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Abstract   
In untargeted metabolomics, structures of small molecules are annotated using liquid chromatography-mass 
spectrometry by leveraging information from the molecular retention time (RT) in the chromatogram and m/z 
(formerly called ’’mass-to-charge ratio’’) in the mass spectrum. However, correct identification of metabolites 
is challenging due to the vast array of small molecules. Therefore, various in silico tools for mass spectrometry peak 
alignment and compound prediction have been developed; however, the list of candidate compounds remains 
extensive. Accurate RT prediction is important to exclude false candidates and facilitate metabolite annotation. 
Recent advancements in artificial intelligence (AI) have led to significant breakthroughs in the use of deep learn-
ing models in various fields. Release of a large RT dataset has mitigated the bottlenecks limiting the application 
of deep learning models, thereby improving their application in RT prediction tasks. This review lists the databases 
that can be used to expand training datasets and concerns the issue about molecular representation inconsist-
encies in datasets. It also discusses the application of AI technology for RT prediction, particularly in the 5 years 
following the release of the METLIN small molecule RT dataset. This review provides a comprehensive overview 
of the AI applications used for RT prediction, highlighting the progress and remaining challenges.

Scientific contribution   
This article focuses on the advancements in small molecule retention time prediction in computational metabo-
lomics over the past five years, with a particular emphasis on the application of AI technologies in this field. It 
reviews the publicly available datasets for small molecule retention time, the molecular representation methods, 
the AI algorithms applied in recent studies. Furthermore, it discusses the effectiveness of these models in assisting 
with the annotation of small molecule structures and the challenges that must be addressed to achieve practical 
applications.

Keywords  Retention time prediction, Liquid chromatography, Untargeted metabolomics, Small molecules, Deep 
learning, QSRR, SMRT, MassBank, PredRet, RepoRT

Introduction
In untargeted metabolomic analysis, the most reli-
able method for metabolite annotation is to compare 
the chromatographic retention times (RTs) and mass 
spectral fragmentation patterns of compounds with 
those of standard substances. However, these standards 
may be expensive for individual laboratories, and their 
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annotation coverage is often low. Therefore, initial anno-
tation of unknown compounds in silico can provide a 
theoretical basis for their identification. The most direct 
approach to identify candidate compounds is to search 
the experimental spectrum against mass spectral librar-
ies. Owing to the limited annotation of compounds not in 
the database, further efforts are needed, such as the pre-
diction of in silico structures or spectra using algorithms.

Machine learning (ML) algorithms, which are based 
on statistical models and learn from large datasets, and 
their sub-branch deep learning (DL), which excels at 
extracting complex data features using neural networks, 
have been applied for various purposes, including data 
mining, image recognition, and prediction analysis [1]. 
In mass spectrometry (MS), CSI-FingerID [2] employs 
algorithms such as multiple kernel learning and sup-
port vector machines (SVM) to predict fingerprints for 
molecular structures. By integrating with SIRIUS 4 [3], 
the approach evaluates the best match by comparing 
the scores generated from the predicted fingerprints, 
derived from spectrum-computed fragmentation trees, 
against the fingerprints generated for each structure 
in the database. In addition, ML algorithms are used to 
generate in silico reference spectra for small molecules, 
thereby extending the coverage of mass spectrum librar-
ies [4, 5]. As of 21 Feb, 2024, there were 1844353 in silico 
data covering 89% of the spectra in the MoNA database 
[6]. Moreover, the application of DL algorithms has led 
to the generation of in silico compound structures from 
mass spectra, as demonstrated by tools like MSNovelist 
[7] and MassGenie [8]. However, MS data often corre-
spond to numerous candidate compounds that share the 
same molecular mass and exhibit similar mass spectral 
fragmentation patterns.. The RT information from liquid 
chromatography (LC), which correlates significantly with 
the molecular structure, can serve as a filter to elimi-
nate false positives, significantly narrowing the range of 
candidate compounds and resulting in a more accurate 
annotation.

Common molecular separation methods include 
reversed-phase (RP), hydrophilic interaction LC (HILIC), 
and normal-phase (NP) separation. RP uses non-polar 
particles, such as octadecyl-modified silica particles (C18 
column), and a polar liquid phase. These nonpolar parti-
cles strongly attract nonpolar molecules, such as hydro-
carbons, including aliphatic and aromatic compounds, 
making them widely used in the separation of second-
ary metabolites. In contrast, HILIC has polar particles 
in a nonpolar liquid phase. Its polarity increases with the 
addition of water, making it suitable for the separation of 
hydrophilic compounds that are weakly retained in RP. 

Therefore, depending on the target compound, the sepa-
ration methodology must be adjusted to suit the purpose 
of the separation. No single method can comprehensively 
cover all the types of compounds.

In Nicoud’s book [9], the chromatographic equation 
is described. By integrating Eqs. 1.22, 1.27, 1.31, and 1.7 
mentioned in the book, a rough calculation formula for 
RT can be obtained using Eqs. 1 and 2:

where Q represents the flow rate, which is typically meas-
ured in mL/min. V  denotes the volume of the extra-
granular fluid within the column while V  refers to the 
volume of the lumped solid phase within the column. The 
lumped solid phase included the skeleton of the beads 
and fluid present in the intragranular pores. The term 
εi represents the internal porosity of the column, and 
accordingly, 1− εi signifies the intragranular porosity. 
KA is the lumped Henry coefficient related to K̂ A . K̂ A is 
the standard Henry’s coefficient, which varies with fac-
tors, such as the temperature and solvent composition. 
Essentially, KA and K̂ A are measures of the affinity of 
the solute for the stationary phase relative to the mobile 
phase. These parameters collectively suggest that the RT 
in chromatographic processes can be influenced by a 
variety of column parameters. These parameters include 
the material used for column filling, capacity, porosity, 
column temperature, solvent composition, solvent gradi-
ent, and flow rate. Each of these factors can significantly 
affect the interaction between the analyte and stationary 
phase, thereby altering the RT of different compounds as 
they pass through the column. Owing to the factors men-
tioned above, the RT measured by different LC systems 
can exhibit significant variability. This variability cre-
ates challenges when using RT information for metabo-
lite annotation across different experimental platforms. 
Therefore, developing methodologies to accurately pre-
dict the RT of small molecules in different LC systems 
can facilitate the application of in silico metabolite anno-
tation to laboratory-specific chromatographic systems.

This review primarily focuses on the research progress 
related to the prediction of LC RTs. It includes discus-
sions on publicly available data sources and molecular 
structure representation, and particularly emphasizes 
the application of AI technology in RT prediction meth-
odologies, especially in the context of the large METLIN 
small-molecule RT dataset released in the last 5 years.

(1)tR =
1

Q

(
V + V · KA

)

(2)KA = εi + (1− εi) · K̂A
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Datasets with liquid chromatography RTs
Spectrum databases include freely available library 
HMDB [10], GNPS (Global Natural Products Social 
Molecular Networking) [11], ReSpect (RIKEN MSn 
spectral database for phytochemicals) [12], MassBank 
[13], MoNA [6], METLIN [14], SDBS (Spectral Data-
base for Organic Compounds, AIST) [15] and commer-
cial library NIST23 (NIST Mass Spectral Libraries, 2023 
Edition) [16], METLIN Gen2 [17], mzCloud [18] as well 
as Wiley-MSforID [19]. Comparison between partial 
free and commercial spectrum libraries is well reviewed 
by Vinaixa et al. [20]. In addition to organized spectrum 
databases, spectrum is also possible to be generalized 
from raw data databases Metabolights [21] and Metabo-
lomics Workbench [22]. In this review, we focus only on 
open-access data sources.

RT data are recorded relatively less frequently than 
mass spectrum data in large libraries. The HMDB, GNPS, 
ReSpect, and SDBS libraries only provide MS spectrum 
data without RT information. The Open-source METLIN 
only provides spectrum search services and neither spec-
trum data nor RT information downloads. MassBank and 
MoNA have MS spectral data, some of which contain 
additional RT information and maybe useful sources for 
integrating spectrum and RT. MassBank provide detailed 
and structured information about chromatography sys-
tem, MS peak list and RT. It’s worth noting that, although 
partial datasets in MoNA provide submitter name, sub-
mitter institute, submitter email, column name and 
instrument name, basically they do not provide infor-
mation about eluents, gradient etc. For more rigorous 
considerations for using RT data in MoNA, it is better 
to contact submitter to confirm if the data is measured 
under same chromatography system. Except for Mass-
Bank and MoNA, the Metabolights and Metabolomics 

Workbench libraries are good candidate sources for 
acquiring RT datasets, which collect raw experimental 
spectrum data, including target and untargeted metabo-
lite profiling of animals, plants, and microorganisms 
under various treatments from public studies. In theory, 
spectra and RTs can be summarized as large datasets 
by reusing the raw data. Metabolite annotation in the 
Metabolights library is a hybrid of manual, chemical 
standard, and software automated annotation. Therefore, 
studies with convincing annotation (authentic chemical 
compound-supported annotation) are a better choice for 
training.

In addition to spectral libraries, datasets published in 
articles were the primary complementary data sources. 
The METLIN small molecule RT (SMRT) dataset [23] is 
the first large RP chromatography RT dataset of 80038 
standardized molecules measured under a unified system 
that has been widely used as a training dataset since its 
publication. In addition to SMRT, another recently pub-
licized largest machine-learning ready dataset RepoRT 
[24] collate information from 373 datasets, provid-
ing 88325 RT entries covering 49 different LC systems 
through highly rigorous error correction. In addition to 
these two large datasets, chiral molecule RT (CMRT) 
dataset, contains RT information for 25847 (11720 pairs) 
chiral molecules detected by 25 column systems in 644 
reports, which is expected to expand the data sources 
for model training [25]. Besides large-scale organized 
datasets, RT information (usually no more than 1000) is 
provided in additional files for several articles [26–31]. 
Portions of these experimental data were organized to 
PredRet [32], which provides an easy method for reuse, 
and they have been downloaded by subsequent research-
ers as common small datasets for transfer learning or 
model evaluation [23, 33–37]. PredRet has maintained a 

Table 1  Investigation of liquid chromatography records with retention time information and valid molecular identifiers in datasetsa

a See Fig. 1 for the workflow of the survey. The ’’total records’’ indicated total entry number in libraries. ’’RT records (LC)’’ indicated the number of entries which 
instrument type can be recognized as liquid-chromatography instrument by matching ’’LC’’ in name (e.g. LC-ESI-QTOF), same with ’’RT records (GC)’’ which could be 
recognized as gas-chromatography instrument by matching ’’GC’’ in name (e.g. GC-EI-QqQMS). Record entries which did not indicate instrument type or measured by 
MS instrument (e.g. QTOF) only were excluded from total entries for subsequent analysis
b The 30,981 records did not include records from the MassBank data source to prevent duplicate analyses of the same records in MassBank
c 6067 records included sources with DOIs but did not include records from MassBank sources to prevent duplicate analyses
d The method for counting unique compounds was based on the International Chemical Identifier keys (InChIKeys) as previously described [20]. InChIKeys were 
generated from identifiers based on the priority order of InChI, SMILES, PubChem CID, KEGG ID, CAS ID, ChEBI ID, or IUPAC name identifiers, stereo information was not 
excluded if it was provided. Records in which InChI could not be parsed using RDKit (v2023.09.04) [38] were excluded from analysis
e 81 invalid InChI identifiers and 36 duplicated InChI from 17 pairs stereoisomers with same InChI identifiers and InChIKey, were observed

Datasets Total records RT records (LC) Number of unique 
compounds (LC)d

RT records (GC) Number of unique 
compounds (GC)d

SMRT 80038 80038 79938e 0 0

MassBank 117966 81167 6946 1761 726

MoNA 210156 30981b 4656 44 26

PredRet 32463 6067c 3112 0 0
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certain level of data acceptance over the past 8 years and 
has received 287 experimental chemical datasets with 
32463 data records shared by users until 11 Nov, 2023. 
One thing to keep in mind is that the uploaded systems 

may have uncertain or suspicious data for their open 
properties without supervision. If the uploaded data 
records are collected for training or evaluating the model, 
they should be distinguished with caution, and reliable 
data sources should be chosen. It’s worth mentioning that 
Predret sources are also integrated into RepoRT dataset 
through their procedurally processing.

To the best of our knowledge, no studies have collated 
and described the important datasets, SMRT, MassBank, 
MoNA, and PredRet as a whole. Therefore, we organized 
the numbers of data records that can be used for RT pre-
diction across these main datasets in Tables 1, 2, 3, and 4, 
following the workflow in Fig. 1. In total, 81167 LC data 
records and 1761 GC data records out of 117966 entries 
in MassBank (Nov, 2023 updated version), 30981 LC 
data records and 44 GC data records (excluding Mass-
Bank sources) in MoNA (Accessed on 11 Nov, 2023), and 
6067 LC data records in PredRet (Accessed on 11 Nov, 
2023) provided valid molecular chemical identifiers and 
RT information (Table 1). Because model evaluation and 
transfer learning often use data from the same LC sys-
tem, the RT records were also counted from independent 
data sources in each large dataset. Moreover, 33 LC data 
sources and 5 GC data sources in MassBank (Table  2), 
20 LC data sources and 3 GC data sources in MoNA 
(Table  3), and 20 LC data sources in PredRet (Table  4) 
provided useful RT records.In terms of compound 
class coverage, 18 of 26 organic chemical taxonomies at 
the superclass level were covered across four datasets, 
SMRT, MassBank, MoNA, and PredRet, by searching 
the InChIKey identifier in the ClassyFire Batch website 
application [39]. Figure 2A shows the proportions of the 
four datasets for each chemical classification superclass. 
The numbers of intersecting compounds across the four 
datasets are shown in Fig.  2B. MassBank, MoNA, and 
PredRet all contained specific compounds that were not 
included in the SMRT dataset, indicating that they are 
suitable for evaluating the transfer ability of RT predic-
tion models trained on SMRT.

Discussion about representations in small molecular RT 
datasets
While working with the dataset, we observed several 
inconsistent cases in the representations of molecules, in 
which the same molecule’s InChI, database ID, and name 
were not match. This phenomenon was characterized 
by comparing the chemical identifiers (InChI, database 
ID, and nomenclature) denoting compound entities. We 
categorized and discussed these discrepancies into four 
types as illustrated in Fig.  3. We exemplify type 1 and 
type 2 by using the SMRT dataset (Table  5). This data-
set provides PubChem CIDs, InChI identifiers, and SDF 
files containing structural information for molecular 

Table 2  Statistical analysis of analytes in the MassBank database 
using the defined method shown in Fig. 1

Unique compounds were individually counted based on the International 
Chemical Identifier key (InChIKey) for each data source

MassBank source Compound 
number

Unique compound 
number per data 
source

Liquid chromatography

 RIKEN 10383 1249

 BAFG 19783 1129

 Eawag 13210 1055

 Athens_Univ 5158 868

 LCSB 5582 783

 Waters 2719 519

 Washington_State_Univ 2626 489

 CASMI_2016 622 481

 Chubu_Univ 2185 453

 UFZ 3154 437

 Antwerp_Univ 1762 309

 RIKEN_IMS 754 301

 BS 1253 291

 BGC_Munich 903 223

 Eawag_Additional_Specs 748 184

 HBM4EU 2317 171

 AAFC 950 149

 GL_Sciences_Inc 174 147

 Univ_Toyama 253 140

 NaToxAq 3756 130

 ACES_SU 271 108

 MPI_for_Chemical_Ecology 691 102

 Fukuyama_Univ 340 89

 NAIST 621 74

 KWR 207 55

 PFOS_research_group 413 54

 MetaboLights 58 48

 IPB_Halle 79 39

 UoB 37 37

 MSSJ 130 27

 CASMI_2012 23 11

 UPAO 2 2

 Osaka_MCHRI 3 1

Gas chromatography

 Athens_Univ 475 96

 Kazusa 273 163

 MSSJ 323 175

 Osaka_Univ 449 357

 RIKEN 241 194
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representation. Type 1 included the cases that InChIs 
could not be converted into valid molecules using RDKit 
[38], with 81 entries in SMRT. By searching the InChI 
correspongding to recorded PubChem CID, success-
ful conversions were achieved (Fig. 3A). Type 2 involved 
identical representations (InChI and structural informa-
tion in SDF file) for stereoisomers which exhibit differ-
ent RTs in SMRT. By searching the InChI corresponding 
to recorded PubChem CID, the representations could 
be distinguished (Fig.  3B). Whether or not this type is 
treated specifically depends on the researcher’s consid-
erations regarding the representation of stereoisomers. 
Type 3 and type 4 were exemplified by using PredRet 
dataset (Table 5). A subset of 32 datasets (listed in Sup-
plementary Table 1), selected from a total of 287 experi-
mental small datasets possessing digital object identifiers 
(DOIs) and did not cover by MassBank database, was 
employed for counting cases for type 3 and type 4. Of 

the 6185 records in these 32 datasets, 5638 records with 
InChI and PubChem CID or nomenclature were assessed. 
Type 3 involved cases that recorded InChI differed from 
PubChem CID searched InChI in terms of stereo infor-
mation (1660 entries). PredRet strips stereo information 
in InChI lead to more overlapping compounds between 
systems, therefore the structure does not always match 
with reported PubChem entry as shown in Fig. 3C. Typi-
cally, the discrimination of enantiomers needs specialized 
columns; thus, except for diastereomers, records exclud-
ing stereo information normally exert minimal influence 
on RT prediction models intended for application in con-
texts that utilize standard columns such as C18 or T3. 
Type 4 involved cases that recorded InChI and PubChem 
CID referred to completely different molecular object 
(788 entries, Fig.  3D) which required carefully verifica-
tion if they are to be used.

Table 3  Statistical analysis of analytes in the MassBank of North America (MoNA) database using the defined method shown in Fig. 1

Unique compounds were individually counted based on the InChIKey for each data source

MoNA source Compound number Unique compound 
number per data 
source

Liquid chromatography

 Vaniya/Fiehn Natural Products Library 9416 1577

 Fiehn HILIC Library 3059 1218

 RIKEN PlaSMA Authentic Standard Library 8655 586

 QiaoLab_PGN 1329 557

 EMBL-MCF 1293 431

 Gunma university 3438 402

 MetaboBASE 1253 289

 US Meat Animal Research Center 364 274

 IISPV, URV, CIBERDEM-ISCIII, and UCDavis 387 78

 BOKU 215 76

 University of Minnesota 1441 52

 Uppsala University 70 34

 UC Davis 26 25

 University of California, Davis 5 5

 University of Illinois at Chicago 5 5

 Frau 3 3

 Weber Flavors 3 3

 Institute of Physiology of the Czech Academy of Sciences 15 2

 MIT 1 1

 University of Antwerp 3 1

Gas chromatography

 Osaka University 23 20

 HMDB 20 5

 Weber Flavors 1 1
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AI‑driven developments in the field of quantitative 
structure‑retention relationship (QSRR)
There are two main methodologies that current studies 
attempt to address: (1) making efforts toward to develop-
ing an accurate RT prediction methodology using QSRR 
calculations, and (2) unifying the shift of RT using the 
projection method. Projection methods are introduced 
in Section ’’Development of RT projection methodology 
for metabolite annotation’’. QSRR is a field that has been 
developed over a long period of time since 80s, and the 
traditional process consists of molecule description, fea-
ture selection, and model construction, with specific cat-
egories and related software in the detailed description in 
the 2018 review [40], and the conceptualization of QSRR 
in RP, HILIC and IC is described in detail in the 2020 
review [41]. Herein, we focus on the development of the 
QSRR field driven by AI technologies that have emerged 
with the publication of a large training dataset for SMRT.

Molecular representation
In terms of QSRR calculations for chromatography, 
the first step is to represent the molecular structure as 

interpretable data, such as vectors or numbers. Molecu-
lar representations, including molecular descriptors con-
stituted by numerical values, topological fingerprint, such 
as MACCS keys, ECFP [23], text strings, such as SMILES 
[42], and graph neural network (GNN)-generated molec-
ular graph [43–46] or their combinations [36, 37, 47], are 
used in RT prediction neural networks (Fig. 4).

Molecular descriptors
Molecular descriptors in the form of numerical quantita-
tive values of molecular physicochemical characteristics 
(solubility, boiling point, and lipophilicity) or geometry- 
and topological-related structural informatics features 
(adjacent matrix indices, distance matrix indices) are 
commonly used in QSRR [40], and over 6000 molecular 
descriptors can be generated for the mathematical rep-
resentation of molecules using software, such as RDKit 
[38], RCDK [48], Mordret [49], or alvaDesc [50, 51]. 
Although the number of descriptors is normally reduced 
to tens or hundreds of levels through feature selection, 
thousands of descriptors have been fed into a robust 
model [47].

Fingerprints
In addition to numerical descriptors, topology represen-
tations, such as MACCS keys and extended connectivity 
fingerprints (ECFP), represent the existence or nonexist-
ence of molecular substructures in the form of numerical 
entry vectors and can complement molecular descriptors 
[36, 47]. In Domingo-Almenara et al.’s study, ECFP finger-
prints were found to overperform compared to selected 
molecular descriptors as data input [23]. García et al. ini-
tially attempted to compare 5666 molecular descriptors 
only, 2214 molecular fingerprints (MACCS 166bit) only, 
and a combination of the two for molecular representa-
tion and found that there was not much difference in the 
performance of the three representations; therefore, only 
fingerprints were chosen to save computational resources 
[47]. Wang et al. explored the best combination of molec-
ular descriptors, molecular fingerprints, and molecular 
graphs in 14 small datasets and found that, except for 
the three small datasets in which the combination of all 
is the best, the combination of molecular descriptors 
and molecular fingerprints is the best in the remaining 
11 small datasets; they suggested that for independent 
small datasets, it is better to try multiple ways to decide 
the combination for best performance [36]. In Fedorova 
et  al.’s study, 243 topological, constitutional, and elec-
tronic molecular descriptors were attempted individually 
and in combination, and the ECFP and physicochemical 
properties (PCP) molecular fingerprint representations 
and the canonical SMILES-transformed one-hot matrix 
representations were also input to the 1D-CNN model; 

Table 4  Statistical analysis of analytes in the PredRet database 
using the defined method shown in Fig. 1

Unique compounds were individually counted based on the InChIKey for each 
data source

PredRet source Compound 
number

Unique compound 
number per data 
source

Liquid chromatography

 BfG_NTS_RP1 912 907

 Bade_Publi 1582 675

 Cao_HILIC 602 509

 RIKEN 469 421

 FEM_long 420 412

 KI_GIAR_zic_HILIC_pH2_7 538 399

 Eawag_XBridgeC18 364 364

 Waters STA Forensic 264 220

 LIFE_old 194 183

 LIFE_new 184 173

 IPB_Halle 82 76

 FEM_short 72 72

 CBM_TEST_F 122 59

 Chen_Waters_
SERI2019_58PFAS

58 58

 CBM_Test_G 102 51

 MTBLS4 34 34

 MTBLS20-LIUMIN 29 22

 WORKPJ 18 18

 MPE_IPK_Gatersleben 12 11

 semitargetedHSST3 9 8
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it was found that molecular descriptors underperform, 
while SMILES-transformed one-hot matrices perform 
the best [42].

Strings
SMILES and InChI strings can concisely represent 
atomic classes and their bonding modes, and can be con-
verted into 2D-maps. One noteworthy difference is that 
SMILES are not unique, that is, the same molecule can be 
represented by multiple SMILES representations (canon-
ical SMILES, Isomeric SMILES, etc.), whereas InChI 
has uniqueness and convertibility [52]. Because SMILES 
consists of English characters and symbols, it is widely 
used in pre-training tasks for natural language models 

to generate vector representation spaces for molecules, 
such as the pre-training models Smiles-Bert [53], Smiles 
transformer [54], and Chemformer [55], and is used in 
downstream RT prediction tasks [56].

Molecular graphs
With the increasing demand for accurate 3D con-
struction of molecules in fields, such as drug design, 
although molecular representations represented by 
strings and molecular fingerprints can represent the 
structure of molecules to a large extent owing to the 
lack of capturing the three-dimensional structure, 
attempts to utilize GNNs to approximate the construc-
tion of real-world molecules have been increasing in 

Fig. 1  Workflow of the evaluation of retention time records using the SMRT, MassBank (release version Nov, 2023), MassBank of North America 
(MoNA; accessed on 11 Nov, 2023), and PredRet (accessed on 11 Nov, 2023) databases in this review
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Fig. 2  Overview of the liquid chromatography retention time records obtained from the SMRT, MassBank, MoNA and PredRet databases. A 
Ratio of unique compound numbers measured using liquid chromatography across datasets at superclass taxonomy level; compound classes 
were identified in the Classyfire Batch [39] by searching the International Chemical Identifier key (InChIKey). B Compound intersection numbers 
across the four datasets. Repeated compounds were removed in each dataset
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Fig. 3  Examples of four discrepancy types. Cases in (A) can be adjusted by searching for the PubChem identifier. Stereoisomers in SMRT 
datasets with different RTs shown in (B) are represented by the same InChI and same structural information in the SDF file; however, they can 
be distinguished by searching PubChem identifier, depending on the researcher’s discretion. C PredRet strips stereo information for projection 
methods, and the structure therefore does not always match the reported PubChem entry, which also depending on the researcher’s discretion. D 
Partial entries within individual dataset in PredRet may refer to different molecular objects and need to be carefully verified if they are to be used
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recent years [57]. Due to their flexibility and superior-
ity in handling molecular graphs ranging from robust 
to precise spatial isomorphism levels, GNNs are widely 
used for various purposes, such as disease prediction 
and drug design, as highlighted by Zhang et  al. [58]. 
Since their inception in 2005 [59], numerous variants 
of these networks have been extensively reviewed for 
molecular property predictions by Wieder et al. [60].

In molecular graph representation, a set of nodes 
and edges, G = (V ,E) are used. Each node v ∈ V  is 
embedded with node feature vectors xv , and each 
edge evw ∈ E is embedded with edge feature vectors 
xevw that represent the connection between node v and 

node w [60]. Typically, the initial node representation 
h0v is derived from the node feature vectors [61, 62]. 
Common types of node feature vectors include atom 
symbols, number of heavy atom neighbors, valence, 
aromaticity, etc. During the iteration, the node repre-
sentation is updated by aggregating its neighbors’ rep-
resentations (see Eq.  3) and combining the aggregated 
representation with the node’s previous feature vector 
(see Eq. 4). The graph representation is obtained using 
a permutation-invariant readout function, such as sum-
mation or maximization, which utilizes the final layer 
of the node representations (Eq.  5). The aggregation, 

Table 5  Discrepancy records in datasets

a Pubchem IDs for stereoisomers are distinguishable
b Characterized by matching converted InChI identifiers unified by excluding stereo information using RDKit for PubChem ID/ nomenclature searched InChI and 
recorded InChI
c Includes 36 invalid molecular objects

Dataset Record type

Invalid molecular object Indistinguishable InChI of 
stereoisomers

InChI excluded stereo 
information

Inconsistent 
entries

SMRT 81 36a Not analyzed Not analyzed

PredRet 78 Not analyzed 1660b 788c

Fig. 4  Molecular representations used in recent RT prediction models. MDC-ANN [36], RT-transformer [80], qGeoGNN [25], retention_time_GNN 
[37], 1D-CNN-TL [42], MPNN [70], AWD-LSTM-TL [56], GNN-TL-HILIC [46], GNN-TL-RP [45], RGCN [44], DNNpwa-TL [35], Osipenko [81], Retip [73], 
Bouwmeeste [34], DLM [23], Hall [82], Wen [83], Wen [84], McEachran [85], Falchi [86], and Amos et al. [40]
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combination, and readout methods differ across vari-
ous GNN architectures [63, 64].

Aggregation of neighbor vectors

Combination of a(l+1)
v  and previous feature vector

Readout graph representation

Yang et  al. constructed a GNN model to extract sub-
graph features from a 2D molecular graph generated 
using an InChI identifier for six iterations. The subgraph 
vector is updated by summing the previous node state 
with the neighboring vector, which is then aggregated 
by a neural network. Stacking the last node state of the 
final iterations yields global graph representations for the 
downstream RT prediction task [45]. In addition, GNNs 
constructed in other fields have been successively applied 
to molecular representation in QSRR studies, three of 
which are introduced here:

(1) Graph convolutional network (GCN)
Kensert et al. employed the GNN variant GCN [61] and 
relational graph convolution network (RGCN) [65] mod-
els for the convolution of molecular graphs [44]. The 
atomic features, bonding features, and adjacency matrix 
were generated using SMILES with RDKit. In the GCN 
model, there are multiple graph convolutional layers 
(tuned as hyperparameters between 3 and 5 layers), and 
the radius of the neighborhood aggregation increases by 
one for each deeper layer. The inputs in each layer were 
the multiplication of normalized adjacency matrix A 
( N × N  , N  is the total number of atoms), feature matrix 
H ( N × F  , F  is the feature dimension, F  in the first 
layer constituted by the 20 atomic features computed by 
RDKit, and the subsequent new features were the fusion 
of its own features and those of its neighbors), and weight 
matrix W  ( F × F

′
 , F

′
 is the number of neurons in the 

next layer), and the output was a N × F
′
 feature matrix, 

with a non-linear transformation function σ (rectified 
linear unit function in Kensert et al.’s paper) as shown in 
Eq. 6:

(3)a
(l+1)
v = f

(l+1)

Aggregate

(
hv ,h

l
w, evw : w ∈ N(v)

})

(4)h
(l+1)
v = f

(l+1)

Combine

(
a
(l+1)
v ,hlv

)

(5)hG = fReadout

({
hLv : v ∈ G

})

l : layer L : last layer v : node v h : feature vector

Nv : neighbors of node v G : graph level representation

The first part in parentheses in Eq. 6 contains the infor-
mation of self and neighbor aggregation, whereas the 
latter part represents the information of the self-loop, 
which is linearly transformed with two weight matrices. 
After multilayer updating and average pooling, the tensor 
representation of the molecule was obtained and fed into 
the downstream fully connected layer for RT prediction. 
Its RGCN, on the other hand, introduces a more complex 
representation of the adjacency matrix E ( R × N × N  ) 
with an extra dimension considering relations R ; The 
update of the feature matrix is shown in Eq. 7:

In Eq.  7, R stands for bond features, and r represents 
each relational entity, such as single bond type, double 
bond type, etc. Consequently, the latter part of the for-
mula in parentheses represents the cumulative aggrega-
tion of features across various bond features [44].

(2) Message‑passing neural network (MPNN)
In 2017, Gilmer et  al. proposed a framework called 
MPNN by unifying nine previous works and defined the 
MPNN as the message-passing phase (message functions, 
Eq. 8; vertex update functions, Eq. 9) and readout phase 
(Eq. 10). N (v) is the set of node v neighbors; hlv ,h

l
w , evw 

denote the hidden states of nodev , nodew , and the edge 
feature between v andw ; Ml denotes the message func-
tion, and the sum of its outputs represents messages ml+1

v  
passing to node v from its neighbors. The vertex state is 
updated by applying Ul which denotes the vertex update 
function on node v ’s hidden state and passing messages 
from its neighbors. The readout function R operates on 
a set of nodes in the graph in the final layer L to obtain 
graph-level output [66].

Message from neighbors

vertex update

readout.
In Gilmer et al.’s MPNN variants, the application of an 

edge network as a message function (Eq.  11), GRU as a 

(6)H (l+1) = σ

(
ÃH (l)W (1) +H (l)W (0)

)

(7)H (l+1) = σ

(
H (l)W

(l)
0

+

R∑

r=0

ẼrH
(l)W

(l)
r

)

(8)ml+1
v =

∑

w∈N (v)

Ml
(
hlv ,h

l
w, evw

)

(9)hl+1
v = Ul

(
hlv ,m

l+1
v

)

(10)ŷ = R
({

hLv |v ∈ G
})
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vertex update function (Eq.  12), and the set2set model 
[67] as the readout function achieved over-performance 
in dealing with molecular property prediction tasks in 
the field of quantum chemistry [66].

The framework of Gilmer et  al.’s MPNN variant was 
implemented in the DeepChem library [68], providing an 
easy-to-use method that was used by Xing et al. to gener-
ate vector representations for 398 authentic compounds 
with four-step message-passing and four-step set-to-set 
model computations for readout [43]. Osipenko et  al. 
followed the Keras implementation of the MPNN [69], 
which utilizes a transformer encoder and average pool-
ing instead of the set-to-set layer in the readout phase of 
Gilmer et al.’s MPNN [70].

(3) Graph isomorphism network (GIN)
GIN can distinguish graph structures and capture local 
structure information by utilizing a more powerful aggre-
gate strategy. As a practical example, in the original paper 
published in 2018 [63], the node representation can be 
updated according to Eq. 13:

The parameter ǫ serves as a learnable scaler or adjust-
ment factor, fine-tuning the balance between a node’s 
own features and those of its neighbors. Moreover, a 
multilayer perceptron (MLP) enhances the ability to 
extract features more effectively than simpler functions, 
such as summation, averaging, or max pooling. Addition-
ally, they proposed a readout function as a concatenation 
of each iteration by summing all node representations for 
graph-level representations [63]. In Kwon et al.’s research, 
their RT prediction model was constructed using five lay-
ers of the revised GIN architecture. The ǫ is set to zero, 
and neighbor messages are represented by the summa-
tion of node feature vectors and its edge feature vectors 
with activation of rectiled linear unit (ReLU) function. 
In addition, the readout function uses average pooling, 
which differs from that of the original GIN architecture 
[37]. Based on GIN, a geometry-enhanced molecular 
representation learning method (GEM) is proposed to 
enhance the capture of molecular geometry knowledge 
[62]. In addition to the atom-bond graph represented by 
Eq. 8, the edge representation elvw was learned using an 

(11)Ml
(
hlv ,h

l
w , evw

)
= NN (evw)h

l
w

(12)Ul
(
hlv ,m

l+1
v

)
= GRU

(
hlv ,m

l+1
v

)

(13)

h
(l)
v = MLP(l)



�
1+ ε(l)

�
· h

(l−1)
v +

�

w∈N (v)

h
(l−1)
w




additional GNN that embedded the bond-angle features. 
For a precise consideration of the 3-D molecular struc-
ture details, Xu et  al. constructed a quantile geometry-
enhanced graph neural network (QGeoGNN) for chiral 
molecular separations, considering their isomorphism 
based on GEM [25].

In all the aforementioned GNNs, the selection of 
atomic features was different and appeared to be subjec-
tive. Pocha et  al. evaluated the effect of atomic feature 
selection on the GNN performance for molecular prop-
erty prediction tasks [71]. It was found that more atomic 
features tended to perform better; however, removing 
aromaticity, inclusion in a ring, and formal charge fea-
tures, or adding heavy neighbors and hydrogen features 
could improve model performance.

Application of neural networks in QSRR
Over a long period of time, the modeling method in 
QSRR mainly integrated ML linear or non-linear regres-
sion algorithms and was usually performed on small 
in-house or public datasets at the level of hundreds or 
thousands of compounds [27, 29, 72]. Bouwmeester et al. 
evaluated the prediction performance of seven ML algo-
rithms: Bayesian ridge regression (BRR), least absolute 
shrinkage and selection operator (LASSO), deep neu-
ral networks (DNNs), adaptive boosting (AB), gradient 
boosting (GB), random forest (RF), and supported vec-
tor regression (SVR), and their relationship with dataset 
size on 36 small datasets. It found significant variations 
among different small datasets, and while the GB algo-
rithm was relatively more likely to have a performance 
advantage, no single ML algorithm could perform opti-
mally on all performance sets [34].

Following the release of the SMRT dataset in 2019, 
there has been a surge in research focusing on train-
ing deep-learning models on this extensive dataset. The 
explored modeling architectures include deep neu-
ral network (DNN) (DNNpwa-TL, CMM-RT) [35, 47], 
convolutional neural network (CNN) (1D CNN-TL) 
[42], recurrent neural network (RNN) (AWD-LSTM) 
[56], transformer (TransformerXL) [56], adaptive neu-
ral network (ANN) (MDC-ANN) [36] and GNN [25, 37] 
(Table  6). Typically, these methodologies involve pro-
jecting information from the large dataset onto small 
datasets containing a select few benchmark chemicals, 
referred to as ’’anchor compounds’’ [23], or employing 
transfer learning techniques on smaller datasets [35–37, 
44, 70].

Although the model architectures varied, the findings 
of these studies have the following points in common: (1) 
neural network architectures generally outperform tradi-
tional regression algorithms, such as partial least squares 
regression (PLS), RF, SVM, LASSO, and GB [35, 44]; (2) 
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transfer learning generally achieves better performance 
than building models from scratch on small datasets. 
Transfer learning of 1D-CNN [42], AWD-LSTM [56], and 
TransformerXL [56] models achieved better performance 
than learning from scratch on most of the small data-
sets. (3) Although the models and the small datasets used 
for comparison vary, no single model has yet achieved 
absolute superiority across all the small datasets tested, 
as reported in published articles [36, 37]. (4) Model per-
formance is affected by the molecular similarity between 
testing and training datasets; the more similar they are, 
the better the performance. In Xu et al.’s study, molecules 
in the test set with more than 90% similarity to the train-
ing set resulted in satisfactory performance; however, the 
prediction accuracy significantly decreased as the molec-
ular similarity decreased [25], a finding similar to that of 
Domingo-Almenara et  al.’s observation [23]. Although 
the performance degradation on the test set is techni-
cally attributed to a lack of model generalization, consid-
ering the vast latent space of chemical structures, it may 
require great efforts or skillful strategies to overcome this 
challenge.

Current study primarily employed a loss function based 
on the mean square error (MSE) between the predicted 
and labeled RTs, focusing on accuracy. However, in actual 
applications, even within the same chromatographic sys-
tem, the RT of compounds can vary within a small range 
owing to unavoidable errors. Osipenko et al.’s study sim-
ulated this type of variability by adding Gaussian noise 
with a standard deviation of five seconds to real data 
labels [56]. Xu et al. used quantile learning to account for 
the uncertainty in RTs by incorporating quantile loss in 
the loss function, which assessed the probability of sepa-
ration and improved fault tolerance [25].

Practicality of metabolite annotation
Considering that the RT prediction model is ultimately 
applied to practical metabolite annotation, the following 
two points require special attention and discussion.

(1) Difficulty in the implementation of in‑house datasets
This includes the number of known compounds required 
for application in laboratory LC systems. Although more 
training instances generally lead to better training out-
comes, the availability of known training instances such 
as standards is limited in the laboratory. Thus, achieving 
high prediction accuracy with fewer training instances is 
of practical significance. The three current implementa-
tion methods, training from scratch, transfer learning, 
and projection functions, differ in their training instance 
requirements (Table 7).

Training in-house RT libraries to build models is a 
common method, and more than 300 training instances 
are recommended for Retip model building [73]. In a 
study by Bouwmeester et  al. training from scratch on 
PredRet’s five small datasets with seven ML methods 
required at least 40 instances (the best method in three 
datasets achieved a mean absolute error (MAE) between 
100 and 120 s) and providing 100 instances showed sig-
nificant improvement (the best method in three datasets 
achieved an MAE of less than 100 s) [34].

Transfer learning requires fine-tuning small datasets, 
and according to currently published information, it usu-
ally involves selecting small datasets with over hundred 
known compounds. Ju et al. conducted transfer learning 
on 17 small datasets ranging from 73 to 665 instances 
using 90% of the training instances in each dataset for 
fine-tuning [35]. Yang et  al. indicated that a pre-trained 
GNN model on a 306 K dataset, when transferred to 
small HILIC datasets, required 150 training instances to 
achieve higher accuracy (MAE of approximately 30 s), 
suggesting that approximately 100–200 training instances 
are required in actual applications [46].

After training the models on large datasets, the pro-
jection function mapped the predicted RT to a specific 
chromatographic method with only a few identified 
molecules. For example, Domingo-Almenara et  al. used 
robust polynomial regression for projection, achieving 
the objective of 70% correct molecular identity ranked 
among the top three candidates with only 50 anchor-
compound examples from PredRet small datasets [23]. 
García et  al. projected, using a Bayesian meta-learning 
approach, achieving 68% correct molecular identity in 
the top three candidates filtered by exact mass with only 
ten known compounds on four PredRet small datasets 
[47]. However, the performance of the projection method 

Table 7  Number of known compounds required for application 
in laboratory systems

Recommend instances Refs.

Training in-house RT libraries

 Retip 300 [73]

 Bouwmeester et al. 40–100 [34]

Transfer learning

 Ju et al. 73–665 (90% in datasets) [35]

 Yang et al. 100–200 [46]

Projection function

 Domingo-Almenara et al. 50 anchor-compounds [23]

 García et al. 10 [47]
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may not be as good as that of transfer learning. Kwon 
et al. made a commendable effort to compare four differ-
ent model constructions: (1) learning from scratch, (2) 
transfer learning using feature extraction with two types 
of optimizers (similar to Yang et al. [45, 46] and Osipenko 
et al. [70] methods), (3) transfer learning by fine-tuning 
with two types of optimizers, and (4) polynomial regres-
sion projection (similar to Domingo-Almenara et al. [23] 
method) on 24 small datasets. The evaluation results 
ranked the prediction errors in the following ascending 
order: transfer learning by fine-tuning, transfer learn-
ing using feature extraction, learning from scratch, and 
polynomial regression projection [37]. In our experience, 
García et al.’s requirement for ten known compounds [47] 
aligns more closely with actual application scenarios in 
laboratories, and constructing an in-house library with 
hundreds of compounds under the same chromatogra-
phy system conditions is very challenging. Therefore, 
meeting the practical needs of both low requirements for 
the number of known compounds in in-house libraries 
and achieving high prediction accuracy remains an ongo-
ing challenge.

(2) Ability to eliminate incorrect options
Enhancing the accuracy of metabolite annotation is an 
important application of RT prediction. Therefore, in 
addition to evaluating errors, such as MRE and MAE, 
it is crucial to assess the efficiency of eliminating incor-
rect metabolite annotation options. Domingo-Almenara 
et  al. evaluated the capability of a DL model trained on 
SMRT to select correct options on small datasets [23]. By 
predicting the RTs for 6832 compounds with Kyoto ency-
clopedia of genes and genomes (KEGG) entries [74] and 
mapping these RTs to small datasets via projection, can-
didates were ranked by errors between the projected and 
observed RTs. It found that 70% of the correct options 
were among the top three candidates [23]. Bonini et  al. 
demonstrated how retip-assisted MS-DIAL [75] elimi-
nated false-positive examples of mouse plasma metabo-
lomics data, where the predicted RTs were beyond the 
one-minute observation RT limit [73]. The study by 
Yang et al. on the HILIC system detailed the changes in 
the ranking of correct options before and after GNN-TL 
help MS-FINDER [76] annotate 100 metabolites from 
three small datasets. The results indicated that, except 
for one false negative and one compound whose ranking 
decreased, the rankings of all other correct options either 
increased or remain unchanged [46]. Notably, RT is a 
significant reference value for distinguishing structural 

isomers. Therefore, the differentiation of structural iso-
mers warrants further exploration.

Development of RT projection methodology 
for metabolite annotation
The projection method aims to design a system that 
enables the comparison of RTs from different labora-
tory systems. PredRet [32] provides an R package and a 
user-friendly website interface for predicting RTs across 
shared experimental systems. By mapping an LC system 
to an existing one based on the overlap of annotations, 
the RTs of metabolites annotated in the referenced sys-
tem can be predicted and warnings for outlier predic-
tion can be issued. Improved accuracy was achieved by 
calibrating the RTs using a regression algorithm across 
different LC setups, resulting in a higher accuracy per-
formance than the SVR-based ML model reported by 
Aicheler et al. [33, 77]. To evaluate the RT prediction per-
formance of PredRet for plant food bioactive compounds, 
1583 experimental analytes (467 metabolites) from 24 LC 
systems were tested, obtaining acceptable median pre-
diction errors within the 0.3–1.8% range. It exhibited a 
clear distinction between two pairs of structural isomers 
(veratric acid, homovanillic acid, dihydrocaffeic acid and 
kaempfeol, luteolin, fisetin), highlighting its practical 
application [78].

Conclusions
In this review, we acknowledged two major challenges 
in directly comparing accuracy or metric values with-
out reproducing all models on a uniform benchmark 
for the testing sets and the models used for comparison 
were varied (refer to Table 6 under ’Test Set’ and ’Com-
parison Method’). Consequently, we refrained from 
focusing on reporting evaluation metrics such as MAE, 
MRE, or median absolute error (MedAE). This highlight 
the urgent need for a standardized benchmark, such 
as MoleculeNet [79], which was designed for molecu-
lar property prediction in molecular ML and includes a 
compilation of public datasets and evaluation metrics. 
Considering the widespread application of deep-learning 
models for RT prediction, extensive training datasets are 
required. Availability of large datasets, such as those on 
SMRT and RepoRT will accelerate the development of 
DL-based models. We anticipate the release of additional 
training resources in the future. To enhance practical-
ity, evaluation of RT prediction models should not only 
focus on accuracy but also on the capacity to eliminate 
false candidates, regardless of assistance by MS annota-
tion. Ability to discriminate between structural isomers, 
especially functional group isomerism and positional 
isomerism, is a key application of RT for metabolite 
identification. Therefore, this aspect should be further 
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evaluated as structural isomer distinction poses a chal-
lenge to metabolite annotation.

As discussed in section ’’Discussion about repre-
sentations in small molecular RT datasets’’, inconsist-
ent molecular representations may lead to fundamental 
errors in studies depending on the identifiers used, as 
illustrated in Fig. 3D. As additional information, we rec-
ommend that CAS registry numbers be provided for 
studies using commercial standards wherever possible, 
to prevent significant misunderstandings. In such cases, 
further manual efforts may be required for checking and 
revising the data.

In relation to the compound structure, there can be 
a distinction between the ’injected compound struc-
ture’ and the ’in-solution structure’ due to the presence 
of an additive salt. If this salt is irrelevant to the RT, the 
InChI, as referenced by the CAS number, may need to 
be ’cleaned up’ or ’standardized’ to accurately reflect the 
structure of the compound being injected.

For practical applications, LC systems are frequently 
adjusted to separate various sample types, typically run-
ning only a limited number of standards (e.g., 5–20) 
alongside testing samples under new conditions. This 
makes it challenging to calibrate in-house models for 
specific LC systems due to the extensive need for stand-
ards. Thus, achieving a balance between model predic-
tion accuracy and the required quantity of in-house 
compounds by leveraging both RT and m/z represents 
a valuable goal. Furthermore, the development of intui-
tive documentation and APIs, integrated with MS anno-
tation tools like MS-DIAL [75] or MS-FINDER [76], 
will enhance researcher usability. As metabolic annota-
tion progresses with technological advances, we antici-
pate that software-supported metabolite annotation will 
increasingly assist laboratory scientists in the future.

Abbreviations
AB	� Adaptive boosting
ANN	� Adaptive neural network
BRidgeR	� Bayesian ridge regression
BRNN	� Bayesian-regularized neural network
CAS	� Chemical abstracts service
CNN	� Convolutional neural network
DL	� Deep learning
DNN	� Deep neural network
ECFP	� Extended-connectivity fingerprint
GB	� Gradient boosting
GC	� Gas-chromatography
GCN	� Graph convolutional network
GNN	� Graph neural network
HILIC	� Hydrophilic interaction liquid chromatography
InChI	� IUPAC international chemical identifier
InChIKey	� International chemical identifier key
KEGG	� Kyoto encyclopedia of genes and genomes
LASSO	� Least absolute shrinkage and selection operator
LC	� Liquid chromatography
LGB	� Light gradient-boosting machine
MAE	� Mean absolute error
MDC-ANN	� Multi-data combinations and adaptive neural network

MedAE	� Median absolute error
ML	� Machine learning
MLP	� Multilayer perceptron
MRE	� Mean relative error
MS	� Mass spectrometry
RF	� Random forest
RGCN	� Relational graph convolutional network
RNN	� Recurrent neural network
RT	� Retention time
SMILES	� Simplified molecular-input line-entry system
SVR	� Supported vector regression
TL	� Transfer learning
XGB	� XGBoost
XGBR	� Extreme gradient boosting regression

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00905-1.

Supplementary material 1.

Acknowledgements
S.O. is grateful for the partial support from JST NBDC JPMJND2305. We would 
like to thank all the researchers who maintain the above publicly available 
databases, as well as the reviewers who provided comments.

Author contributions
Conceptualization, Y.T.L. and S.O.; supervision, S.O.; writing—original draft 
preparation, Y.T.L.; writing—review & editing, A.C.Y., Y.W.L., and S.O.

Funding
This study was partially funded by JST NBDC JPMJND2305.

Availability of data and materials
No datasets were generated or analysed during the current study.

Code availability
Source code for analyzing current states of RT datasets: https://​github.​com/​
LiuLi​me/​PredRT_​review_​2024.​git.

Declarations

Competing interests
The authors declare no competing interests.

Received: 5 March 2024   Accepted: 13 September 2024

References
	1.	 Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and 

prospects. Science 349(6245):255–260
	2.	 Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching 

molecular structure databases with tandem mass spectra using CSI: 
FingerID. Proc Natl Acad Sci 112(41):12580–12585

	3.	 Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, 
Dorrestein PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning 
tandem mass spectra into metabolite structure information. Nat Methods 
16(4):299–302

	4.	 Wei JN, Belanger D, Adams RP, Sculley D (2019) Rapid prediction of elec-
tron–ionization mass spectrometry using neural networks. ACS Cent Sci 
5(4):700–708

	5.	 Wang F, Liigand J, Tian S, Arndt D, Greiner R, Wishart DS (2021) CFM-ID 4.0: 
more accurate ESI-MS/MS spectral prediction and compound identifica-
tion. Anal Chem 93(34):11692–11700

https://doi.org/10.1186/s13321-024-00905-1
https://doi.org/10.1186/s13321-024-00905-1
https://github.com/LiuLime/PredRT_review_2024.git
https://github.com/LiuLime/PredRT_review_2024.git


Page 18 of 19Liu et al. Journal of Cheminformatics          (2024) 16:113 

	6.	 MoNA-MassBank of North America. https://​mona.​fiehn​lab.​ucdav​is.​edu/. 
Accessed 11 Nov 2023.

	7.	 Stravs MA, Dührkop K, Böcker S, Zamboni N (2022) MSNovelist: de novo 
structure generation from mass spectra. Nat Methods 19(7):865–870

	8.	 Shrivastava AD, Swainston N, Samanta S, Roberts I, Wright Muelas M, 
Kell DB (2021) MassGenie: a transformer-based deep learning method 
for identifying small molecules from their mass spectra. Biomolecules 
11(12):1793

	9.	 Nicoud R-M (2015) Chromatographic processes. Cambridge University 
Press, Cambridge

	10.	 Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda 
Z, Tian S, Lee BL (2022) HMDB 5.0: the human metabolome database for 
2022. Nucleic Acids Res 50(D1):D622–D631

	11.	 Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, 
Watrous J, Kapono CA, Luzzatto-Knaan T (2016) Sharing and community 
curation of mass spectrometry data with global natural products social 
molecular networking. Nat Biotechnol 34(8):828–837

	12.	 Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M, Sakata A, Akiyama 
K, Sakurai T, Matsuda F, Aoki T (2012) RIKEN tandem mass spectral data-
base (ReSpect) for phytochemicals: a plant-specific MS/MS-based data 
resource and database. Phytochemistry 82:38–45

	13.	 Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, 
Tanaka S, Aoshima K (2010) MassBank: a public repository for sharing 
mass spectral data for life sciences. J Mass Spectrom 45(7):703–714

	14.	 Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio 
DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral 
database. Ther Drug Monit 27(6):747–751

	15.	 AIST. Spectral Database for Organic Compounds, AIST. https://​sdbs.​db.​
aist.​go.​jp/​sdbs/​cgi-​bin/​direct_​frame_​top.​cgi.

	16.	 NIST Mass Spectral Libraries, 2023 Edition with Search Program Data 
Version: NIST23. https://​www.​nist.​gov/​srd/​nist-​stand​ard-​refer​ence-​datab​
ase-​1a.

	17.	 METLIN Gen2. https://​massc​onsor​tium.​com/.
	18.	 mzCloud™ spectral library. https://​www.​mzclo​ud.​org/.
	19.	 Wiley Registry of Tandem Mass Spectral Data, MS for ID. https://​www.​

wiley.​com/​en-​gb/​Wiley+​Regis​try+​of+​Tandem+​Mass+​Spect​ral+​Data%​
2C+​MS+​for+​ID-p-​97811​18037​447.

	20.	 Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O 
(2016) Mass spectral databases for LC/MS-and GC/MS-based metabo-
lomics: state of the field and future prospects. TrAC, Trends Anal Chem 
78:23–35

	21.	 Yurekten O, Payne T, Tejera N, Amaladoss FX, Martin C, Williams M, 
O’Donovan C (2023) MetaboLights: open data repository for metabo-
lomics. Nucleic Acids Res. https://​doi.​org/​10.​1093/​nar/​gkad1​045

	22.	 Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O, 
Higashi R, Nair KS (2016) Metabolomics Workbench: an international 
repository for metabolomics data and metadata, metabolite standards, 
protocols, tutorials and training, and analysis tools. Nucleic Acids Res 
44(D1):D463–D470

	23.	 Domingo-Almenara X, Guijas C, Billings E, Montenegro-Burke JR, 
Uritboonthai W, Aisporna AE, Chen E, Benton HP, Siuzdak G (2019) The 
METLIN small molecule dataset for machine learning-based retention 
time prediction. Nat Commun 10(1):5811

	24.	 Kretschmer F, Harrieder E-M, Hoffmann MA, Böcker S, Witting M (2024) 
RepoRT: a comprehensive repository for small molecule retention times. 
Nat Methods. https://​doi.​org/​10.​1038/​s41592-​023-​02143-z

	25.	 Xu H, Lin J, Zhang D, Mo F (2023) Retention time prediction for chromato-
graphic enantioseparation by quantile geometry-enhanced graph neural 
network. Nat Commun 14(1):3095

	26.	 Eugster PJ, Boccard J, Debrus B, Bréant L, Wolfender J-L, Martel S, Carrupt 
P-A (2014) Retention time prediction for dereplication of natural products 
(CxHyOz) in LC–MS metabolite profiling. Phytochemistry 108:196–207

	27.	 Broeckling CD, Ganna A, Layer M, Brown K, Sutton B, Ingelsson E, Peers G, 
Prenni JE (2016) Enabling efficient and confident annotation of LC− MS 
metabolomics data through MS1 spectrum and time prediction. Anal 
Chem 88(18):9226–9234

	28.	 Bruderer T, Varesio E, Hopfgartner G (2017) The use of LC predicted 
retention times to extend metabolites identification with SWATH data 
acquisition. J Chromatogr B 1071:3–10

	29.	 Cao M, Fraser K, Huege J, Featonby T, Rasmussen S, Jones C (2015) Pre-
dicting retention time in hydrophilic interaction liquid chromatography 

mass spectrometry and its use for peak annotation in metabolomics. 
Metabolomics 11:696–706

	30.	 Arapitsas P, Speri G, Angeli A, Perenzoni D, Mattivi F (2014) The influence 
of storage on the “chemical age” of red wines. Metabolomics 10:816–832

	31.	 Stravs MA, Schymanski EL, Singer HP, Hollender J (2013) Automatic 
recalibration and processing of tandem mass spectra using formula 
annotation. J Mass Spectrom 48(1):89–99

	32.	 Stanstrup J, Neumann S, Vrhovsek U (2015) PredRet: prediction of 
retention time by direct mapping between multiple chromatographic 
systems. Anal Chem 87(18):9421–9428

	33.	 Bouwmeester R, Martens L, Degroeve S (2020) Generalized calibration 
across liquid chromatography setups for generic prediction of small-
molecule retention times. Anal Chem 92(9):6571–6578

	34.	 Bouwmeester R, Martens L, Degroeve S (2019) Comprehensive and 
empirical evaluation of machine learning algorithms for small molecule 
LC retention time prediction. Anal Chem 91(5):3694–3703

	35.	 Ju R, Liu X, Zheng F, Lu X, Xu G, Lin X (2021) Deep neural network 
pretrained by weighted autoencoders and transfer learning for retention 
time prediction of small molecules. Anal Chem 93(47):15651–15658

	36.	 Wang X, Zheng F, Sheng M, Xu G, Lin X (2023) Retention time prediction 
for small samples based on integrating molecular representations and 
adaptive network. J Chromatogr B 1217:123624

	37.	 Kwon Y, Kwon H, Han J, Kang M, Kim J-Y, Shin D, Choi Y-S, Kang S (2023) 
Retention time prediction through learning from a small training data set 
with a pretrained graph neural network. Anal Chem. https://​doi.​org/​10.​
1021/​acs.​analc​hem.​3c031​77

	38.	 RDKit. https://​www.​rdkit.​org. Accessed 01 Dec 2023.
	39.	 ClassyFire Batch by Fiehn Lab. https://​cfb.​fiehn​lab.​ucdav​is.​edu/. Accessed 

01 Dec 2023.
	40.	 Amos RI, Haddad PR, Szucs R, Dolan JW, Pohl CA (2018) Molecular 

modeling and prediction accuracy in quantitative structure-retention 
relationship calculations for chromatography. TrAC, Trends Anal Chem 
105:352–359

	41.	 Haddad PR, Taraji M, Szücs R (2020) Prediction of analyte retention time in 
liquid chromatography. Anal Chem 93(1):228–256

	42.	 Fedorova ES, Matyushin DD, Plyushchenko IV, Stavrianidi AN, Buryak AK 
(2022) Deep learning for retention time prediction in reversed-phase 
liquid chromatography. J Chromatogr A 1664:462792

	43.	 Xing G, Sresht V, Sun Z, Shi Y, Clasquin MF (2021) Coupling mixed mode 
chromatography/ESI negative MS detection with message-passing neu-
ral network modeling for enhanced metabolome coverage and structural 
identification. Metabolites 11(11):772

	44.	 Kensert A, Bouwmeester R, Efthymiadis K, Van Broeck P, Desmet G, 
Cabooter D (2021) Graph convolutional networks for improved predic-
tion and interpretability of chromatographic retention data. Anal Chem 
93(47):15633–15641

	45.	 Yang Q, Ji H, Lu H, Zhang Z (2021) Prediction of liquid chromatographic 
retention time with graph neural networks to assist in small molecule 
identification. Anal Chem 93(4):2200–2206

	46.	 Yang Q, Ji H, Fan X, Zhang Z, Lu H (2021) Retention time prediction in 
hydrophilic interaction liquid chromatography with graph neural net-
work and transfer learning. J Chromatogr A 1656:462536

	47.	 García CA, Gil-de-la-Fuente A, Barbas C, Otero A (2022) Probabilistic 
metabolite annotation using retention time prediction and meta-learned 
projections. J Cheminform 14(1):1–23

	48.	 Guha R (2007) Chemical informatics functionality in R. J Stat Softw 
18:1–16

	49.	 Moriwaki H, Tian Y-S, Kawashita N, Takagi T (2018) Mordred: a molecular 
descriptor calculator. J Cheminform 10(1):1–14

	50.	 Mauri A (2020) alvaDesc: a tool to calculate and analyze molecular 
descriptors and fingerprints. Ecotoxicol QSARs. https://​doi.​org/​10.​1007/​
978-1-​0716-​0150-1_​32

	51.	 Mauri A, Bertola M (2022) Alvascience: a new software suite for the QSAR 
workflow applied to the blood–brain barrier permeability. Int J Mol Sci 
23(21):12882

	52.	 Elton DC, Boukouvalas Z, Fuge MD, Chung PW (2019) Deep learning for 
molecular design—a review of the state of the art. Mol Syst Des Eng 
4(4):828–849

	53.	 Wang S, Guo Y, Wang Y, Sun H, Huang J (2019) Smiles-bert: large scale 
unsupervised pre-training for molecular property prediction. In: 

https://mona.fiehnlab.ucdavis.edu/
https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
https://www.nist.gov/srd/nist-standard-reference-database-1a
https://www.nist.gov/srd/nist-standard-reference-database-1a
https://massconsortium.com/
https://www.mzcloud.org/
https://www.wiley.com/en-gb/Wiley+Registry+of+Tandem+Mass+Spectral+Data%2C+MS+for+ID-p-9781118037447
https://www.wiley.com/en-gb/Wiley+Registry+of+Tandem+Mass+Spectral+Data%2C+MS+for+ID-p-9781118037447
https://www.wiley.com/en-gb/Wiley+Registry+of+Tandem+Mass+Spectral+Data%2C+MS+for+ID-p-9781118037447
https://doi.org/10.1093/nar/gkad1045
https://doi.org/10.1038/s41592-023-02143-z
https://doi.org/10.1021/acs.analchem.3c03177
https://doi.org/10.1021/acs.analchem.3c03177
https://www.rdkit.org
https://cfb.fiehnlab.ucdavis.edu/
https://doi.org/10.1007/978-1-0716-0150-1_32
https://doi.org/10.1007/978-1-0716-0150-1_32


Page 19 of 19Liu et al. Journal of Cheminformatics          (2024) 16:113 	

Proceedings of the 10th ACM international conference on bioinformatics, 
computational biology and health informatics. 429–436.

	54.	 Honda S, Shi S, Ueda HR (2019) Smiles transformer: Pre-trained molecular 
fingerprint for low data drug discovery. arXiv preprint arXiv.191104738.

	55.	 Irwin R, Dimitriadis S, He J, Bjerrum EJ (2022) Chemformer: a pre-trained 
transformer for computational chemistry. Mach Learn Sci Technol 
3(1):015022

	56.	 Osipenko S, Botashev K, Nikolaev E, Kostyukevich Y (2021) Transfer 
learning for small molecule retention predictions. J Chromatogr A 
1644:462119

	57.	 Wigh DS, Goodman JM, Lapkin AA (2022) A review of molecular repre-
sentation in the age of machine learning. Wiley Interdiscip Rev Comput 
Mol Sci 12(5):e1603

	58.	 Zhang X-M, Liang L, Liu L, Tang M-J (2021) Graph neural networks and 
their current applications in bioinformatics. Front Genet 12:690049

	59.	 Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph 
domains. In: Proceedings 2005 IEEE International Joint Conference on 
Neural Networks, 2005. IEEE: 729–734.

	60.	 Wieder O, Kohlbacher S, Kuenemann M, Garon A, Ducrot P, Seidel T, 
Langer T (2020) A compact review of molecular property prediction with 
graph neural networks. Drug Discov Today Technol 37:1–12

	61.	 Kipf TN, Welling M (2016) Semi-supervised classification with graph 
convolutional networks. arXiv preprint arXiv:160902907.

	62.	 Fang X, Liu L, Lei J, He D, Zhang S, Zhou J, Wang F, Wu H, Wang H (2022) 
Geometry-enhanced molecular representation learning for property 
prediction. Nat Mach Intell 4(2):127–134

	63.	 Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural 
networks? arXiv preprint arXiv:181000826.

	64.	 Sun R, Dai H, Yu AW (2022) Does GNN pretraining help molecular repre-
sentation? Adv Neural Inf Process Syst 35:12096–12109

	65.	 Schlichtkrull M, Kipf TN, Bloem P, Van Den Berg R, Titov I, Welling M (2018) 
Modeling relational data with graph convolutional networks. In: The 
Semantic Web: 15th International Conference, ESWC 2018, Heraklion, 
Crete, Greece, June 3–7, 2018, Proceedings 15. Springer: 593–607.

	66.	 Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural 
Message Passing for Quantum Chemistry. In: Proceedings of the 34th 
International Conference on Machine Learning; Proceedings of Machine 
Learning Research: Edited by Doina P, Yee Whye T. PMLR. 1263--1272.

	67.	 Vinyals O, Bengio S, Kudlur M (2015) Order matters: sequence to 
sequence for sets. arXiv preprint arXiv:151106391.

	68.	 Ramsundar B, Eastman P, Walters P, Pande V (2019) Deep learning for 
the life sciences: applying deep learning to genomics, microscopy, drug 
discovery, and more. O’Reilly Media Inc, Sebastopol

	69.	 Keras implementation of MPNN. https://​keras.​io/​examp​les/​graph/​mpnn-​
molec​ular-​graph​s/#​predi​cting.

	70.	 Osipenko S, Nikolaev E, Kostyukevich Y (2022) Retention time prediction 
with message-passing neural networks. Separations 9(10):291

	71.	 Pocha A, Danel T, Podlewska S, Tabor J, Maziarka Ł (2021) Comparison of 
atom representations in graph neural networks for molecular property 
prediction. In: 2021 International Joint Conference on Neural Networks 
(IJCNN). IEEE: 1–8.

	72.	 Wolfer AM, Lozano S, Umbdenstock T, Croixmarie V, Arrault A, Vayer P 
(2016) UPLC–MS retention time prediction: a machine learning approach 
to metabolite identification in untargeted profiling. Metabolomics 12(1):8

	73.	 Bonini P, Kind T, Tsugawa H, Barupal DK, Fiehn O (2020) Retip: retention 
time prediction for compound annotation in untargeted metabolomics. 
Anal Chem 92(11):7515–7522

	74.	 Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M 
(2023) KEGG for taxonomy-based analysis of pathways and genomes. 
Nucleic Acids Res 51(D1):D587–D592

	75.	 Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Van-
derGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS 
deconvolution for comprehensive metabolome analysis. Nat Methods 
12(6):523–526

	76.	 Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, 
Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational 
MS/MS fragmentation and structure elucidation using MS-FINDER soft-
ware. Anal Chem 88(16):7946–7958

	77.	 Aicheler F, Li J, Hoene M, Lehmann R, Xu G, Kohlbacher O (2015) Reten-
tion time prediction improves identification in nontargeted lipidomics 
approaches. Anal Chem 87(15):7698–7704

	78.	 Low DY, Micheau P, Koistinen VM, Hanhineva K, Abrankó L, Rodriguez-
Mateos A, da Silva AB, van Poucke C, Almeida C, Andres-Lacueva C (2021) 
Data sharing in PredRet for accurate prediction of retention time: applica-
tion to plant food bioactive compounds. Food Chem 357:129757

	79.	 Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, 
Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular 
machine learning. Chem Sci 9(2):513–530

	80.	 Wang B (2023) RT-Tranformer: retention time prediction for metabolite 
annotation to assist in metabolite identification. ChemRxiv. https://​doi.​
org/​10.​26434/​chemr​xiv-​2023-​pf268-​v2

	81.	 Osipenko S, Bashkirova I, Sosnin S, Kovaleva O, Fedorov M, Nikolaev E, 
Kostyukevich Y (2020) Machine learning to predict retention time of small 
molecules in nano-HPLC. Anal Bioanal Chem 412:7767–7776

	82.	 Hall LM, Hill DW, Bugden K, Cawley S, Hall LH, Chen M-H, Grant DF (2018) 
Development of a reverse phase HPLC retention index model for non-
targeted metabolomics using synthetic compounds. J Chem Inf Model 
58(3):591–604

	83.	 Wen Y, Talebi M, Amos RI, Szucs R, Dolan JW, Pohl CA, Haddad PR (2018) 
Retention prediction in reversed phase high performance liquid chroma-
tography using quantitative structure-retention relationships applied to 
the Hydrophobic Subtraction Model. J Chromatogr A 1541:1–11

	84.	 Wen Y, Amos RI, Talebi M, Szucs R, Dolan JW, Pohl CA, Haddad PR (2018) 
Retention index prediction using quantitative structure–retention 
relationships for improving structure identification in nontargeted 
metabolomics. Anal Chem 90(15):9434–9440

	85.	 McEachran AD, Mansouri K, Newton SR, Beverly BE, Sobus JR, Williams AJ 
(2018) A comparison of three liquid chromatography (LC) retention time 
prediction models. Talanta 182:371–379

	86.	 Falchi F, Bertozzi SM, Ottonello G, Ruda GF, Colombano G, Fiorelli C, Mar-
tucci C, Bertorelli R, Scarpelli R, Cavalli A (2016) Kernel-based, partial least 
squares quantitative structure-retention relationship model for UPLC 
retention time prediction: a useful tool for metabolite identification. Anal 
Chem 88(19):9510–9517

	87.	 Kumari P, Van Laethem T, Duroux D, Fillet M, Hubert P, Sacré P-Y, Hubert C 
(2023) A multi-target QSRR approach to model retention times of small 
molecules in RPLC. J Pharm Biomed Anal 236:115690

	88.	 Liapikos T, Zisi C, Kodra D, Kademoglou K, Diamantidou D, Begou O, 
Pappa-Louisi A, Theodoridis G (2022) Quantitative structure retention 
relationship (QSRR) modelling for Analytes’ retention prediction in LC-
HRMS by applying different Machine Learning algorithms and evaluating 
their performance. J Chromatogr B 1191:123132

	89.	 Souihi A, Mohai MP, Palm E, Malm L, Kruve A (2022) MultiConditionRT: 
predicting liquid chromatography retention time for emerging contami-
nants for a wide range of eluent compositions and stationary phases. J 
Chromatogr A 1666:462867

	90.	 Pasin D, Mollerup CB, Rasmussen BS, Linnet K, Dalsgaard PW (2021) 
Development of a single retention time prediction model integrating 
multiple liquid chromatography systems: application to new psychoac-
tive substances. Anal Chim Acta 1184:339035

	91.	 Kruve A, Kiefer K, Hollender J (2021) Benchmarking of the quantifica-
tion approaches for the non-targeted screening of micropollutants 
and their transformation products in groundwater. Anal Bioanal Chem 
413:1549–1559

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://keras.io/examples/graph/mpnn-molecular-graphs/#predicting
https://keras.io/examples/graph/mpnn-molecular-graphs/#predicting
https://doi.org/10.26434/chemrxiv-2023-pf268-v2
https://doi.org/10.26434/chemrxiv-2023-pf268-v2

	Insights into predicting small molecule retention times in liquid chromatography using deep learning
	Abstract 
	Scientific contribution 
	Introduction
	Datasets with liquid chromatography RTs
	Discussion about representations in small molecular RT datasets

	AI-driven developments in the field of quantitative structure-retention relationship (QSRR)
	Molecular representation
	Molecular descriptors
	Fingerprints
	Strings
	Molecular graphs
	(1) Graph convolutional network (GCN)
	(2) Message-passing neural network (MPNN)
	(3) Graph isomorphism network (GIN)


	Application of neural networks in QSRR
	Practicality of metabolite annotation
	(1) Difficulty in the implementation of in-house datasets
	(2) Ability to eliminate incorrect options

	Development of RT projection methodology for metabolite annotation
	Conclusions
	Acknowledgements
	References


