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Abstract

Background: The need to have a quantitative estimate of the uncertainty of prediction for QSAR models
is steadily increasing, in part because such predictions are being widely distributed as tabulated values
disconnected from the models used to generate them. Classical statistical theory assumes that the error
in the population being modeled is independent and identically distributed (lID), but this is often not
actually the case. Such inhomogeneous error (heteroskedasticity) can be addressed by providing an
individualized estimate of predictive uncertainty for each particular new object u: the standard error of
prediction s, can be estimated as the non-cross-validated error s for the closest object t* in the training
set adjusted for its separation d from u in the descriptor space relative to the size of the training set.

§u =St 7[*(dt*,u/d00)

The predictive uncertainty factor y.is obtained by distributing the internal predictive error sum of squares
across objects in the training set based on the distances between them, hence the acronym: Distributed
PRedictive Error Sum of Squares (DPRESS). Note that s. and j.are characteristic of each training set
compound contributing to the model of interest.

Results: The method was applied to partial least-squares models built using 2D (molecular hologram) or
3D (molecular field) descriptors applied to mid-sized training sets (N = 75) drawn from a large (N = 304),
well-characterized pool of cyclooxygenase inhibitors. The observed variation in predictive error for the
external 229 compound test sets was compared with the uncertainty estimates from DPRESS. Good
qualitative and quantitative agreement was seen between the distributions of predictive error observed
and those predicted using DPRESS. Inclusion of the distance-dependent term was essential to getting good
agreement between the estimated uncertainties and the observed distributions of predictive error. The
uncertainty estimates derived by DPRESS were conservative even when the training set was biased, but
not excessively so.

Conclusion: DPRESS is a straightforward and powerful way to reliably estimate individual predictive
uncertainties for compounds outside the training set based on their distance to the training set and the
internal predictive uncertainty associated with its nearest neighbor in that set. It represents a sample-
based, a posteriori approach to defining applicability domains in terms of localized uncertainty.
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Background

Early work on quantitative structure-activity relationships
(QSAR) was primarily concerned with relating select phys-
ical properties to in vivo biological activity [1,2]. Ordinary
least squares regression (multiple linear regression) was
the analytical tool of choice, and the statistical questions
addressed focused on whether a particular descriptor was
significant or not. QSAR methods soon evolved, however,
into being ways of identifying optimal physical properties
rather than simply trends, a shift accomplished by fitting
to quadratic and bilinear equations. This development
was spurred in no small part by the desire to identify opti-
mal octanol/water partition coefficients (logP), generally
in pursuit of optimal in vivo activity.

The focus for pharmaceutical drug discovery subsequently
shifted from in vivo testing to in vitro evaluation of interac-
tions between candidate ligands and isolated enzymes or
receptors. This change brought with it a shift of descrip-
tors from measurable properties of compounds to compu-
tationally estimated properties of molecules, with the
calculations in question often being based on (sub)struc-
tural descriptors. The next step was to take descriptors into
account that were based on molecular structure but were
not themselves measurable physical properties. Often
these were more or less local in nature, and the purposes
of doing the analysis shifted from identifying significant
underlying relationships to the descriptors to identifying
optimal substituents or substitution patterns. Interest in
artificial neural networks (ANNs) [3] and partial least
squares with projection onto latent structures (PLS) [4] as
analytical tools increased at the same time. Questions
related to validity of the model as a whole took center
stage as the number of descriptors available proliferated
[5,6], followed closely by a strong interest in predictivity
and how best to establish applicability domains [7-15].

Today, however, the overall statistical properties of a par-
ticular QSAR are less relevant to medicinal chemists or
environmental regulatory agencies. Recent pressure to
simultaneously reduce clinical failures, ensure the safety
of bulk chemicals [16-18] and reduce testing on animals
have led to an increasing reliance on models for predict-
ing off-target biological effects and toxicity. This use of
QSAR models entails applications to more structurally
diverse compounds, but it also changes the relative
importance of different kinds of mistakes. If a structure is
predicted to have a much higher affinity for the target than
it actually does, the cost to a lead optimization program is
limited to the synthetic resources wasted on that particu-
lar structure. Even that cost is mitigated if something use-
ful was learned about the underlying structure-activity
relationship (SAR) in the process. Such a false positive
error in predictive toxicology, however, may mean that a
life-saving (and profitable) drug never gets commercial-
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ized. Compounds mistakenly predicted to be inactive -
false negatives - represent a missed opportunity in the
context of lead optimization, but they have the potential
to be downright catastrophic (and ruinous) in the context
of predictive toxicology.

Such considerations put a premium on being able to
make a quantitative estimate of how reliable an individual
prediction obtained from a given model is. What is more,
answers to the question, "How reliable are the predictions
about this particular molecule that I am considering for
synthesis, clinical evaluation or registration?" are often
most relevant for extrapolations to structures near the
"outside" edges of the descriptor space defined by the
training set. Hence, to be of practical use, constraints on
applicability domains need to be "soft" - i.e., increase
with distance from the descriptor space covered by the
training set — but "hard" enough to indicate just how far
outside the training set one can safely expect to go. They
also need to provide a robust quantitative estimate of pre-
dictive reliability that is sensitive to local variations in the
descriptor space. This paper presents a novel methodol-
ogy for doing exactly that based on how close a new com-
pound is to those in the training set and the distribution
of internal predictive error across compounds in that set.

Classical statistical theory

The underlying model for linear regression on a vector X
of p independent variables is reflected in Eq. 1, wherein Y
is the response variable of interest, z4 is the population
mean of Y, B is a vector representing the sensitivities of Y
to changes in X, and x is a vector of deviations in X from
the population centroid piy.

Y=y +[X-px|eB+e(0,0x)=pny +xeP+¢(0,0x)
(1)

Asindicated in Eq. 1, the error ¢is assumed to be normally
distributed with mean 0 and a standard deviation o. Best
linear unbiased estimators (BLUEs) for the various param-
eters in Eq. 1 can be calculated from a sample T, of n
observations (in QSAR, compounds) drawn from the full
population, provided several preconditions are met [19]:

1. the strict linear dependence of Y on X set out in Eq.
1 applies across the population;

2. the sample is random and unbiased;

3. the descriptors contributing to X are mutually inde-
pendent in a statistical sense; and

4. the error distribution ¢ is homoskedastic and inde-
pendent of X and Y - i.e,, its standard deviation is the
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same everywhere in the descriptor space, so oy = o for
all X.

The corresponding regression estimators for each individ-
ual observation i and the overall standard error of regres-
sion sprare then given as shown in Egs. 2 and 3.

p

j=1

(2)

2 1 E : 2
S = e 3
FIT n—p—l i ( )

i=1
where Y is the mean value of Y for the sample; x; = X; - X,,,

with X, being the sample centroid for X; and Y; is the pre-

1
dicted value of Yat X;[19]. Note that s is greater than the
root mean square error (RMSE); this is because the means
Y and X, and the calculated coefficient vector b are them-

selves estimates that are subject to sampling error, with 1
and p degrees of freedom, respectively.

Under these assumptions, the potential error in estimat-
ing Y increases as one moves away from the centroid X,
As a result, the uncertainty s, in predicting the value of Y
at some new ("unknown") value X, is generally greater
than s In fact, under the assumptions given above [19]:

so=shr(L+(/m+ i,/ D d3))  (4)

where s, is the expected standard error of prediction
(uncertainty) for the new observation u and n is the
number of training set observations t used to build the
model. The Mahalanobis distances d, ,and d,, , are meas-
ured in the model space defined by b, i.e., they are
weighted Euclidean distances between the centroid X, of
the descriptor matrix for the training set and the vectors X,
and X,, respectively.

The rationale behind the "extra" terms in Eq. 4 is straight-
forward. For any random sample, the error involved in
using Y as an estimate of My is inversely proportional to n
- hence the 1/n term in Eq. 4. In addition, the accuracy
with which fis estimated by b is inversely proportional to
how thoroughly X is sampled by the training set, but how
much difference that makes to the error is directly propor-
tional to the distance d,, , between X, and X, in the model
space. Together these countervailing effects of variation in
X account for the second term within the outer brackets.
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Dealing with violated assumptions

The value of s, produced by Eq. 4 is a best linear unbiased
estimator of o;, - provided the assumptions underlying its der-
ivation hold. Unfortunately, one or more of those assump-
tions are violated in most QSAR applications. In
particular:

1. the dependence of Y on X rarely fits the prescribed
function perfectly, linear or otherwise;

2. the training set used is usually a non-random sam-
ple, its selection biased by matters of historical acci-
dent and convenience that reflect the historical
trajectory of the synthesis program that motivated the
analysis;

3. the descriptors contributing to X are often corre-
lated to a greater or lesser degree and hence are not
independent variables in the statistical sense (correla-
tion implies lack of independence, but the inverse is
not true: lack of correlation does not imply statistical
independence); and

4. ¢is usually heteroskedastic - its standard deviation
oy is often different in different regions of the descrip-
tor space.

Most or all of the assumptions are, in fact, explicitly vio-
lated when ANNSs, PLS, variable selection, quadratic
regression, or bilinear regression techniques are applied,
with the result that sy and the estimator given by Eq. 4
underestimate the actual uncertainty of prediction, often
drastically.

Several groups have derived theoretical variations of Eq. 4
for use with PLS and principal component analysis (PCA)
that seek to address departures from ideality [20-22].
Unfortunately, subsequent work has demonstrated that
these methods are often not robust when applied in real-
istic situations [23].

An alternative, completely empirical approach to assess-
ing aggregate predictive uncertainty is cross-validation, in
which each compound in the training set is held back in
turn [24]. The value of Y for the held-back compound is
then predicted using a model built from the other n - 1
compounds in the training subset T, = T, - {u}. In parallel
to Eq. 3, the standard error of cross-validation s is calcu-
lated from the predictive error sum of squares (PRESS)
according to equation 5:

2 1 5: > 2 1 5: 2
= Y, -Y = 1) 5
Scv i’l—p—l & ( u u) Tl—p—l u ( )

u=1
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where Y, is the value of Y predicted by applying the
reduced model built from the n - 1 compounds in training
subset T, to X, and &7 is the corresponding predictive

error. The summation is indexed across u to emphasize
that prediction is external to the training subset used in
each case. Here p represents the number of PLS compo-
nents included in the model rather than the number of
descriptors.

Cross-validation statistics were originally employed in
PLS solely as a way to determine an optimal model com-
plexity, a role for which the classical goodness-of-fit meas-
ure r2used in ordinary least squares is unsuited [24]. It has
since come to widely used to assess predictivity, however.
This use is unfortunate, in that a poorly predictive model
will have a high s, and a low ¢2, but the converse may or
may not be true: good cross-validation statistics may be
due to redundancies in the training set rather than truly
robust predictive performance [25-28]. Some workers pre-
fer to use "leave-some-out" cross-validation - in which
several compounds are held back together - to address
this problem. Nonetheless, the LOO standard error is the
best estimate of the full model's predictivity for each indi-
vidual compound in the training set [29], which makes it
is a reasonable starting point for estimating a model's pre-
dictive reliability for structures occupying nearby points in
the descriptor space.

Violation 4 - that error is not identically and independ-
ently distributed across compounds - is especially prob-
lematic for QSAR analyses. In one recently described case
in point, the variation in predictive error was clearly cor-
related with one of the two descriptors being used [7]. If
that is true when many descriptors are involved (as is the
case for PLS), the overall variability in predictive error
should be similar across the full range of Y. Such a distri-
bution of error is, in fact, often seen in place of the quad-
ratically increasing spread implied by Eq. 4 [30]. This
makes it all too easy to make the unjustified leap to the
unjustified conclusion that the aggregate predictive uncer-
tainty - typically s.y or the root mean square error of pre-
diction for an external test set (RMSEP or spppp) — is a
reliable indicator of the level of uncertainty associated
with individual predictions: independence from Y does
not imply independence from X.

Partitioning the PRESS

The increasing reliance of drug developers on tabulations
of predicted properties makes getting accurate estimates of
the uncertainty o, for individual predictions critically
important. Unfortunately, it is rarely if ever possible to
construct a unified global model for the dependence of o
on X. It is neither necessary nor even desirable to do so,
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however. A better approach is to shift from the classical,
descriptor-based view of regression to a sample-based for-
malism such as that used in the SAMPLS algorithm [31].
This algorithm exploits the fact that Eq. 2 can be recast as
Eq. 6 without loss of generality:

n
Y,-=17+th_iovt+ei=Y,-+ei (6)
t=1

where ¢ ;= [x;X;; XoX; ... XpX;p | Is the covariance between
x,and x; and v, is a weight vector that is specific to com-
pound t. Basically, Eq. 6 says that activity can be expressed
as a linear function of the similarities of each compound
to each of the other compounds in the training set. This
suggests that the observed predictive error e, can be cast as
a sum of contributions from each compound in the train-
ing set that increases with similarity to those compounds,
which is consistent with the observation that predictive
error tends to increase with distance from - i.e., tends to
decrease with increasing similarity to — compounds in the
training set [11,12,15]. If t* is the closest (i.e., the most
similar) such compound, its standard error (s..) is a rea-
sonable first approximation to the predictive error s, for a
new compound. In most QSAR applications, a single
response value Y, is assigned to each compound in the
training set, so the best estimate of s, is simply |e,|, where
e, is the deviation seen for ¢ in the full, non-cross-validated
model, i.e., the residual error of fitting.

Though the "true" dependence of predictive uncertainty
on the Euclidean distance d,. , from t* is unknown, its
dependence on distance can likely be approximated by a
Taylor expansion in which all but the first, linear term in
d is dropped. Taken together, these considerations yield
the estimator defined by Eq. 7:

S, =Sy + 7;1*(dt*,u /doo) (7)

where d is the length of the vector x,, defined by the
standard deviations of the descriptors; dy, = 1 when
descriptors have been centered and autoscaled, as was the
case here.

The problem then becomes one of estimating the predic-
tive error y associated with each compound ¢ in the train-
ing set. PLS tends to overfit, so this term is likely to be
greater than s,.; otherwise Eq. 7 would parallel Eq. 4
exactly, except for the loss of the 1/n aggregation term
within the brackets. Instead, one can turn to the squared
predictive errors collected during cross-validation. In the
calculation of the aggregate predictive uncertainty sqy (Eq.
5), these are lumped into a single sum - the PRESS. If,
however, one assumes that contributions from nearby
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training set compounds dominate the predictive error
and, further, that the value of ywill be comparable for the
training subset compounds closest to each individual
compound u, the contribution 87 that cross-validation of

the ith compound makes to the PRESS can more appropri-
ately be distributed across the training subset in inverse
proportion to the distances between X; and the n - 1 com-

pounds used to predict Y; (Eq. 8 and Fig. 1). A similar

approach is taken to distributing response variance across
the various sources of deviation from the mean in classical
analysis of variance (ANOVA).

pe=Y s va((m)+@iiai) | s)
it
The normalization factor ¢;in Eq. 9 is necessary to ensure

that the distribution is a partition - i.e., that the contribu-
tions from the cross-validation step in which compound i
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was set aside sum to the observed cross-validation error in

prediction &7 .

a;= Y 1/((/m)+ () dd)) 9)

j#i

A small constant (1/n) needs to be included to prevent the
reciprocal from "exploding" at small distances. Basically,
it dictates the distance at which error is expected to distrib-
ute evenly. The choice of this particular value is somewhat
arbitrary, but 1/n works well and nicely accommodates
the tendency of data points to get closer together as the
training set gets larger. Taken together, Egs. 7-9 define the
Distributed PRedictive Error Sum of Squares (DPRESS)
approach to estimating predictive uncertainty.

Results

The suitability of DPRESS or any other quantitative model
of predictive uncertainty is best evaluated by applying it to
experimental QSAR data sets. Here, DPRESS is tested
against PLS models obtained using a 3D descriptor (com-

I

O
o ot—,
L e &
s ®

- o 0«
. & *
/ -
o ‘. ® ®
H E R
Figure |

Schematic representation of predictive error distribution in DPRESS. The arrow weights indicate how much of the
error made in predicting the response for the held-out compound (open symbol) is distributed among the compounds in the
training set (solid symbols) when calculating the scaling factors y. The data set is comprised of |3 observations in a two-dimen-
sional descriptor space. Each panel represents one of the |3 separate analyses that make up the full leave-one-out (LOO)

cross-validation run; only four of the |3 are shown.
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parative molecular field analysis, or CoMFA [32-34]) and
a 2D descriptor (hologram QSAR, or HQSAR [35-37]). A
large data set (N = 304) was used to insure that the
number of compounds held back to evaluate external pre-
dictivity was much greater than the numbers needed to
train a reasonably robust model.

The data set

The set of structurally diverse cyclooxygenase inhibitors
examined here was originally compiled by Chavatte et al.
[38]. It includes data on five major and three minor struc-
tural classes (Fig. 2) of inhibitors of the inducible form of
the enzyme (COX-2). This data set is attractive because the
target has been a major focus of research on anti-inflam-
matory drugs and because it combines substantial struc-
tural variation with a few key shared elements such as the
distal sulfonyl (SO,CHj;) or sulfamoyl (SO,NH,) group.
In addition, regression models based on this data set are
well-characterized in terms of predictive robustness
[25,28] and with respect to variations in how training sub-
sets are selected [39]. Finally, the uneven representation of
the different core structures reflects a sampling bias that is
typical of the data sets used to build QSARs.

CF3
/S o /S O
SC- 55|8 imidazole
pyrazolie n=114
(n=64) ( )
c
Oy
s OCH,
HsC benzene / Yo
cyclopentadiene
(n 40) (n 2)
Figure 2
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Fig. 3A shows how activity is distributed across the various
structural classes when the compounds in the data set are
projected into two dimensions using embedded non-lin-
ear mapping [40,41] based on the similarity in their
molecular fields: symbols are colored by structural class
and sized by activity. Clearly, no one structural class has a
monopoly on high activity. Fig. 3B shows the distribution
of activity across the descriptor space defined by the com-
pounds' molecular holograms. Molecular fields are 3D
descriptors, which are more generalized than holograms -
2D descriptors derived from substructure counts. The
more literal character of holograms leads to smaller dis-
tances between inhibitors within classes relative to the
distances between classes, which accounts for the greater
between-class resolution in Fig. 3B. It also accounts for the
fact that the sulfonyl and sulfamoyl subclasses are cleanly
separated in the hologram space (Fig. 3B) but not in the
space defined by the corresponding molecular fields (Fig.
3A).

The main goal of the work reported here was to see how
well local estimates of predictive error obtained by
DPRESS reflect the actual distribution of predictive error
across the descriptor space. Simple random sampling pro-

=g

o

s b 0
c o HZN/ o o
pyrrole
(n=20) cyrifzeggne
Br
h g
RORORERGRG
/s oA F
H,N So isoxazole H,N ©  DuP-697
(n=2) thiphene

(n=1)

Representative examples from the five major and three minor structural classes included in the COX-2 data
set. The number of members in each class are indicated in parentheses. Each of the five major classes includes both sulfonyl

and sulfamoyl analogs.
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Figure 3

The distribution of activity across descriptor spaces for compounds in the COX-2 data set. Symbols are color-
coded by structural class and symbol sizes are proportional to the negative common logarithm of the potency (pIC50). Com-
pounds falling into the three minor classes (cyclopentadienes, isoxazoles and thiophene DuP-697) are indicated in gray. Points
in the vertical "hedges" at the top left and top right of the plots represent singletons that are too dissimilar to any other com-
pound to be placed meaningfully within the eNLM. (A) Projection obtained by applying embedded non-linear mapping (eNLM)
to the Euclidean distance matrix calculated from steric and electrostatic fields. Points reprsenting compounds from the minor
classes are circled. (B) Projection obtained by applying eNLM to the Euclidean distance matrix calculated from molecular holo-
grams hashed to a length of 353. See the Methods section for details.
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duces a biased training set because, as in most such data
sets, the major structural classes are not evenly repre-
sented (Fig. 2). Therefore diverse but representative
("boosted" [39]) training sets were generated by inde-
pendently drawing five training (sub)sets of 75 com-
pounds from the full set using optimizable k-dissimilarity
(OptiSim) selection [39,42,43]. Models based on those
training sets were then used to predict the activities of the
229 inhibitors not used to construct them. Three addi-
tional training sets were drawn at random, only one of
which gave acceptable internal cross-validation statistics.
Representation in the full data set is biased, so such sim-
ple random subsets are biased as well. The results
obtained using that training set (set R) are included here
to illustrate the effect of sampling bias due to structural
redundancy [39,44,45].

CoMFA models

The optimal number of components p* for the CoMFA
models obtained for the boosted training sets ranged from
three to seven. It is not appropriate to compare models
that differ in complexity directly, however, so a consensus
complexity of p = 6 was used in all cases. The correspond-
ing leave-one-out (LOO) cross-validated standard errors
(scy) ranged from 0.681 to 0.762, corresponding to inter-
nal predictivities (¢q2) of 0.537 to 0.337. The non-cross-
validated models exhibited standard errors of regression
(sgr) ranging from 0.279 to 0.398, corresponding to 12
values between 0.901 and 0.827. Calculating the root
mean square error for external predictions yielded sprpp =
0.633 to 0.655 - i.e, the internal cross-validated error
underestimated the overall accuracy of external prediction
somewhat.

In contrast, the biased training set R yielded a cross-vali-
dated standard error (ssy) of 0.489, corresponding to a ¢2
0f 0.696. The overall goodness-of-fit statistics for the non-
cross-validated model were sy = 0.279 and 2= 0.901. As
expected, however, the predictive performance on those
compounds not in R was substantially worse than that of
the boosted training sets, with sprpp = 0.744.

Fig. 4A shows the same projection as Fig. 3A, but here
symbol sizes are based on the error in predicted pIC50
rather than on pIC50 itself. The top panels in Fig. 4(A-C)
show the distributions of the individual observed errors in
predicted activity (|e|) across the descriptor space, whereas
the bottom panels (D-F) show distributions of the corre-
sponding predictive uncertainties (§,) estimated using

DPRESS. The leftmost panels (4A and 4D) were obtained
for the model based on the boosted training set (set A)
that had the lowest aggregate external predictive standard
error (Sprpp), Whereas the middle panels (4B and 4E) are

http://www.jcheminf.com/content/1/1/11

results for the boosted training set (set B) that had the
lowest aggregate internal (cross-validated) predictive
standard error (sgy) overall. The right-most panels (4C

and 4F) display the results for the biased training set R.

Several conclusions can be drawn by comparing the distri-
bution of errors to each other and to the distribution of
activities. Firstly, though the distributions of observed
predictive errors for the three models differ from one
another (Fig. 4A vs 4B vs 4C), they resemble each other
more than they resemble the distribution of activity itself
(Fig. 3A). Secondly, the larger observed errors are not par-
ticularly concentrated among the singletons or at the
edges of the descriptor space, as would be expected for the
ordinary least squares distribution expected based on Eq.
6 and in most published approaches to establishing appli-
cability domains. Thirdly, the distributions of predictive
uncertainty seen for the boosted training sets are in good
overall agreement with the observed errors with respect to
the regions of descriptor space where the observed error is
relatively high or low (Fig. 4D vs 4A and 4E vs 4B).
Though somewhat less evident, the same is true for the
model constructed using the biased training set R (Fig. 4F
vs 4C). Finally, the smaller errors predicted by the boosted
training with the better internal predictivity (Fig. 4E vs
4D) do seem to be realized in the localized errors actually
observed (Fig. 4B vs 4A), even though this was not obvi-
ous in the aggregate statistics (Spgpp = 0.637 and spgpp =
0.633, respectively).

Interpretation of the plots shown in Fig. 4 is complicated
because the uncertainty s, is a measure of the spread in pre-

dictive error at X,;; the expected value of the error is still 0.
If §, is an accurate prediction of uncertainty, the magni-
tude of the observed error (|e,|) can be expected to be less
than 5, about 68% of the time and to almost always

(about 95% of the time) be less than 2 §,, . The plots in Fig.

5 — in which the predicted uncertainty (which is always
positive) is shown as a function of the observed error
(which can be positive or negative) represent a more
quantitative way to see how well the predicted uncertain-
ties track the spreads in error actually observed outside the
training set.

Eq. 7 implies that §, = |e,| for each member ¢ in the train-
ing set. The corresponding points are represented by filled
stars in each panel in Fig. 5, which therefore define the
lines 5, = |e,|. Unbiased and normally distributed error
should only fall outside these lines about 32% of the time
and should fall outside the dotted lines corresponding to
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Figure 4

Distribution of observed absolute errors and uncertainties predicted by DPRESS for three different CoMFA
models. Projection parameters and color coding are the same as in Fig. 3A except that the horizontal dimension has been
compressed somewhat. Symbol size is proportional to the magnitude of the observed error or predicted uncertainty. Com-
pounds from the respective training sets are represented by stars. (A) Observed absolute errors for boosted training set A,
which had the best external predictive performance (spggp = 0.633; sy = 0.762). (B) Observed absolute errors for boosted
training set B, which had the best internal predictive performance (scy = 0.681; spgep = 0.637). (C) Observed absolute errors
for the biased training set (scy = 0.489; sprep = 0.744). (D) Predicted uncertainties for boosted training set A. (E) Predicted
uncertainties for boosted training set B. (F) Predicted uncertainties for the biased training set R.

s, =2|e,| less than 5% of the time. This is clearly not the
case when the cross-validated error for the most similar
compound t* in the training set is taken as a direct esti-
mate of §,, i.e.,, when yis set equal to O for all t (Fig. 5A).

There are fewer unduly low predicted uncertainties for the
biased training set R, but still more than would be
expected by chance (Fig. 5B). Note that the bias evident in
the model constructed from R comes mostly in the form
of negative residuals, i.e., predicted activities that are
larger than the observed activities. Such false positives
account for most of the "extra" out-of-bounds errors seen

HQSAR

in Fig. 5B. The distributions of errors for the boosted train-
ing sets are much better behaved; indeed, the predicted
uncertainties are slightly more conservative than neces-
sary for large errors in prediction (Fig. 5C and 5D).

HQSAR analyses were carried out as a complement to the
results obtained in the CoMFA studies described above.
The 2D molecular holograms used were built up from the
number of each kind of substructure comprised of
between four and seven heavy atoms, the counts being
mapped down into count vectors of various lengths by

hashing [37]. HQSAR models were then constructed by
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observed error

Figure 5

observed error

Predictive uncertainty 5, as a function of the observed error for the CoMFA models. Filled stars represent mem-

bers of the training set and define the lines for §, = |e|. Dashed lines correspond to 5, = 2|e/|. (A) Results of setting y, = 0 for

all compounds. (B) Results for the model constructed from the biased training set R. (C) Results from boosted training set A.

(D) Results for boosted training set B.

applying PLS analysis to holograms of length 97, 151,
199, 257, 307 and 353. The optimal complexity for the
full model (N = 304) was six components for all hash
lengths. The sqy values obtained ranged from 0.609 to
0.640; the median and average were both 0.622. The value
of g2 ranged from 0.547 to 0.582, with a median of 0.564
and an average of 0.563. Based on these results, a hash
length of 353 (soy = 0.609 and g2 = 0.582) was chosen for
evaluating the behavior of the various training sets. The
corresponding non-cross-validated analysis gave sp; =
0.527 and 2= 0.687.

The consensus optimal complexity across the boosted
training subsets was five components, in keeping with the
full data set's having nearly four times as many com-
pounds and, therefore, containing substantially more
information. The s, values obtained ranged from 0.691
to 0.776 versus a value of 0.540 for the biased training set
R; the respective g2 values were 0.386 to 0.514 and 0.623.

The sprep for the boosted subsets ranged from 0.619 to
0.669 and the corresponding value for the biased subset
was 0.735. Hence HQSAR performance followed the
trend seen for CoMFA: cross-validation under-estimated
the predictive error substantially for the biased subset
(i.e., was overly optimistic about the extensibility of the
model) and over-estimated the predictive error slightly for
the boosted training sets. It differed in that it was the
boosted training set B which gave the better external pre-
dictive performance.

The distribution of observed predictive errors and pre-
dicted uncertainties across the hologram descriptor space
are shown in Fig. 6 for the model based on boosted train-
ing set B, and the corresponding plots of 5, as a function
of e, are shown in Fig. 7. Note that the predicted uncer-

tainties for the boosted HQSAR models were more con-
servative than those for the CoMFA models discussed
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Figure 6

Distribution of predictive error and uncertainty across the hologram descriptor space training set A. Stars cor-
respond to compounds from the training set. Projection parameters and color coding by class are as indicated for Fig. 3B. Sym-
bol sizes are proportional to magnitude. (A) Observed absolute predictive error. (B) Predicted uncertainty.

above, with the result that the magnitudes of nearly all
errors above 0.75 log units were less than the correspond-
ing §, . This effect is probably a side-effect of the exagger-

ated separation between classes seen in the hologram
space (Fig. 3B).

Discussion

The degree to which any QSAR can be extended to com-
pounds outside of the training set used to construct it is
necessarily limited to some degree by the structural diver-
sity of that training set. Some extensibility is necessary,
however, if the QSAR is to be of use for something beyond
mere rationalization of known activities. When only a few
descriptors are being considered, it may be possible to
restrict the applicability domain to "internal" regions in
the descriptor space, but as the number of descriptors
increases distinguishing compounds that lie "outside" the
space defined by the training set from those that are
"inside" becomes progressively less meaningful. Regard-
less of the complexity of the system, it is clear that one will
often need to extend the applicability domain beyond the
training set somehow. It is equally clear that this must be
done cautiously, however, and that it would be desirable
for the degree of caution to reflect the idiosyncrasies of the
QSAR being examined. It would be particularly desirable
to take local variations in the uncertainty of predictions

into account, rather than trying to find a single acceptable
distance to the model that is applicable across the entire
descriptor space [12,14,15].

DPRESS was formulated to address these needs. It is based
on two simple assumptions: that the uncertainty in pre-
diction for new objects (e.g., molecular structures) is
likely to be dominated by the error in prediction for
objects near them in the descriptor space; and that this
influence is, to a first approximation, inversely related to
the distance between them. The "true" dependence may
well be more complex in some cases, but the size of the
training set needed to characterize that dependence will
almost always be impractically large. In any event, such
dependence is likely to reduce to a linear relationship over
the relatively short ranges of QSAR extrapolations that
have any chance of being relevant.

The fact that the predictive uncertainties derived from
DPRESS analysis are sometimes more conservative than
necessary for large errors is of some concern, though that
is certainly preferable to the alternative of their being
overly optimistic; further work in this area is a matter on
ongoing investigation. Nonetheless, the method is intrin-
sically less constraining than the classical quadratic rela-
tionship based on distance from the mean (Eq. 4). Given
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2.0q

observed error

Predicted uncertainty 5, as a function of the observed predictive error e. Filled stars correspond to compounds

included in the test set, whereas open circles represent compounds in the test set. Dashed lines correspond to |e| = 25,,. (A)

Results for the HQSAR model constructed from the biased training set R. (B) Results from boosted training set B.

how much predictive error varies across the model space
(e.g., Fig. 4), any approach based on the overall sprzp
seems bound to be overly optimistic regarding the relia-
bility of predicted potencies for some compounds.

The underlying QSARs examined here - CoMFA and
HQSAR - both rely on (nominally [46]) linear PLS, but
there is no intrinsic reason that the method cannot be
more broadly applied. The key point is that the error being
distributed must be predictive - i.e., it needs to reflect pre-
dictions made for objects not included in the training set.
LOO cross-validation yields the most information for any
given dataset, but a leave-some-out approach should be a
viable alternative. The predictive errors obtained from the
validation sets often used in ANN analysis could be used
as well, since there is no intrinsic reason that a linear
model for local error distribution should be incompatible
with a QSAR that is non-linear on a global scale.

The usual reasons for preferring LSO over LOO cross-vali-
dation are unlikely to be relevant to DPRESS calculations,
however. LOO can indeed be distorted when the training
set is biased due to redundancy, but DPRESS based on
LOO turns out to be conservative in such a situation (see
above). The reduction in s, that occurs when the sam-
pling density in one particular area of descriptor space is
high is reflected in a reduction in the error that each indi-
vidual prediction contributes to the PRESS. But §, is nota
root mean square, so the effect on its value is offset by the
fact that biased sampling necessarily: increases the total
number of errors; decreases their spread (d,,); increases
the distance between the training set and most new obser-
vations; or effects some combination thereof.

Diverse training sets representative of the full structural

space produce more reliable local uncertainty estimates
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than do biased training sets, indicating that taking care to
avoid undue sampling bias (redundancy) in the training
set is worth the effort. Even the biased training set R, how-
ever, did better than setting the uncertainty of prediction
for a new object equal to the observed error for the closest
object in the training set (Fig. 5 and 7). Moreover, the
errors falling outside the range expected based for the cal-

culated 512 for R were false positives, the least serious type

of error to make when trying to predict toxicity.

There are two fundamental differences between the esti-
mate of predictive uncertainty derived from classical the-
ory (Eq. 4) and the DPRESS model represented by Eqs. 7-
9. The first difference is that Eq. 4 is a sum of squares,
whereas Eq. 7 is a sum of linear terms. Using a sum of
squares formulation was considered for DPRESS, but was
found to consistently overestimate the uncertainty of pre-
diction (details not shown). The second difference is that
Mahalanobis distances d measured in the model space are
used in the classical model, whereas Euclidean distances
measured in the descriptor space are used in DPRESS. The
less parametric approach is followed for DPRESS because
the variation in one or more variables in a particular train-
ing set may not be large enough to reveal the influence
that variable might exert if examined across a greater
range. The small coefficient assigned to such a variable in
that event means that substantial deviations in its value
will have a negligible effect on distances in the model
space. Sticking with distances in the "raw" descriptor
space rather than using the descriptor weights from b to
calculate a Mahalanobis distance is more conservative - it
assumes that variation in things that have yet to be
explored are likely to make predictions less reliable.

Conclusion

Examination of the distribution of predictive errors across
the descriptor space makes it clear that errors are consist-
ently larger in some regions than in others - i.e., the pre-
dictive error is heteroskedastic (Fig. 4). Given that a major
use of QSAR predictions is in chemoinformatic tabula-
tions used by medicinal chemists and other third parties,
it would be good practice to routinely attach some esti-
mate of uncertainty to each prediction. Doing so based on
some analytical estimator would be preferable, but is
impractical in most real-world situations because it
requires detailed a priori knowledge of the global depend-
ence of error on the descriptors. In the absence of such
knowledge, a locally linear estimator of predictive reliabil-
ity that is embedded in the sample space represents a rea-
sonable alternative. Partition of predictive error sum of
squares (DPRESS) provides just such an estimator in a
form - that of a standard error - that is widely understood
by those likely to use it. The calculations involved are
straightforward and the estimator produced is a qualita-

http://www.jcheminf.com/content/1/1/11

tively (Fig. 4 and 6) and quantitatively (Fig. 5 and 7) reli-
able estimate of how much confidence one should place
in the associated prediction. Moreover, though the partic-
ular applications studied here involved PLS models built
using 2D and 3D descriptors, the technique is likely appli-
cable to any regression method that can be reformulated
in kernel-based terms [12,47].

It is also important when constructing the model in the
first place to examine the distribution of predictive error
in the descriptor space. If uncertainty is homoskedastic, a
classical or uniform distribution model may provide a
somewhat more precise estimate of predictive uncertainty.
Should (e)NLM or principal components analysis (PCA)
indicate heteroskedacity, however, a DPRESS calculation
should be carried out before applying the model - e.g., for
prioritizeing compounds for synthesis, acquisition or
detailed testing. DPRESS may also serve to highlight
regions of structural space from which more data needs to
be gathered.

Experimental

Ordinary multiple linear regression is not suitable when
the number of descriptors in a data set exceeds the
number of observations. PLS [4] was used instead, with
the appropriate number of latent variables (components)
to include (i.e., the model complexity) being the number
corresponding to the first minimum in the "leave-one-
out" cross-validated standard error (s.y). This measure of
internal consistency is obtained by setting aside each of
the n compounds in the training subset in turn and trying
to predict its activity using the other n - 1 compounds in
the training set. The external error of prediction (sprgp)
was calculated as the root mean square error for the N - n
compounds left out of the model calculation altogether.

Training set selection

Boosted training sets were obtained by applying OptiSim
selection to the full data set. OptiSim selection entails
drawing a series of random subsamples of size k from the
data set of interest. For each subsample in the series, the
individual that is most different from those selected from
previous subsamples is extracted and added to the selec-
tion set S. This procedure results in a representative but
diverse selection set that samples the full data set space
both efficiently and effectively [42]. Here the structural
space was defined in terms of the Tanimoto similarity T(a,
b) between the corresponding UNITY substructural finger-
prints [48]. The individual a in the ith subsample for which
max(T(a, b): b € S) is smallest was added to S. Candidates
with a Tanimoto similarity greater than 0.8 to any com-
pound already in the selection set were deemed redun-
dant and were excluded from subsamples.
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The selection process was repeated five times with n = 75
and k = 4, using a different random number seed each
time. Five inhibitors appeared in every boosted training
set, including the thiophene, cyclopentadiene and isoxa-
zole analogs that fall outside the five major classes. A total
of 113 inhibitors were not selected for any of the boosted
training sets, whereas 191 were selected for at least one of
them.

Molecular fields

CoMFA involves using PLS to identify correlations of bio-
logical activity with variations in steric and electrostatic
molecular fields, which requires that the molecules under
consideration be put into similar conformations and into
a common frame of reference as a key part of the process.
Here, conformations were set and molecular structures
aligned based on the homologous atoms in their central
and peripheral rings, as has been described in detail else-
where [39]. Charges were calculated using the method of
Marsili and Gasteiger [49], as extended in SYBYL [50] to
take the distribution of 7z electrons into account
("Gasteiger-Hiickel charges"). Coulombic and Lennard-
Jones interaction energies were calculated on a 2 A recti-
linear grid extending 4 A beyond the edge of any molecule
in the full data set. The probe atom used to calculate the
fields was an sp3-hybridized carbon monocation. Interac-
tion energies were truncated at nominal values above 30
kcal/mol, and electrostatics were ignored within the steric
envelope of each inhibitor.

Molecular holograms

The first step in constructing a molecular hologram is to
identify all substructures in a molecule that fall within a
specified size range - here, all fragments made up of four
to seven atoms, with hydrogens ignored and bond types
taken into account. Each fragment is then mapped into a
compressed count vector of specified length using a hash-
ing function, so that the elements of that count vector can
be used as descriptors in subsequent PLS analyses [36].
The hashing means that different fragments may map to
the same position in the final count vector. The fragments
overlap, however, so each substructure contributes to
many fragment counts. The result is that the noise intro-
duced by "collisions" for a few subfragments constitutes a
relatively minor perturbation that is, on average, self-lim-
iting. Overfit PLS models are characteristically unstable to
such perturbations, however, so surveying a range of hash
lengths and picking one with good but representative sta-
tistical properties is a good way to avoid picking a length
whose cross-validation statistics are overly optimistic.
This is a non-parametric perturbation analysis analogous
to looking at the effect of small perturbations in response
to assess model stability [28].

http://www.jcheminf.com/content/1/1/11

Visualization

2D depictions of the relationship between different com-
pounds were obtained using the embedded non-linear
mapping (eNLM) facility [40] in Benchware DataMiner
[51]. "Ordinary" NLM can be thought of as placing
springs between all pairs of points in the original descrip-
tor space, then compressing the ensemble into two
dimensions in such a way that the residual tension in
those springs is minimized. Embedded NLM differs in
that parts of springs longer than some specified threshold
length (horizon) are treated as elastic to extension, i.e.,
they do not contribute to the overall stress in the system.
Here, spring "tensions" were based on the block-wise
autoscaled Euclidean distances ("CoMFA Standard scal-
ing" [32]) between the molecular fields or between the
molecular holograms of different compounds.

DPRESS

CoMFA and HQSAR analyses were carried out in SYBYL.
The distances d, ; used to partition the PRESS were taken
from the SAMPLS.dist file generated by the SYBYL inter-
face as input to the SAMPLS program [52] and represent
inter-observation distances in the descriptor space after
autoscaling has been applied. The descriptors used here
are already either fully commensurate (HQSAR) or are
piecewise commensurate (within steric and electrostatic
fields but not between them, for CoMFA), so "CoMFA
standard" (block) autoscaling was used [33]. Observed
and predicted responses were taken from the SAMPLS.out
file generated by the SAMPLS program.

Localized predictivity estimates were calculated by com-
bining scripts written in SYBYL programming language
(SPL) with spreadsheet manipulations carried out in
Excel. For each compound ¢ in the training set, the scaling
factor y was calculated based on the observed predictive
variance (squared cross-validation error of prediction, &,2)
for every other compound in the training set (i # t)
weighted inversely by the square of the Euclidean distance
between the two (d, ;) in the descriptor space (Eq. 8). A
normalization factor ¢; for each compound i was calcu-
lated as the sum of squared distances to all other com-
pounds in the training set (Eq. 9). A limiting proximity
term of 1/n was included to ensure reasonable behavior
for closely-spaced compounds where d, ; approaches 0;
this works well when the descriptors have been autoscaled
in some way before use.

The individual scaling factors y obtained from the n LOO
cross-validation errors for the training set were used to cal-
culate an estimate §, for the predictive uncertainty asso-
ciated with each new structure u based on the observed

cross-validation error of the training set compound (t*)
lying closest to it in the descriptor space, its distance from
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t*, and the scaling factor y. derived from the model cross-
validation analyses (Egs. 7-9).

Abbreviations

ANN: artificial neural network; BLUE: best linear unbi-
ased estimator; CoMFA: comparative molecular field anal-
ysis; CV: cross-validation; d: distance; & predictive error
for a compound outside the training set; e: residual error
for a compound in the training set; eNLM: embedded
non-linear mapping; HQSAR: hologram QSAR; LOO:
leave-one-out; PCA: principal components analysis;
DPRESS: distributed predictive error sum of squares; PLS:
partial least squares with projection to latent structures;
PRESS: predictive error sum of squares; QSAR: quantita-
tive structure/activity relationship; s: standard error for a
sample; SPL: SYBYL programming language.
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