where the first view involves SMILES features 

extracted from the Mordred algorithm [6] using the 
RDKit tool [7]. The second view incorporates the drug’s 
molecular graph, and a multi-view graph mechanism is 
employed to represent the drug’s molecular graph. The 
third view represents a binary vector of drug-target inter-
action features, while the final view encompasses the 
drug’s fingerprint.

Additionally, four views are integrated for cell line fea-
tures, encompassing the gene expression profile of cell 
lines, copy number data, genetic mutation data, and pro-
teomics data. To manage these extensive feature sets, two 
techniques are employed to prevent overfitting during 
model training. Firstly, each drug view paired with each 
cancer cell line is federated as input into the multi-task 
attention learning model. This model takes the two drug 
features intended for combination with the target cancer 
cell line and outputs both the synergy score value and 
synergy class label. This process results in sixteen views 
being input into the multi-task attention model, generat-
ing sixteen predictions for each synergy score value and 
synergy class label.

Finally, an ensemble model is applied, which takes the 
sixteen synergy score values and synergy class labels as 
separate inputs, aggregating them to produce the final 
prediction score. The proposed model demonstrates 
superior performance compared to other models in the 
comparative analysis.

The structure of this paper is set up as follows: “Related 
works” section delves into the related works applied in 
drug combination research. “The proposed model” sec-
tion provides a detailed overview of MAEM, elucidating 
its main components and components. “Experimental 
results” section covers several topics, such as the model 
parameters, evaluation metrics, dataset used, and experi-
mental outcomes. Lastly, the summary of MAEM is con-
cluded in “Conclusion” section.

Related works
Numerous techniques have been proposed for devel-
oping a learning model that is capable of forecasting 
synergistic drug combinations. First machine learning 
algorithms are learned to predict synergistic drug com-
binations such as Random Forest, Support Vector 
Machines ElasticNet, Gradient Boosting Machines, etc. 
Then, DeepDSC [8] pioneered the application of a deep 
learning model for forecasting synergistic drug combi-
nations. Initially, the model utilizes the concatenated 
SMILES features of drugs and the gene expression data 
of the cell line as inputs for a deep learning model. This 
deep model comprises fully connected layers that learn 
the input features and produce the synergy as output. 
This approach demonstrates superior synergy outcomes, 
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showcasing a notable  7.2% improvement over five well-
established machine-learning techniques.

Following this, AuDNNsynergy [1] employs a deep 
learning model with omics data. This innovative 
approach posits that the cell line feature comprises three 
distinct components: gene expression, copy number, 
and mutation data. Three autoencoders are used to rep-
resent each component. Subsequently, the drug features 
are combined with the cell line features and provided as 
input to a deep learning model. The utilization of omics 
data with deep learning surpasses the performance of 
DeepDSC, which relies solely on a deep learning model.

The SynPred [9] model stands out from others by inte-
grating various references including Zero interaction 
potency models, Bliss independence, highest single agent, 
and Loewe additivity. It utilizes comprehensive omics 
data for cancer cells, encompassing gene expression, copy 
number, methylation, global chromatin, metabolomics, 
microRNA, and proteomics data, along with chemical 
drug features. Employing an autoencoder for each cell 
line feature helps reduce the dimensionality of the omics 
data. Subsequently, these refined data are fed into a deep 
learning model for independent prediction of each syn-
ergy type.

Moreover, TranSynergy [10] introduces an alternative 
approach to representing drug features. It proposed a 
methodology based on gene–gene interaction and cell-
line gene dependency features to simulate the cellular 
effects of drugs. Initially, it introduces a novel technique 
called Shapley Additive Gene Set Enrichment Analysis to 
identify genes enhancing the synergy of drug combina-
tions. Subsequently, drug features are derived from 2041 
selected genes identified through drug-target interaction, 
while cell line features are represented from the gene 
dependency or gene expression related to these 2041 
genes. Lastly, these features are input into a deep learning 
model developed with a transformer architecture.

Also, DeepDDS [5], proposed a novel approach for rep-
resenting drug features. Drugs are portrayed as a graph 
network, where atoms serve as nodes and chemical rela-
tions form the bonds of the graph. Subsequently, the drug 
graph input to a graph attention network to drug extract 
features. Simultaneously, the cell line is obtained from 
gene expression data, and a multi-layer perceptron is 
trained to extract cell features. The ultimate step involves 
concatenating the features of the two drugs and the cell 
line into a single vector and inputting it into fully con-
nected layers to predict whether the drug exhibits syn-
ergy or antagonism.

PRODeepSyn [2] introduces a novel perspective on cell 
line features, focusing on the impact of protein–protein 
interactions and integrating this information with omics 
data from cancer cell lines. The model incorporates 

genomics and transcriptomics data, along with informa-
tion on protein–protein relationships, into the ultimate 
cell line embeddings. For drug features, it combines 
the Morgan fingerprint with the SMILES descriptors. 
Lastly, a deep learning model with batch normalization 
is employed to output synergy score values, mitigating 
the model’s reliance on initial parameters and enhancing 
generalization.

Subsequently, CGMS introduces an innovative deep-
learning model that represents two drugs and a cell 
line as nodes within a complete graph and all nodes are 
interconnected. The drug nodes’ features are expressed 
through drug fingerprints and RedKit descriptors. The 
cell line features are obtained from gene expression 
data with a variance feature selection technique, isolat-
ing the most informative 5000 genes. Subsequently, both 
drug and cell line features undergo processing through 
an autoencoder, resulting in an output of 256 features 
for each. The model then applies a heterogeneous graph 
attention network to extract features from the complete 
graph, and the final output vector from the graph is input 
into a multi-layer perceptron for simultaneous prediction 
of synergy and sensitivity scores.

Moreover, MultiSyn [4] introduces a multi-task syner-
gistic model capable of concurrent prediction of both the 
synergy score value and synergy class label. This model 
employs a multi-view graph representation to extract 
molecular graphs for drugs and utilizes SMILES descrip-
tors to represent chemical drug features. These features 
are concatenated to form the representation of drug 
features. For cell line features, the model utilizes gene 
expression while integrating the impact of drug-drug 
interactions in cancer cells through an attention mecha-
nism. Finally, the features are concatenated and input 
into a multi-task model to output both the synergy score 
value and synergy class label concurrently.

Also, MTLSynergy [11] proposed a multi-task learn-
ing model aimed at predicting both the synergy and sen-
sitivity scores of drug combinations. The model utilized 
fingerprint and molecular features for drug attributes, 
alongside cell expression for cell line features. Subse-
quently, an autoencoder was applied to each set of drug 
and cell line features to reduce dimensionality. These 
encoded features were then input into a deep neural net-
work to concurrently generate synergy and sensitivity 
scores.

All previous works have represented drug features 
using one or two views, and the same approach has been 
applied to cell line features. Additionally, the interac-
tions between drugs, between a drug and a cell line, and 
between genes within a cell line have a significant impact 
on accurately simulating the complex interactions that 
occur in the body, which is the fundamental idea behind 
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drug combinations rather than administering each drug 
individually.

In this paper, the paper addresses the first issue by inte-
grating multi-view representations for both drug and cell 
line features, allowing for a more comprehensive study 
and handling of their diverse properties. To manage the 
redundancy that can arise from multi-view representa-
tions, we propose an ensemble model. The second issue 
is tackled by incorporating a view that can simulate the 
interactions between two drugs, between genes within 
the cell line, and between the drug and these genes.

The proposed model
The MAEM model introduced in this paper is designed 
to predict the synergistic effects of drug combinations. 
Initially, both drug and cell line features are fed into 
a multi-task attention deep learning model, generat-
ing both a synergy score value and a synergy class label 
indicating the nature of the drug combination (synergis-
tic or antagonistic). Subsequently, an ensemble model is 
applied to aggregate the predictions. The first and sec-
ond subsections delve into the discussion of multi-view 
features for drugs and cell lines, respectively. The third 
and fourth subsections cover the details of the multi-task 
attention and ensemble models, respectively.

Drug multi‑view features
To extract the drug features, four multi-view representa-
tions are applied.

The first view involves the extraction of chemical 
drug features by utilizing the SMILES representations 
retrieved from the public PubChem website. Then, the 
“Mordred” features [6] from DeepChem’s chemical 
informatics software [12] are used to convert these rep-
resentations into descriptor feature vectors. Mordred is 
specifically designed to generate a wide range of molecu-
lar descriptors, which are quantitative representations of 
the chemical properties of molecules. By using Mordred, 
the molecular representations of drugs are transformed 
into descriptor feature vectors, resulting in an extensive 
array of numerical features. In this case, Mordred com-
putes 1613 distinct numerical features for each drug, 
covering 43 different categories. These features capture 
various chemical properties, including topological, geo-
metrical, electronic, and thermodynamic aspects of the 
molecules. By converting complex molecular structures 
into a structured, one-dimensional numerical form. Pre-
processing steps include the removal of non-numerical 
features and attributes with zero variance leaving each 
drug with 394 informative features. To enhance con-
sistency, the resulting features undergo normalization 
through the tanh-norm approach.

In the second view, graph molecular drugs are con-
verted into graphs, in which every atom serves as a node, 
and the chemical bonds that connect them are edges. 
Then, four views of the graphs are extracted using a 
multi-view graph technique applied as in [4]. This tech-
nique can capture the graph embedding characteristics 
by applying four view representations with lowing time 
complexity make them to appropriate for multi-view cell 
line feature representation. The first view concentrates 
on labeling nodes within the graph, where each unique 
node in the graph is identified and assigned a distinct 
numerical value, which is then represented as a vector 
encoding these numeric values for each node. The sec-
ond view utilizes the labels associated with each edge in 
the graph, considering all possible paths between nodes, 
including loops. The frequency of each path’s occurrence 
is calculated, resulting in a vector that reflects the occur-
rence counts of all paths, as proposed in earlier research. 
The third view aims to extract the density of the neigh-
borhood surrounding each atom by analyzing the short-
est path length among them. The occurrence of each 
unique path length is recorded in a vector that captures 
the distribution of path lengths within the graph. Finally, 
the fourth view focuses on the labels of all possible paths 
between nodes, counting the frequency of each distinct 
label sequence along the paths. The resulting vector is 
constructed based on these label occurrences. To main-
tain consistency across views, each view vector is initial-
ized with a fixed-length vector that is entirely composed 
of zeros. The output of each view is then used to mod-
ify this vector. The final step involves concatenating the 
four views that were acquired from the multi-view graph 
technique into a single vector, subsequently normalized 
using the tanh-norm approach.

The third view applies drug fingerprint features, cap-
turing a concise and distinctive numerical depiction 
of a drug’s chemical structure derived from molecular 
descriptors. This paper specifically employs the MACCS 
(Molecular ACCess System) fingerprint [13], which is a 
collection of structural keys utilized in cheminformat-
ics and computational chemistry to represent molecu-
lar structures. Comprising 166 structural keys, each key 
corresponds to a specific structural pattern or fragment 
commonly observed in organic molecules.

The fourth and final view focuses on features associated 
with drug-target interactions. As the cell line is consists 
of genes and if the drug target cell line genes responsible 
for caner disease, the representation of drug according 
to its genes targeted is necessary. Initially, drug targets 
are gathered from the PubChem website for each drug. 
Subsequently, all drug targets are consolidated into a sin-
gle vector. Finally, each drug is assigned a binary vector 
of the same size as the collected targets. A value of 1 is 
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assigned if there is an interaction between the drug and a 
specific target and 0 otherwise. This methodology yields 
a vector of length 567.

Cell line multi‑view features
Cell line feature extraction can be categorized into four 
views. The initial view involves the utilization of gene 
expression features, encompassing the transcription of 
DNA into RNA (mRNA) and subsequently translated 
into functional proteins, reflecting the biological state 
and function of the cells. Gene expression data for this 
paper are sourced from the Cancer Cell Line Encyclope-
dia (CCLE), except the ’OCCUBM’ cell, which is obtained 
from the Sanger Cell Model Passports (SCMP) project. 
The gene expression datasets are integrated by identify-
ing the intersecting genes between them, yielding a fea-
ture vector of 19,067.

The second perspective centers on copy number vari-
ations, which represent alterations in the number of 
copies of specific DNA segments within a genome. This 
alteration can have profound effects on gene expression 
and are often associated with an individual’s susceptibil-
ity to various diseases or conditions, including cancer. By 
analyzing these variations, we can gain insights into the 
genomic alterations that contribute to disease progres-
sion and drug response.

The third view introduces mutation features, which 
capture changes in the DNA sequence of specific genes. 
These mutations can lead to altered or dysfunctional pro-
teins, potentially driving oncogenic processes or influ-
encing how cells respond to treatment. The mutation 
feature vector is binary, where each gene is assigned a 
value of 1 if a mutation is present and 0 if no mutation is 
detected. This binary representation allows for a straight-
forward analysis of the mutational landscape across dif-
ferent cell lines.

Both the copy number variations and mutation data 
are sourced from CCLE, ensuring consistency in the 
genomic data used. The resulting feature vectors for copy 
number variations and mutations are of lengths 25,267 
and 17,256, respectively, providing a comprehensive view 
of the genomic alterations present in the cell lines. These 
detailed genomic features are critical for understanding 
the molecular underpinnings of cancer and for develop-
ing targeted therapeutic strategies.

The fourth perspective delves into the comprehensive 
set of proteins generated by a cell under specific condi-
tions, commonly referred to as proteomics data. This 
data offers valuable insights into the functional state of 
cells, as proteins are the primary executors of biologi-
cal processes and are directly involved in most cellular 
activities. This perspective captures the dynamic nature 
of protein expression, reflecting how cells respond to 

various stimuli or environmental conditions. Initial cell 
line data are collected from the CCLE, and for cell lines 
absent in CCLE, information is obtained from the SCMP 
project. Similar to the approach in gene expression, the 
datasets are consolidated by identifying the proteins that 
intersect between them resulting in a set of 2411 proteins 
features.

It is noteworthy that the features of cell line views 
exhibit higher dimensionality compared to drug view 
features. To address the challenge posed by the elevated 
dimensionality of cell features, the variational autoen-
coder approach is employed. Each cell view serves as 
input to a distinct variational autoencoder [14], with the 
Kullback–Leibler (KL) loss defined in Eq. (1), producing a 
condensed cell view with a length of 256 that normalized 
using the tanh-norm method.

where μ and σ represent the mean and standard deviation 
of the distribution in the latent space, respectively.

Multi‑task attention learning model
This subsection is specifically dedicated to the simultane-
ous generation of both the synergy score value and syn-
ergy class label by integrating the feature views of both 
drugs and cell lines. Figure 1 shows the structure of the 
multi-task attention model.

Initially, the features of the two drugs are processed 
through separate fully connected subnetworks, each 
comprising three layers interconnected by the Recti-
fied Linear Unit (ReLU) activation function, except the 
final layer which employs a linear activation function. To 
address potential overfitting, regularization techniques 
are applied to the weights and outputs of each fully con-
nected layer. Concurrently, cell line features undergo 
a similar process in a distinct fully connected subnet-
work to extract relevant information. Subsequently, the 
acquired features from both drugs and cell lines are con-
catenated and fed into a multi-head attention mechanism 
[15] to generate two distinct feature vectors representing 
the two target tasks.

The multi-head attention mechanism is a useful tool 
applied in multi-task models, utilizing attention weights 
to comprehend intricate relationships among feature vec-
tors. It can accentuate informative vector values and dis-
regard less significant ones by assigning trained weights 
to each vector value. This paper applied four heads for 
a multi-head attention approach, which enables the 
retrieved features to be weighted differently for each task.

The output of the multi-head attention is combined 
with the input using the concatenation process to collect 
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1
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a wider range of features and reduce the possibility of 
overfitting. These features are then fed into a cross-stitch 
mechanism [16] to learn relationships between tasks. By 
utilizing the cross-stitch subnetwork’s capabilities, the 
model can discover and build relevant relations between 
tasks, facilitating knowledge transfer and improving pre-
diction performance.

Thus, the relationship between the synergy score value 
and synergy class label tasks is learned, producing two 
output feature vectors for the two target tasks. Further-
more, for each task, the cross-stitch network’s outputs 
and inputs are concatenated. Finally, the two resulting 
feature vectors are input into two separate fully con-
nected subnetworks, each dedicated to one task. These 
subnetworks applied the PRELU activation function and 
output the synergy score value and synergy class label 
concurrently.

Ensemble model
Each drug view is paired with each cell line view and 
fed into the described multi-task attention deep learn-
ing model, yielding sixteen input feature representations. 
The model outputs sixteen prediction values for synergy 
score values and class labels.

To combine these predictions, an ensemble model is 
used, employing ‘input variation’ or ‘feature-level diver-
sity’ by utilizing multiple inputs to train the same model 
structure as shown in Fig.  2. Training the same model 
structure on different subsets or transformations of the 
input features introduces diversity in the models’ per-
spectives. This diversity can lead to a more robust and 
accurate ensemble when predictions are combined. 
The key idea is to create diversity among the models by 

varying the input data while keeping the model architec-
ture consistent.

This paper applied the ensemble average model that 
typically involves simply averaging the predicted values 
from multiple models. This ensemble average can be a 
straightforward yet effective way to increase a model’s 
generalization and robustness. It often works well when 
the individual models are diverse and complementary in 
their predictions. So, the sixteen prediction values are 
average to output the final prediction value for each syn-
ergy score value and synergy class label.

Experimental results
This section assesses the performance of MAEM using 
a challenging dataset from O’Neil [17]. The first subsec-
tion presents dataset details, while the second discusses 
evaluation metrics. The third subsection covers model 
parameter settings, and the fourth subsection presents 
the experimental results of MAEM compared with other 
related works on the target dataset.

Dataset characteristics
This paper utilizes a drug combination dataset obtained 
from the extensive O’Neil dataset, a widely acknowledged 
benchmark in cancer research. This dataset includes 
information on various drug combinations, specifying 
the names of paired drugs and the corresponding cancer 
cell lines designated for treatment. O’Neil dataset com-
prises 38 unique drugs tested across 39 diverse cancer 
cell lines, resulting in a comprehensive set of 22,737 drug 
combinations covering seven types of cancer tissues.

The Loewe Additivity score [18] is computed to deter-
mine the effect of a drug combination, whether it is 
antagonistic or synergistic. This score is based on a 4 × 4 

Fig. 1 The structure of the multi‑task attention model
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Fig. 2 The structure of the MAEM ensemble model
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dose–response matrix and supposes that no interaction 
between a drug and itself and ranges from − 326.46 to 
179.12.

For the task of classification, the binary classification of 
drug synergy is applied. Specifically, drug combinations 
possessing a synergy score value exceeding 30 are catego-
rized as synergistic, and those with a score value below 
0 are deemed antagonistic. Combinations falling within 
the score range of 0–30 are not included in the training 
set, because they represent additive combinations, gen-
erating a balanced distribution of samples for the classi-
fication task. However, the removal of these samples in 
the synergistic classification task also entails eliminating 
the same samples in the regression task within this paper. 
To address this challenge, a three-class labeling strategy 
is implemented for the synergistic classification task. So, 
synergy score values falling below 0 belong to the antag-
onistic class, those exceeding 30 to the synergetic class, 
and core values between 0 and 30 to the additive class. 
This method produces an imbalanced distribution of 
samples among the three classes, potentially impacting 
classification training.

The dataset is divided into five cross-fold validations, 
ensuring that each drug-drug combination is included in 
only one-fold. In each cross-fold, one fold is used as the 
testing dataset, and the other four folds are used as the 
model’s training dataset. The final results are then calcu-
lated throughout all five training runs and presented as 
the mean synergy score value and class label prediction 
scores.

Evaluation metrics
Several regression metrics are used to assess the MAEM. 
The initial metric is the mean squared error (MSE), 
which measures the squared disparity between predicted 
and actual values. Also, the root mean squared error 
(RMSE) is calculated. In addition, the MSE’s 95% confi-
dence interval is computed. Another crucial metric is the 
Pearson correlation coefficient  (CCP) which assesses the 
degree of agreement between the predicted and actual 
values. To ensure the accuracy and dependability of 
results, the mean and standard deviation for each evalua-
tion metric are proposed over the five folds, following the 
deployment of a five folds cross-validation approach.

On the other hand, for assessing the classification task 
for MAEM, various metrics are utilized to gauge per-
formance. Initially, accuracy is employed to measure 
the model’s ability to make correct predictions. How-
ever, given the imbalance in the test dataset as positive 
classes are rare, relying on accuracy metric may not offer 
a fair evaluation metric of the classifier’s performance. 
Consequently, precision is utilized to assess the model’s 
accuracy in predicting the synergetic class. In addition, 

Cohen’s Kappa is used to determine how well the model 
performs by comparing its performance to that of a clas-
sifier that makes random guesses depending on class 
frequencies.

Furthermore, two crucial metrics are utilized which 
are especially useful for imbalanced classification tasks 
where a minority class has limited examples. These 
evaluation metrics are the receiver operating character-
istic curve (ROC-AUC) and the area under the precision-
recall curve (PR-AUC). The metric ROC-AUC assesses 
the classifier’s capacity to differentiate between nega-
tive and positive samples under different threshold val-
ues, while the metric PR-AUC emphasizes the trade-off 
between precision and recall curve. This emphasis is par-
ticularly valuable when handling imbalanced data.

Global model setting
To fully characterize the MAEM, various global param-
eters are outlined. Initially, the three hidden units for the 
fully connected subnetwork, managing two drug features 
and cell line features, are specified as [1024, 512, 256]. 
Moreover, the hidden units of the prediction subnetwork 
are defined as [1024, 128, 64] for both output tasks.

In the training phase, the model utilizes a learning rate 
set at 0.0001, processes batches of size 512, and under-
goes 500 iterations. Optimization of the model is con-
ducted through the AdamW optimizer [19], a modified 
version of the Adam optimizer that incorporates weight 
decay into the optimization learning. The model employs 
two key regularization techniques to mitigate the risk of 
overfitting, both of which are integral to enhancing the 
generalizability and predictive accuracy of the model 
on new data. First, weight decay, implemented through 
L1 and L2 regularization, is applied to all dense layers 
within the model. Specifically, an L1 regularization term 
of 0.001 and an L2 regularization term of 0.001 are used. 
This approach penalizes large weights, preventing the 
model from becoming overly complex and ensuring that 
it remains robust when exposed to unseen data.

In addition to regularization, the model undergoes a 
five-fold cross-validation process, as described in “Data-
set characteristics” section on dataset characteristics. 
This method involves dividing the dataset into five sub-
sets, where the model is trained on four subsets and test 
on the remaining one. This process is repeated five times, 
with each subset serving as the testing set once. Hyper-
parameters are optimized on one-fold are then applied 
consistently across the other four folds before training 
process. This cross-validation technique is crucial for 
ensuring that the model’s performance is not reliant on a 
single partition of the data, thereby further reducing the 
likelihood of overfitting.
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Results and discussion
For comparing the MAEM model, four deep learning 
models (MutliSyn, PRODeepSyn, AudnnSynergy, Deep-
Synergy) designed for the drug combination task are cho-
sen. These models are selected because they are applied 
to all samples in the O’Neil dataset. This selection is 
motivated by the challenge of integrating data from mul-
tiple sources, which may lead to slight variations in the 
values of collected data.

First, Table 1 outlines the performance metrics of dif-
ferent methods in predicting drug combination synergy 
score value. MAEM showcases superior performance 
with an MSE of 206.57, suggesting minimized prediction 
errors. Additionally, MAEM demonstrates the lowest 
RMSE values at 14.30. The Confidence Intervals signify 
the precision of estimates, with narrower intervals indi-
cating more accurate predictions. Moreover, MAEM 
outshines other methods with a  CCP value of 0.78, under-
scoring its effectiveness in predicting drug combination 
synergy score value.

Table  2 shows how well the model performed in pre-
dicting the synergy class label when evaluating the clas-
sification of synergistic drug combinations in comparison 
to previous approaches that used the drug-drug combi-
nation pair approach. While the MAEM accuracy score 
isn’t as good as other approaches, this can be related to 
the additive class, which is explained in “Dataset char-
acteristics” section. It’s crucial to remember that, as 
was already established, accuracy alone isn’t a fair and 
effective metric for unbalanced classification tasks. 

Nevertheless, MAEM outperforms all comparable mod-
els when evaluating additional metrics such as precision, 
ROC-AUC, and PR-AUC. MAEM continuously shows 
significant agreement, even though it might not have the 
greatest Kappa metric. As such, MAEM has exceptional 
performance in the categorization of synergistic drug 
combinations, especially when it comes to novel drug-
drug combination pairs.

Furthermore, Fig.  3 illustrates precision values across 
various cancer cell lines, providing a comparative analy-
sis between MAEM, MutliSyn, and PRODeepSyn. This 
visual representation aids in understanding the method’s 
outcomes with alternative approaches. MAEM exhibits a 
significant improvement in precision scores compared to 
PRODeepSyn across all examined cancer cell lines. Addi-
tionally, it achieves competitive and enhanced precision 
scores relative to MutliSyn for the majority of the consid-
ered cancer cell lines.

Moreover, Fig.  4 provides a thorough comparison of 
MSE scores across all cancer cell lines for MAEM, Mut-
liSyn, and AudnnSynergy. MAEM consistently achieves 
competitive and improved MSE scores in contrast to 
both MutliSyn and AudnnSynergy across the majority of 
the assessed cancer cell lines.

To conduct a more in-depth analysis of the MAEM 
model and understand the individual significance of each 
feature in predicting regression synergy score values, 
Table 3 provides a breakdown of the impact of applying 
each feature independently in MAEM for classification 
metrics. The table initially reports the results for four 

Table 1 Comparative analysis of synergy score value prediction performance with other related models

The best results are shown in bold

Method MSE Confidence interval RMSE CCP

MAEM 206.57 ± 43.92 [152.04, 261.10] 14.30 ± 1.47 0.78 ± 0.03
MTLSynergy 216.47 ± 37.32 [171.15, 265.79] 14.66 ± 1.26 0.76 ± 0.02

MutliSyn 219.14 ± 39.59 [170.00, 268.29] 14.75 ± 1.28 0.76 ± 0.02

PRODeepSyn 229.49 ± 42.81 [176.34, 282.64] 15.09 ± 1.37 0.75 ± 0.02

AudnnSynergy 241.12 ± 43.52 [187.09, 295.15] 15.46 ± 1.44 0.74 ± 0.03

DeepSynergy 255.49 [239.93, 271.06] 15.91 ± 1.56 0.73 ± 0.04

Table 2 Comparative analysis of synergy class label prediction performance with other related models

The best results are shown in bold

Method Accuracy PR‑AUC ROC‑AUC Precision Kappa

MAEM 0.90 ± 0.02 0.88 ± 0.02 0.96 ± 0.01 0.96 ± 0.02 0.57 ± 0.05

MTLSynergy 0.94 ± 0.01 0.62 ± 0.05 0.90 ± 0.02 0.72 ± 0.06 0.51 ± 0.04

MutliSyn 0.90 ± 0.02 0.85 ± 0.03 0.95 ± 0.02 0.93 ± 0.01 0.61 ± 0.06
PRODeepSyn 0.93 ± 0.01 0.63 ± 0.05 0.90 ± 0.03 0.72 ± 0.06 0.51 ± 0.03

AudnnSynergy 0.93 ± 0.01 0.63 ± 0.06 0.91 ± 0.02 0.72 ± 0.06 0.51 ± 0.04

DeepSynergy 0.92 ± 0.03 0.59 ± 0.06 0.90 ± 0.03 0.56 ± 0.11 0.51 ± 0.04
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cell line views featuring gene expression, copy number 
variation, mutation, and proteomics respectively. Follow-
ing that, the results for four drug view features, encom-
passing target, mordred, graph, and fingerprint, are 
presented.

Moreover, to analyze the role of ensemble learning in 
predicting both synergy score value and synergy class 
label, Fig. 5 illustrates the sixteen MSE prediction scores 
for each representation input to the multi-task attention 
model. Notably, MAEM consistently demonstrates low 
MSE across all sixteen models, indicating its significant 
efficacy. Here,  pi (i = 1:16) represents the output predic-
tion of the sixteen models. Additionally, Fig. 6 showcases 
the  CCP between the sixteen models and MAEM. The 
results indicate that MAEM exhibits an improved  CCP, 
surpassing the best prediction score among the sixteen 
models by nearly two points.

For the classification task, highlighting the impact of 
the ensemble model, Figs. 7 and 8 depict the ROC-AUC 
curve and PR-AUC curve between the sixteen mod-
els and MAEM, respectively. These visuals reveal that 
MAEM enhances both the ROC-AUC and PR-AUC 

curves compared to the sixteen individual predictions. 
The ROC-AUC sees a 3% improvement over the best 
prediction among the sixteen models, while the PR-AUC 
experiences a 4% enhancement over the best of the six-
teen models.

Tables  4 and 5 explore the effectiveness of different 
approaches to handling feature redundancy and learning 
tasks in drug synergy prediction.

In the Concat method, features from four drug views 
and four cell line views are concatenated and fed into a 
multi-task attention model. This approach shows how an 
ensemble model can address the redundancy problem by 
integrating multiple feature sets into a single representa-
tion, which is then used to predict the synergy score or 
class label.

The Single_task method, on the other hand, treats each 
drug and cell line view separately, applying them to a deep 
learning model with three fully connected layers. The 
resulting features are concatenated and passed through 
a fully connected subnetwork to predict either the syn-
ergy score or class label. The final output is derived by 
applying an ensemble model to the sixteen predictions 
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Fig. 3 Comparative analysis of precision scores predictions across 39 cancer cell lines for MAEM, MutliSyn, and PRODeepSyn models
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generated by this process. This method highlights the 
differences between multi-task and single-task learning, 
emphasizing how single-task learning involves separate 
predictions for each view before combining them.

As shown, MAEM outperforms Concat and Single_
task methods highlighting its superiority in managing 
redundancy and multi-task learning.

Figure  9 presents the precision for both synergistic 
and antagonistic classes. The MAEM model achieves the 
highest precision for the synergistic class at 96%, demon-
strating strong performance. For the antagonistic class, it 
has a precision of 89%, which is slightly lower than other 
models, indicating a marginally reduced accuracy in this 
category.
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Fig. 4 Comparative analysis of MSE predictions values across 39 cancer cell lines for MAEM, MutliSyn, and AudnnSynergy models

Table 3 Ablation study to assess the influence of individual drug and cell line view features in the MAEM model

The best results are shown in bold

Method MSE Confidence interval RMSE CCP

MAEM 206.57 ± 43.92 [152.04, 261.10] 14.30 ± 1.47 0.78 ± 0.03
Expression 208.23 ± 44.58 [152.89, 263.57] 14.35 ± 1.48 0.77 ± 0.03

Copy 208.39 ± 42.75 [155.31, 261.47] 14.36 ± 1.43 0.78 ± 0.03
Mutation 209.11 ± 42.74 [156.05, 262.17] 14.39 ± 1.42 0.77 ± 0.03

Proteomics 209.38 ± 45.77 [152.56, 266.21] 14.39 ± 1.52 0.77 ± 0.03

Target 209.96 ± 46.03 [152.82, 267.09] 14.41 ± 1.52 0.77 ± 0.03

Mordred 212.63 ± 46.62 [154.75, 270.52] 14.50 ± 1.54 0.77 ± 0.03

Graph 215.78 ± 42.80 [162.65, 268.91] 14.62 ± 1.41 0.74 ± 0.03

Finger 209.26 ± 40.25 [159.29, 259.23] 14.40 ± 1.35 0.77 ± 0.02
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Figure  10 illustrates the recall for the synergistic and 
antagonistic classes. MAEM excels in identifying antago-
nistic cases with a perfect recall of 100%. However, while 
it performs well for the synergistic cases, it does not sur-
pass Prodpred, although it outperforms AudnnSynergy, 
MultiSyn, and DeepSynergy.

Figure  11 depicts the F1-score for the synergistic and 
antagonistic classes. While MAEM is not the best model 
overall, it demonstrates strong performance in the antag-
onistic class with a high F1-score, indicating an effective 
balance between precision and recall. For the syner-
gistic class, the F1-score is acceptable, matching that of 
AudnnSynergy and exceeding that of DeepSynergy.

Conclusion
A novel approach (MAEM) employing a multi-task atten-
tion deep learning model with multi-view feature rep-
resentation and an aggregate ensemble model has been 
introduced in this paper. The primary objective was the 
concurrent prediction of both the synergy class label and 
synergy score value for drug combinations. The model 
incorporated four distinct views for feature representa-
tion of each drug and cancer cell. The views included 

drug-target features, Mordred SMILES features, multi-
view graph molecular features, and fingerprint features 
for drugs. For cell lines, the four views encompass gene 
expression profile features, copy number variation fea-
tures, mutation features, and proteomics features. The 
model employs a multi-task learning approach where 
each drug view feature representation is paired with each 
cell view feature representation, resulting in sixteen out-
put prediction values from the multi-task attention model 
for synergy score value and synergy class label based on 
the sixteen combined input representations. To consoli-
date these sixteen output predictions, an ensemble model 
has been applied, producing the final prediction value.

The effectiveness of MAEM has been assessed using 
the O’Neil benchmark cancer dataset, consisting of drug 
combinations and cancer cell line information. In contrast 
to preceding deep learning models employed for drug 
combination tasks, the MAEM model achieves notewor-
thy  CCP and demonstrates low MSE and RMSE when 
predicting synergy score values. Furthermore, in the pre-
diction of synergy class labels, the MAEM model show-
cases elevated precision, ROC-AUC, PR-AUC, and Kappa 
values, outperforming previous models in these metrics.

Fig. 7 Comparative analysis of sixteen ROC‑AUC prediction values output from sixteen representation inputs to multi‑task attention model 
and MAEM
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To advance the understanding of drug combina-
tions, it is essential to consider factors beyond synergy 
such as evaluating the potential side effects of drug 
combinations, as even highly synergistic combinations 
may present significant risks. Additionally, a thorough 

examination of the drug design can offer valuable insights 
into optimizing the combination process. By incorpo-
rating these broader considerations, it can make more 
informed and comprehensive decisions, ensuring that 
drug combinations are not only effective but also safe and 
well-regulated.

Fig. 8 Comparative analysis of sixteen PR‑AUC predictions values output from sixteen representation input to multi‑task attention model 
and MAEM

Table 4 Ablation study to evaluate the impact of feature 
redundancy in drug and cell line views, as well as the effect of 
single‑task learning on the prediction of synergy scores

Method MSE Confidence 
interval

RMSE CCP

Concat 217.37 ± 47.42 [158.49, 276.24] 14.66 ± 1.54 0.76 ± 0.03

Single_task 216.38 ± 43.41 [162.49, 270.27] 14.64 ± 1.41 0.76 ± 0.03

Table 5 Ablation study to evaluate the impact of feature 
redundancy in drug and cell line views, as well as the effect of 
single‑task learning on the prediction of synergy class label

Method Accuracy PR‑AUC ROC‑AUC Precision Kappa

Concat 0.89 ± 0.02 0.83 ± 0.03 0.93 ± 0.02 0.93 ± 0.03 0.54 ± 0.03

Single_task 0.85 ± 0.03 0.68 ± 0.06 0.87 ± 0.02 0.90 ± 0.07 0.31 ± 0.09
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Fig. 9 Comparative analysis of sixteen PR‑AUC predictions values 
output from sixteen representation input to multi‑task attention 
model and MAEM
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