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Abstract 

Bitter taste is an unpleasant taste modality that affects food consumption. Bitter peptides are generated during enzy-
matic processes that produce functional, bioactive protein hydrolysates or during the aging process of fermented 
products such as cheese, soybean protein, and wine. Understanding the underlying peptide sequences responsible 
for bitter taste can pave the way for more efficient identification of these peptides. This paper presents BitterPep-
GCN, a feature-agnostic graph convolution network for bitter peptide prediction. The graph-based model learns 
the embedding of amino acids in the bitter peptide sequences and uses mixed pooling for bitter classification. Bitter-
Pep-GCN was benchmarked using BTP640, a publicly available bitter peptide dataset. The latent peptide embeddings 
generated by the trained model were used to analyze the activity of sequence motifs responsible for the bitter taste 
of the peptides. Particularly, we calculated the activity for individual amino acids and dipeptide, tripeptide, and tetra-
peptide sequence motifs present in the peptides. Our analyses pinpoint specific amino acids, such as F, G, P, and R, 
as well as sequence motifs, notably tripeptide and tetrapeptide motifs containing FF, as key bitter signatures in pep-
tides. This work not only provides a new predictor of bitter taste for a more efficient identification of bitter peptides 
in various food products but also gives a hint into the molecular basis of bitterness.

Scientific Contribution
Our work provides the first application of Graph Neural Networks for the prediction of peptide bitter taste. The best-
developed model, BitterPep-GCN, learns the embedding of amino acids in the bitter peptide sequences and uses 
mixed pooling for bitter classification. The embeddings were used to analyze the sequence motifs responsible 
for the bitter taste.
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Introduction
Peptides, historically defined as polypeptides having 2-50 
amino acids, play critical roles in human physiology, act-
ing as hormones, neurotransmitters, and growth factors, 
and, therefore, they have contributed significantly to the 
advancement of biological and chemical science [1, 2]. 
The overall activity of a peptide is largely encoded and 
thus dependent upon the properties of the amino acids 
at specific sites within the chain. However, Quantitative 
Structure-Activity Relationship (QSAR) methods, devel-
oped to rationalize and predict the activity of molecules 
based on their structures, are more challenging when 
applied to peptides. Indeed, changing the amino acid at a 
site potentially changes the way it folds.

Deep-learning algorithms have recently shown prom-
ising results in QSAR applications [3–5] and decoding 
the protein/peptide language too [6, 7]. In this article, we 
present a deep-learning predictor of peptide bitter taste. 
Bitter taste highly affects food preference and drug com-
pliance [8]. Moreover, bitter taste receptors expressed in 
extra-oral tissues are found to be involved in pathologi-
cal disorders and suggested as potential drug targets [9, 
10]. Therefore, the prediction of bitter taste has attracted 
growing interest, and machine-learning predictors were 
proposed, including classifiers of bitter peptides [11]. 
Moreover, bitter peptides have been used since the first 
developments of peptide QSAR models and represent a 
valuable dataset for testing the applicability and perfor-
mance of new methods [12].

Predictors of peptide bitter taste were developed in 
the group of Shoombuatong, using the BTP640 dataset 
of bitter and non-bitter peptides [13–15]. The first pre-
dictor, iBitter-SCM, is a sequence-based predictor that 
uses the scoring card method (SCM) [13]. Initial dipep-
tide propensity scores are computed and then refined via 
a genetic algorithm to create augmented dipeptide pro-
pensity scores and amino acid propensity scores, which 
are used for the final classification. Bert4Bitter is instead 
based on natural language processing. Peptide sequences 
are translated into word vectors, and the importance of 

amino acids is computed (into a vector n-D) via the term 
frequency-inverse document frequency method. Com-
pared to convolutional neural networks and short-term 
memory neural networks, the BERT-based model turned 
out to be more efficient and robust. Another recent pre-
dictor, iBitter-Fuse, uses support vector machine [15]. 
Different methods are used to encode the peptide fea-
tures: dipeptide composition, amino acid composition, 
pseudo amino acid composition, amphiphilic pseudo 
amino acid composition, and physicochemical properties 
from AAindex. The final model is based on 36 selected 
features. In 2022, Jiang et al. developed the iBitter-DRLF 
(Deep Representation Learning Features) predictor [16]. 
They primarily used deep-learning to determine the best 
feature performance reached by unified representation 
and bidirectional long-short-term memory. Secondly, 
they tested three different algorithms, among which the 
Light Gradient Boosting Machine showed the best per-
formance. The latest developed bitter predictor is Bitter-
RF, a 10-feature composition that uses Random Forest for 
the prediction [17]. In Table 1, we compiled the perfor-
mance metrics of existing best performing models, all of 
which demonstrate very good predictive capabilities.

The motivation for our work was to demonstrate the 
prospect of using Graph Neural Networks for bitter pep-
tide classification, considering that this method (i) does 
not require feature engineering; (ii) can be more effective 
on larger datasets if they appear; (iii) offers the advan-
tage of performing inference/explainability-based studies 
based on the latent embedding generated by the trained 
model; (iv) provides the possibility of implementing pre-
cisely the molecular structure of the peptides (graph-
based data).

Methods
Data representation
The BTP640 bitter peptide dataset was generated by 
Charoenkwan [13] and comprises 320 experimentally 
confirmed bitter peptide sequences and 320 non-bitter 
peptides (Fig. S1). Peptides in the BTP640 dataset have 

Table 1 Comparison within the independent set validation regarding sensitivity (Sn), specificity (Sp), accuracy (ACC), Matthews 
coefficient correlation (MCC), area under the curve (AUC) values of best performing bitter peptide predictors that made use of the 
BTP640 dataset

Tool AUC [%] Sn [%] Sp [%] ACC [%] MCC [%] Website

iBitter-SCM 90 84 84 84 69 iBitt er- SCM

BERT4Bitter 96 94 91 92 84 BERT4 Bitter

iBitter-Fuse 93 94 92 93 86 iBitt er- Fuse

iBitter-DRLF 98 92 98 94 89 iBitt er- DRLF

Bitter-RF 98 94 94 94 88 No webserver available

http://camt.pythonanywhere.com/iBitter-SCM
http://pmlab.pythonanywhere.com/BERT4Bitter
http://camt.pythonanywhere.com/iBitter-Fuse
https://www.aibiochem.net/servers/iBitter-DRLF
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different lengths, from dipeptides to polypeptides of 
39 amino acids, and contain 20 different amino acids 
(Table  S1). The bitter peptides were selected from lit-
erature with the prerequisite that their bitter taste was 
experimentally validated, but the non-bitter peptides 
were sampled from the BIOPEP database and were not 
experimentally proven to be non-bitter. Bitter peptides 
are labeled as ‘Positive’ and non-bitter peptides are 
labeled as ‘Negative’.

Amino acids in the peptides are considered as nodes 
N, and bonds between them as edges E so that peptides 
can be represented as graphs G(N, E), where |N | = L is 
the total number of amino acids in the peptide. A pep-
tide graph G is assumed to be a simple path graph P with 
length L− 1 and has a sequence of nodes P = (n1, . . . , nL) 
where, ni ∈ N  ∀ 1 ≤ i < L such that (ni, ni+1) ∈ E is an 
undirected edge between two nodes in G [18]. We used 
a One-Hot encoding scheme to represent the different 
amino acids. One-Hot encoder transforms categorical 
data (with κ categories) into sparse vectors having length 
κ , that represent all categories as binary values. For rep-
resenting the different node types, we used One Hot 
encoding and created a one-to-one mapping of amino 
acids to a 2d vector such that, all the amino acid vectors 
have a dimension of 1× 20 . For any peptide graph hav-
ing L amino acids, the node features are represented by a 
2d vector with dimension 20× L . Each of the 20 elements 
of the feature vector represents one type of amino acid 
out of the 20 amino acids that are present in the BTP640 
dataset. For example, the node features of the tripeptide 
’DWA’ can be represented as 2d vector dimensions 20 × 3 
where the second dimension of the matrix represents the 
D, W, and A amino acids.

BitterPep‑GNN models
The goal of GNN is to learn a k-dimensional embed-
ding of the node containing the information of both the 
node and its neighbours. For instance, the node feature 
of tripeptide ’DWA’ with dimension 20× 3 will be trans-
formed to an embedding with dimension k × 3 . These 
node embeddings can be used for various downstream 
tasks such as node or graph classification, edge labeling, 
etc. For the case of bitter peptide classification, the trans-
formed k-dimensional node embedding is pooled to gen-
erate a graph-level embedding. It is worth noticing that 
in the previous example, regardless of the length of the 
peptide, the graph embedding will have a dimension of 
k × 1.

GNN is a stack of node-level hidden layers followed 
by Multi-Layer Perceptrons (MLP) such that the node 
embedding of each layer is calculated by aggregat-
ing the information of its neighbouring nodes from 
the previous layer. The learned node embedding is 

then used for upstream tasks such as graph classifica-
tion or node classification. Computationally, a GNN 
model has two components: propagation and pooling. 
The propagation component is the step where the node 
information, representing the individual amino acids, 
is passed on to the subsequent layers, e.g. using a con-
volution operator. The pooling component is the aggre-
gation operation, where the last node layer is linearly 
pooled to obtain the graph embedding representing the 
peptides.

BitterPep-GNN is a graph classification network that 
predicts the bitter taste of peptides by learning the 
embedding of amino acids in the form of latent node 
embedding. We used three different types of GNNs, 
Graph Convolutional Network (GCN) and Graph 
Attention Network (GAT), both based on convolutional 
layers and GraphSAGE, to generate the node-level 
embeddings, and two pooling techniques for graph 
embeddings as described below. The input of GNNs 
is a peptide graph in which the amino acids are rep-
resented by nodes present in the graph. The different 
amino acids, i.e. the nodes, are represented by one-hot 
encoding.

In a Graph Convolution Network (GCN) layer, the 
node features are updated by the weighted information 
of its immediate neighbouring nodes from the previous 
layer [19]. The update rule for the nodes of the hidden 
layers is given as:

where, XGCN
i,h  is the hidden feature of node ni in hidden 

layer h, Wh−1 are the trainable weights, Neb is the neigh-
bourhood function, and σ is the ‘softmax’ activation 
function. For any node ni ∈ N  and its neighbour node 
nj ∈ N  , pij , node normalization factor, is defined as:

Intuitively, they represent how important the hidden 
node features nj are for creating the hidden representa-
tion of node ni in the subsequent layer. Since the coeffi-
cient pij is based on the degree of the nodes [ni, nj] , they 
depend on the structure of the graph. This approach 
of convolution is derived from the spectral domain of 
graphs [20].

Graph Attention Network (GAT) follows a self-
attention-based strategy to propagate the neighbour-
ing node. The attention mechanism attends to all the 
neighbouring nodes of a node using a linear MLP. The 
propagation rule can be written as

(1)XGCN
i,h = σ

[

∑

j∈Neb(i)

pijWh−1X
GCN
j,h−1

]

,

(2)pij =
1

√

|Neb(ni)||Neb(nj)|
.
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where, XGAT
i,h  is the feature vector of ni in layer h and aij is 

the attention coefficient of node ni and nj . The attention 
coefficients between two nodes are calculated by using 
the ‘Softmax’ operation ( σ ) on the self-attention weights 
of nodes with their neighbours. Letting self-attention 
weights be αij = Attention(ni, nj) [21], the attention coef-
ficient aij is calculated by

In this approach, the attention mechanism coefficients 
are only dependent on node features and not the struc-
ture of the graph. Multi-head attentions (MHA) are also 
used for enhancing the performance of the network 
model. For a multi-head attention with K attention heads, 
the GAT layer [22] becomes

GraphSage uses sampling techniques to learn the latent 
features of the nodes. In contrast, most GNNs, including 
GCNs, calculate the node feature vectors based on their 
entire neighbourhood. There are two steps in GraphSage 
[23]: sampling and aggregation. In the sampling step, 
neighbouring nodes are uniformly selected from different 
edge distances. For any distance k with k ∈ 1, . . . ,K  , the 
update rules are given as,

Each node i aggregates the representations of the neigh-
bouring nodes in a separate vector Xj,h,Neb(i) . The node 
feature is then calculated as

The sampling technique of GraphSage makes it com-
putationally efficient as compared to the GNNs (which 
sample the complete neighbourhood). It is also worth 
noticing that the aggregation function in GraphSage is 
trainable, making it work efficiently with changing or 
dynamic graphs.

Architecture of the BitterPep‑GNN models
The architecture of the BitterPep-GNN models has a 
node embedding module for learning the latent proper-
ties of its constituent amino acids and a pooling module 

(3)XGAT
i,h = σ

[

∑

j∈Neb(i)

aijWh−1X
GAT
j,h−1

]

,

(4)aij =
αij

∑

k∈Neb(i) αij
.

(5)XGAT
i,h = σ

[

K
∑

k=1

∑

j∈Neb(i)

akijWh−1X
GAT
j,h−1

]

.

(6)X
k ,GraphSage
i,h,Neb(i) = Aggk

(

{Xk−1
j,h−1, ∀j ∈ Neb(i)}

)

.

(7)
X
k ,GraphSage
i,h,Neb(i) = σ

[

Wk
h−1Concat(X

k−1
i,h−1,X

k ,GraphSage
i,h,Neb(i) )

]

.

for extracting the peptide graph-level embedding and 
predicting the bitter taste of the peptides. For the node 
embedding modules, we created a stack of three hidden 
layers for all the above-mentioned graph networks (GCN, 
GAT, GraphSAGE). Let H = {H1,H2,H3} be the set of 
hidden layers such that |H | = 3 . Given an input peptide 
P of with L amino acids, with node feature matrix IP 
with dimension 20× L . The first layer H1 transforms the 
input amino-acid features IP from the 20-dimensional 
One-Hot encoded vectors to a Df = 16 dimensional 
vector. The H1 node features are forwarded to the sub-
sequent layers H2 , H3 using ReLU non-linear activation. 
The equation of the Rectified Linear Unit ReLU operator 
is defined as:

The output Xi,H of H3 is the final embedding of all the 
amino acids in the peptide having shape (Df , L) . The out-
put amino acid node features were flattened in the pool-
ing module to get the peptide graph vectors with length 
Df  , allowing us to obtain fixed-size vectors, which were 
then used for downstream classification layers.

We used two pooling schemes to generate the graph-
level embedding. The pooling layer takes as input the 
node level amino acid features Xi,3 of H3 having node 
features of dimension Df  and creates a one-dimensional 
graph-level peptide vector. We used two types of pooling 
module schemes: meanpool and mixedpool. In the mean-
pool module, the output embedding X3 is simply aver-
aged to obtain a fixed-size vector Gmean

p  . The meanpool 
module is defined as:

In the meanpool module, the flattened vector Gmean
p  rep-

resents all the amino acids with uniform weight. How-
ever, in the mixedpool module scheme, the X3 embedding 
was flattened by three operations: mean, max, and add. 
First, the three types of flattened vectors were obtained 
from X3 . Then, the three vectors were added together to 
obtain the mixedpool output. The mixedpool module can 
be defined as:

Both of the pooling modules provide a representation of 
the peptide based on its amino acids. The peptide vector 
output of the pooling layer with shape (Df ) is then trans-
mitted to the subsequent layer with a dropout probability 
of Pd [24]. The final layer is the output layer O, which is a 
linear classifier.

(8)ReLU(x) = max(0, x).

(9)Gmean
p =

1

L

∑

1≤n≤L

Xn,H .

(10)Gmix
p =

(L+ 1)

L

L
∑

n=1

Xn,H +maxLn=1[Xn,H ].



Page 5 of 13Srivastava et al. Journal of Cheminformatics          (2024) 16:111  

where WLin are the trainable weights of the classification 
layer.

We combined the three embedding types and the 
two pooling schemes to create six graph networks: Bit-
terPep-GCN-Meanpool, BitterPep-GCN-Mixedpool, 
BitterPep-GAT-Meanpool, BitterPep-GAT-Mixedpool, 
BitterPep-Sage-Meanpool, and BitterPep-Sage-Mixed-
pool. The parameters of BitterGNNs were fixed for all 
networks. The GNN module has three node embed-
ding hidden layers |H | = 3 that were stacked, with each 
layer having Df = 16 dimensional node embedding. In 
the pooling module, the dropout probability was set to 
d = 0.1.

The models were subjected to a benchmarking pro-
cess using the BTP640 dataset and a 10-fold cross-
validation strategy. The dataset was divided into ten 
subsets, each containing 64 peptides that were ran-
domly selected without replacement. For any run r 
such that 1 ≤ r ≤ 10 , in 10-fold validation, the models 
were trained on the 576 peptides that were not present 
in the rth fold of the dataset. During the evaluation, the 
64 peptides present in the rth fold were used. The accu-
racy and ROC-AUC were calculated for each of the 10 
runs for all the models. We used fixed random seeds for 
splitting the data to ensure reproducibility. We com-
pared the performance of the models using the aver-
age accuracy and ROC values recorded over the 10-fold 
cross-validation and the accuracy and ROC values of 
the top-performing fold in the 10-fold cross-validation 
run.

Interpretation methods
The best performing model was analysed to understand 
the features responsible for the bitter peptide predic-
tion. To facilitate visualisation and interpretation of the 
data, the peptide embeddings were transformed into a 
2D array using t-SNE and then clustered using K-means. 
We acknowledge the availability and debate over various 
dimensional reduction and clustering methods [25–27]. 
However, since this analysis was not intended for pre-
diction or decision-making, we chose methods that pro-
vided the clearest representation of our data.

To analyse the importance of individual amino acid 
and peptide motifs, we extracted the amino acid embed-
ding, and we generated normalized importance scores 
(Table  S6). The importance scores were calculated by 
averaging the output X3 of all the occurrences of a sub-
structure in the peptides. For any substructure hav-
ing length ls and occurring Os times in the peptides, the 
importance score Is can be calculated as:

(11)Op = WLinDropoutPd (Gp)

where Xs,i,3 is the output of ith amino acid in a substruc-
ture s. A total of 927 substructures, comprising amino 
acids with a length of one to four, were identified in the 
bitter peptide set. In the non-bitter peptide set, 1315 sub-
structures were found to have a length between one and 
four amino acids.

For decoding the relevance of the amino acid contribu-
tion to peptides’ bitter taste, we applied Gradient Class 
Activation Mapping (Grad-CAM), a variation of the 
Class Activation Mapping (CAM) method, providing vis-
ual explanations for decisions made by any convolutional 
network-based model, regardless of their layer architec-
ture [28, 29]. It exploits the gradients flowing into the 
last convolutional layer to highlight which graph nodes 
are most important for the model‘s decision during the 
classification task. We define the k th graph convolutional 
feature map at layer l as:

with A being the adjacency matrix, X the node attributes, 
Wl

k the k-th column of Wl trainable convolutional 
weights, σ the activation function, while Fl

k,n
 represents 

the k-th feature for the n node at the l-th layer [30]. Let 
D̂ii =

∑

j Âij , Â = A+ IN with IN being the added self 
connections, then V is calculated as V = D̂

−1
2 ÂD̂

−1
2  . The 

global mean pooling feature after the last convolutional 
layer l is computed with the formula:

with the class score ye =
∑

k w
C
k ek . The Grad-CAM 

weights are therefore defined as:

Finally, the neat map from the layer l is calculated as:

Results and discussion
BitterPep‑GNN
Graph-based deep learning methods are a type of neural 
network that is used for data with non-Euclidean geom-
etries such as graphs [20]. The non-regularity of data 
structures led to the massive success of Graph Neural 

(12)Is =
1

Os

Os
∑

1<i

[ 1

ls

ls
∑

1<i

Xs,i,3

]

(13)Fl
k(X ,A) = σ(VFl−1(X ,A)Wk

l )

(14)ek =
1

N

N
∑

n=1

Fl
k ,n(X ,A)

(15)α
i,C
k =

1

N

N
∑

n=1

δyC

δFl
k ,n

(16)L
C

Grad - CAM
[l, n] = ReLU

(

∑

k

α
l,C

k
F
l

k ,n(X ,A)

)
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Networks. In natural language processing, GNN mod-
els are used to generate word and document embedding 
for text corpus for tasks like text classification. Text ele-
ments are represented by a line graph, and the relation-
ship between these elements is embedded in the graph 
via links between nodes.

A peptide can be considered as a text sequence. Amino 
acids in a peptide are represented as nodes, and bonds 
between them as edges. Therefore, the problem of bitter 
peptide prediction can be addressed as a graph classifica-
tion problem. GNN models then are focused on combin-
ing information of nodes and their neighbour nodes [31, 
32].

While GNNs have been successfully developed for 
predicting biological activity or properties like absorp-
tion, distribution, excretion, metabolism, and toxicity 
(ADMET) of drug candidates [32–34], only a few stud-
ies also explored the potential of developing prediction 
models of peptides via GCN [35, 36].

We tested six BitterPep-GNN models, the results of the 
cross-validation-based benchmarking study are given in 
Table  2. The developed models do not outperform the 
existing methods the existing methods (Table  1), but 
achieve comparable results.

Our models were generated by combining three types 
of graph neural networks and two types of pooling mod-
ules. The architecture of the models is given in Fig. 1. The 
GCN Embedding proved to have the highest accuracy. 
The BitterPep-GCN model showed superior performance 
than BitterPep-GAT and Sage networks, regardless of the 
pooling modules. Among the three GNNs, BitterPep-
GCN network has the highest average 10-fold accuracy 
value, and the highest top fold accuracy and top fold 
ROC values. For the average 10-fold ROC value, Bitter-
Pep-GAT achieved the best performance.

For the pooling modules, Mixedpool schema showed 
better 10-fold cross-validation performance than the 
Meanpool schema when combined with the GNNs. In 

the case of BitterPep-GCN, the average 10-fold accu-
racy for the Meanpool and Mixedpool schema are 0.83 
and 0.86; the top fold accuracy values are 0.91 and 0.95 
for Meanpool and Mixedpool, respectively. Moreover, for 
the BitterPep-GCN, Mixedpool schema has higher aver-
age 10-fold ROC and top fold ROC values than Meanpool 
schema. For BitterPep-GAT combined with Meanpool 
schema, the average 10-fold accuracy and top fold accu-
racy values are 0.81 and 0.88. BitterPep-GAT combined 
with Mixedpool schema has the average 10-fold accu-
racy and top fold accuracy of 0.83 and 0.89 showing that 
Mixedpool has better performance. Similarly, the Bitter-
Pep-Sage network combined with the Mixedpool schema 
has an average 10-fold accuracy of 0.83 and top fold accu-
racy of 0.89, and average and top fold accuracy values of 
0.81 and 0.89 with the Meanpool schema. With regards 
to the 10-fold cross-validation benchmarking study, Bit-
terGCN-Mixedpool showed the best bitter classification 
performance among the six BitterPep-GNN models.

Size, hydrophobicity, and BitterPep‑GCN predictions
The relationship between the chemical structure of bit-
ter peptides and their elicited bitterness has been studied 
and disputed extensively for a long time. Hydrophobicity 
has been pointed out as a relevant molecular feature for 
determining bitterness since 1971 when Ney formulated 

Fig. 1 Schematic representation of the model architecture. Each amino acid present in the input peptides is processed by the three graph neural 
layers. The output of the graph neural networks is pooled to obtain a fixed-size vector. At last, the fixed-size vector is used by a linear classifier layer

Table 2 10-fold cross-validation performance of the three GNN 
embedding types with two types of pooling layers

Highest achieved performance in bold

GNN Pooling Avg Acc Avg ROC Top Acc Top ROC

GCN Mean 0.83 0.88 0.91 0.97

Mixed 0.86 0.89 0.95 0.98
GAT Mean 0.81 0.88 0.88 0.93

Mixed 0.83 0.90 0.89 0.97

GraphSage Mean 0.81 0.88 0.89 0.93

Mixed 0.83 0.89 0.89 0.94
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the Q rule to estimate peptide bitter taste [38]. To deter-
mine whether and to what extent hydrophobicity is 
incorporated into our best performing model, BitterPep-
GCN, we analysed the output of the embedding module.

The initial step in this process was to generate the pep-
tide space of our dataset, which was then used as a visu-
alization tool to navigate among the peptides. We used 
t-SNE visualization and grouped the peptides into four 
clusters. The clusters differ in the ratio of bitter and non-
bitter peptides and, from cluster 1 to cluster 4, they pro-
gressively increase in bitter population (Table S2, Fig. 2A, 
B). Cluster 4 has the highest percentage of bitter peptides 

(contains 121 peptides with only 2 non-bitter peptides) 
and the lowest number of incorrect predictions (Fig. S2), 
but also visibly different embeddings, so it is isolated 
from the other three clusters. Cluster 1 is mostly popu-
lated by non-bitter peptides (only 16 bitter peptides). The 
area between clusters 2 and 3 has a mixture of bitter and 
non-bitter peptides overlaps (Fig.  2B) and is indeed the 
most challenging for prediction (Fig. S2).

Peptides in the four clusters have a wide distribution 
of the molecular weight (MW), spanning from 500 to 
4000. The longest peptides are found within cluster 2 
(Fig.  2C, Table  S4). We monitored the hydrophobicity 

Fig. 2 2D t-SNE of peptide graph embedding of the BTP640 dataset using BitterPep-GCN model. A The plot is coloured by cluster association: 
cluster 1 is coloured in coral, cluster 2 is coloured in light blue, cluster 3 is coloured in light violet and cluster 4 is coloured in dark yellow. B The plot 
is coloured by bitterness, as labeled in the BTP640 dataset: lime-green-coloured for bitter peptides and blue-coloured for non-bitter peptides. C 
The plot is coloured in grey scales according to the molecular weight (MW). D The plot is coloured by Q values: peptides with Q values above 1400 
cal/mol (predicted as bitter for the Q rule) are coloured in green, peptides with Q values below 1300 (predicted as non-bitter for the Q rule) are 
coloured in brown, or whitish if the Q value is undefined with values in between 1300 and 1400 cal/mol
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of peptides in the four clusters, by mapping the t-SNE 
with the peptides’ Q values (Fig.  2D). The Q value is 
the average free energy for the transfer of the amino 
acid side chains from ethanol to water (Q =

∑

�f /n) , 
i.e., as originally applied by Tanford [37], an estimate 
of the relative hydrophobicity of amino acids and pep-
tides. Ney found that most bitter peptides had Q val-
ues > 1400 cal/mol, whereas non-bitter peptides had 
Q values < 1300 cal/mol [38]. Figure 2D illustrates that 
the clusters do not differ in hydrophobicity and each of 
them contains peptides with Q values higher than 1400 
cal/mol and lower than 1300 cal/mol. This also suggests 
a low correlation between the BitterPep-GCN predic-
tions and Q values, as better shown in the confusion 
matrices (Fig. 3).

BitterPep-GCN shows high rates of true positives 
(TPR) and true negatives (TNR) and, interestingly, 
has a higher false negative rate (7%) than a false posi-
tive rate (FPR) (3.6%). The Q rule classifies 304 pep-
tides correctly. It is good at recognizing bitter peptides 
(36.4% TPR), but also shows a high FPR. The Q value 
shows a comparable number of correctly determined 
bitter and non-bitter peptides in all clusters (60 out of 
166 peptides in cluster 1, 73 out of 183 peptides in clus-
ter 2, 85 out of 138 peptides in cluster 3, 86 out of 111 
peptides in cluster 4, Table  S3). The high rate of false 
positive values is located mainly in clusters 1 and 2, and 
in the area between clusters 2 and 3.

Amino acid contributions to the BitterPep‑GCN predictions
The bitter taste is the result of the interaction of pep-
tides with bitter taste receptors (TAS2Rs) on the 
tongue. TAS2Rs belong to the G protein-coupled 
receptor (GPCR) superfamily [39]. Modeling studies 
of peptides in complex with TAS2Rs and structural 
investigation of peptides in complex with other GPCRs 
suggest that TAS2R could recognize core signatures or 

motifs in peptide sequences in their orthosteric bind-
ing site [40–43]. Therefore, some structural motifs may 
play a significant role in the bitter taste of the entire 
peptide.

As our model treats peptides as line graphs, to iden-
tify signatures carrying bitter information in the pep-
tide sequences, we calculated the activity of amino 
acids and peptides by aggregating and averaging the 
embedding of all substructures, and analysed the con-
tribution of individual amino acids to the predictions.

In Fig. 4, we report the importance scores (panels on 
the bottom) and occurrence (panels on the top) of indi-
vidual amino acids in the bitter (panels on the left) and 
non-bitter (panels on the right) sets. Amino acids A, 
C, M, N, Q, S, and T have been identified as having a 
greater impact for a peptide to be non-bitter. Cysteine 
is only present among non-bitter peptides and occurs 
only in cluster one. Interestingly, A, C, M, and Q are 
not represented in any of the peptides of cluster 4. In 
contrast, the most prevalent amino acids in this clus-
ter are F, G, P, and R, which exhibit the highest activ-
ity for a bitter peptide. The model appears to capture 
the propensity of specific amino acids for bitter vs. 
non-bitter prediction. Moreover, this does not seem to 
correlate with the imbalanced composition of the two 
sets. While F, G, and R are distributed differently in the 
bitter and non-bitter sets, P is of greater importance 
for the bitter predictions despite a similar and high 
distribution in the two sets. This can be observed also 
for other amino acids, such as D and E. Another exam-
ple is the two amino acids V and I, which appear to 
occur in all clusters and are present in both bitter and 
non-bitter sets. However, according to the BitterPep-
GCN model, they are of greater importance for bitter-
ness. The lack of a correlation between the importance 
scores and the occurrence of amino acids suggests that 
the model considers more aspects than just the amino 
acid composition.

To evaluate the combination of amino acids in dipep-
tide motifs, we created heatmaps with all the combina-
tions and the important scores for both bitter (Fig. 5A) 
and non-bitter (Fig. 5B) activity.

The dipeptide sequences with high scores (scores 
> 0.0029) are VD, ID, DV, VV, EE, FF, WP, FP, GF and 
GR, confirming the propensity of specific amino acids 
for bitter taste. Similarly, among dipeptide motifs that 
have high importance for non-bitterness, we mostly 
found C-containing motifs, i.e., CF, FC, CM, CW, and 
CP. However, different motifs get different scores, for 
example, CM has a higher score than MC, suggesting 
that the model also weights differences in the positions 
of amino acids in the sequence.

Fig. 3 Confusion matrices of the prediction via the Q rule (A) 
and the prediction via BitterPep-GCN (B). In the confusion matrix 
analysis of the Q rule-based prediction, peptides with a Q-value 
between 1300-1400 cal/mol were not included
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BitterPep‑GCN insights on the signature motifs driving 
peptide bitter taste
As discussed above, the model pinpoints a propen-
sity of specific amino acids for bitter taste predictions. 
To better characterize bitterness signatures, we ana-
lysed the 20 motifs with the highest importance scores 
among the substructures (individual amino acids, di-, 

tri- and tetrapeptide sequences) extracted from the 
embeddings in the bitter peptide set (Table 3).

As a confirmation of the amino acid propensities, we 
found that only 10 out of the 20 amino acids represented 
in the dataset are present in the list of highest-scored 
motifs. And five of them, i.e., F, G, P, R, and V, were 
identified as specific amino acids for bitter taste (Fig. 4). 

Fig. 4 A Occurrence of the individual amino acids in the bitter and non-bitter set. Histograms are coloured according to the cluster association. B 
Importance scores of individual amino acids in the bitter and non-bitter sets

Fig. 5 The heatmaps illustrate the importance scores of dipeptide motifs, calculated for A bitter taste peptides (shown in green shades) and B 
non-bitter peptides (shown in blue shades)
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However, as the peptide lengths in the datasets are imbal-
anced towards short peptides (Table  S1), it is not nec-
essarily the case that all the motifs with high scores are 
motifs of peptides in the dataset. Therefore, to identify 
among these highly scored motifs those that could be 
the signatures driving the bitter taste to the peptides, 
we also looked at the occurrence in the dataset. Indeed, 
VD, ID, and WP are present in the dataset only as dipep-
tides themselves and do not occur in any other longer 
peptide in the dataset, and DV is only contained in one 
longer peptide. The dipeptide EE and the tripeptide EEE 
occur both exclusively in four bitter peptides of the data-
set. The dipeptide VV is bitter itself, but only three out of 
nine peptides containing this motif are bitter. VVV is also 
identified as a highly scored motif, and interestingly, it 
occurs at the beginning or the end of five bitter peptides 
in the dataset. The dipeptide motif GR is present both in 
bitter and non-bitter peptides. It results in the two highly 
scored tripeptide motifs PGR (present in the tetrapeptide 
motif FPGR) and in GRP that occur in the highly scored 
tetrapeptide motif GRPF and 7 bitter peptides and one 
non-bitter peptide of all the set.

However, on the other hand, we have examples of 
motifs that are highly represented in the bitter pep-
tides. The dipeptide motif GF is also bitter itself and is 
present in 22 peptides of the dataset, 21 of which are 
bitter. The dipeptide FF is bitter itself and, as a motif, 
is present in 33 bitter peptides. The dipeptide motif FF 

is also present in highly scored tripeptide motifs: PFF 
(which itself occurs in the tetrapeptide motifs PPFF, 
PFFF, GPFF, PFFG, PFFR, RPFF, and is overall reported 
in 14 bitter peptides in the dataset), FFF (which occurs 
in the tetrapeptide motif PFFF), FFR (which occurs in 
the tetrapeptide motif PFFR and FFRP), FFG (also in 
the tetrapeptide motif PFFG) and GFF (which does 
not occur in one of the 20 highly scored tetrapeptide 
motif but is present in 9 bitter peptides). Interestingly, 
the tripeptide motifs FFF, FFR, and GFF are exclusively 
presented in bitter peptides. The tripeptide motifs PFF 
and FFG are present mostly in bitter peptides (i.e., in 
19 bitter peptides out of the 21 peptides containing 
them). Tetrapeptide motifs containing the dipeptide 
FF are bitter themselves or exclusively present in bitter 
peptides. PF is the most frequent dipeptide motif in the 
dataset. It occurs 86 out of 98 times in bitter peptides, 
and it results in the highly scored tripeptide motifs 
FPF, PFF, and RPF. The tripeptide motif FPF is bitter 
itself and occurs in 2 non-bitter peptides. The tripep-
tide motif PFF is present only in one non-bitter peptide 
(PFFDPQIP) and in 14 bitter peptides. Tetrapeptide 
motifs containing PFF (i.e., PPFF, PFFF, GPFF, PFFG, 
PFFR, RPFF) either are bitter themselves or only occur 
in bitter peptides. The tetrapeptide motifs PPFG, PPPF, 
and PFPG do not contain a highly scored tripeptide 
motif but contain within the highly scored dipeptides 
FG, PF, PG, and PP and occur in 14 bitter peptides. The 

Table 3 Lists of the amino acids, and di-, tri-, and tetrapeptide sequence motifs for the 20 highest importance scores

Amino acids Dipeptide motifs Tripeptide motifs Tetrapeptide motifs

F 0.00266 VD 0.00437 FPF 0.00443 FPPF 0.00399

G 0.00217 ID 0.00396 PFF 0.00357 PPFG 0.00372

P 0.00194 DV 0.00362 VVV 0.00352 PPFF 0.00368

R 0.00194 VV 0.00351 FPP 0.00350 FFPP 0.00364

E 0.00142 EE 0.00342 FPR 0.00344 FFPG 0.00361

W 0.00134 FF 0.00323 FFP 0.00343 PFFF 0.00358

D 0.00112 WP 0.00310 FPG 0.00342 FPGG 0.00355

I 0.00111 FP 0.00304 RPF 0.00341 GPFF 0.00354

V 0.00095 GF 0.00304 FFF 0.00340 FRPF 0.00346

Y 0.00083 GR 0.00295 FRP 0.00338 PFFG 0.00344

L 0.00081 PF 0.00285 FFR 0.00330 PFFR 0.00339

H 0.00030 FR 0.00284 FFG 0.00320 GRPF 0.00337

M 0.00018 WE 0.00279 PGF 0.00319 FFRP 0.00335

T 0.00016 RP 0.00276 EEE 0.00309 RPFF 0.00335

N 0.00015 PG 0.00276 PGR 0.00304 FFPR 0.00335

S 0.00012 EY 0.00266 GRP 0.00304 PPPF 0.00331

Q 0.00008 PP 0.00263 GPP 0.00302 PFPP 0.00329

A 0.00006 FG 0.00260 FGG 0.00301 FPGR 0.00327

K 0.00006 GG 0.00245 GFF 0.00301 PFPG 0.00324

C - WW 0.00228 RPG 0.00298 RPFG 0.00321
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tripeptide motif RPF and its highly scored tetrapeptide 
motifs (FRPF, GRPF, RPFG) are exclusively present in 
bitter peptides.

The dipeptide motif FP is also bitter itself and occurs 
51 out of 64 times in bitter peptides of the dataset and 
31 times in the tripeptide motifs of bitter peptides (FPF, 
FPP, FPR, FFP, and FPG). The most frequent tripep-
tides are FPP (11 times present and occurs in the highly 
scored tetrapeptide motifs FPPF and in PFPP), FFP (5 
times present and occurs in tetrapeptide motifs FFPP, 
FFPG, and FFPR) and FPG (13 times present in bit-
ter peptides and occurs in FFPG, FPGG, and FPGR). 
Whereas FPP, FPR, and FFP are exclusively present in 
bitter peptides, FPF and FPG are found in non-bitter 
peptides as well (FPFEVFGK, FFVAPFPFEVFGK, LVY-
PFPGPIPNSLPQNIPP, and MIFPGGPQL).

FF, FP, and PF are, therefore, highly scored and also 
the most present in the bitter peptides in the BTP640 
dataset. It is, therefore, not surprising that these motifs 
also obtained high dipeptide propensity scores from the 
iBitter-SCM [13].

The advantages of using GNN in this work rely on 
being able to capture also the positional relevance of 
the motifs. GNNs can handle graphs with variable 
lengths and capture long-range dependencies, which 
is particularly important in this case, as the peptides 
in the dataset are different in length and distant resi-
dues might have significant interactions. To investigate 
the individual and positional importance of the amino 
acids and sequence motifs within the peptides in Bit-
terPep-GCN, we used Grad-CAM (Gradient-weighted 
Class Activation Mapping). This allowed us to visu-
alize the embedding output of the last convolutional 
layer to highlight the individual locations for the bit-
ter prediction. We analysed the case of peptides con-
taining the high-scored motifs FF, FFR, and FFRP, i.e. 
RPFFRPFFRPFF, RPFFRPFF, and FFRPFFRPFF (Fig. 6). 
All three peptides are correctly predicted to be bitter, 
but it is evident that the position of amino acids plays a 
significant role in their contribution to the bitter taste 
prediction.

Conclusion
Predictors of bitter peptide taste might have a high impact 
on the food sector. Considering the constant growth of 
knowledge of the bitter peptide space and how this will 
increase the complexity of the systems to be decoded, 
we believe it is crucial to evaluate novel approaches and 
develop interpretable models that can illuminate the 
underlying molecular signature of peptides’ bitter taste, 
and provide accurate and fast predictions.

In our work, we propose a GNN-based predictive 
method for bitter peptides that gives way to predicting 
bitter taste while preserving the underlying amino-acid 
structure of the peptides. The best-developed model, 
BitterPep-GCN, learns the embedding of amino acids in 
the bitter peptide sequences and uses mixed pooling for 
bitter classification. The model achieved an at-par perfor-
mance of 10-fold cross-validation compared to previously 
published models that used the same dataset of pep-
tides. With respect to other predictors, our model offers 
the advantage that it does not utilize any pre-calculated 
features or embedding. It only takes into consideration 
the underlying sequence structure of the peptides and 
can handle sequences with variable lengths and capture 
long-range dependencies. Representing the sequence as a 
graph (even if we started with the linear graph) allows for 
easier integration of additional structural data in follow-
ing updates of the predictor. Moreover, considering the 
graph-based structure of the peptide sequence also adds 
to the interpretability of the model.

We found that neither the hydrophibicity nor the pep-
tide size can alone explain peptide bitter taste and has 
no correlation with our model. Indeed, bitterness results 
from the complex information encoded in the peptide 
sequence. Therefore, we provided detailed analyses of 
the BitterPep-GCN predictions aimed at identifying 
important sequence motifs for peptide bitter taste. The 
embeddings were used to analyse the sequence motifs 
responsible for the bitter taste. We generated a list of 
highly scored motifs (Table  2) and checked for all of 
them, the occurrence in this pool, and in the dataset 
in general. This allowed us to capture the correlation 

Fig. 6 Visualization of the calculated values with Grad-CAM. The importance of the individual amino acid is represented from whitish (for a minor 
likelihood ) to green (for a greater likelihood) for the development of a bitter taste
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between prediction and occurrence, like in the case of 
the motif FF and tri- and tetrapeptide motifs containing 
it. The results of the Grad-CAM analysis demonstrate 
the influence of the motif position on the predictions. 
Therefore, the model is also capable of capturing struc-
tural aspects, which confirms the applicability and advan-
tage of GNN for investigating bitter peptides. However, 
the current limitation for developing robust predictors 
is the scarcity of sensory-proofed data, particularly for 
non-bitter peptides, and the absence of information on 
taste thresholds. It is therefore recommended that future 
efforts be directed towards the generation and collection 
of high-quality data.
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