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Abstract
Background: Ligand-based virtual screening experiments are an important task in the early drug
discovery stage. An ambitious aim in each experiment is to disclose active structures based on new
scaffolds. To perform these "scaffold-hoppings" for individual problems and targets, a plethora of
different similarity methods based on diverse techniques were published in the last years. The
optimal assignment approach on molecular graphs, a successful method in the field of quantitative
structure-activity relationships, has not been tested as a ligand-based virtual screening method so
far.

Results: We evaluated two already published and two new optimal assignment methods on
various data sets. To emphasize the "scaffold-hopping" ability, we used the information of
chemotype clustering analyses in our evaluation metrics. Comparisons with literature results show
an improved early recognition performance and comparable results over the complete data set. A
new method based on two different assignment steps shows an increased "scaffold-hopping"
behavior together with a good early recognition performance.

Conclusion: The presented methods show a good combination of chemotype discovery and
enrichment of active structures. Additionally, the optimal assignment on molecular graphs has the
advantage to investigate and interpret the mappings, allowing precise modifications of internal
parameters of the similarity measure for specific targets. All methods have low computation times
which make them applicable to screen large data sets.

Background
Virtual screening (VS) approaches are a fundamental part
of the drug discovery pipeline [1,2]. The top-ranked struc-
tures of VS experiments are further analysed in biological
assays to elucidate their activities. The methods for this
purpose can be divided into structure-based and ligand-
based VS techniques. Structure-based approaches, like
DOCK [3,4] or PLANTS [5], try to dock the ligand into the
binding pocket of a target protein, which requires X-ray
diffraction or nuclear magnetic resonance spectroscopy

experiments to obtain three-dimensional coordinates of
the protein structure. Additionally, there are doubts about
the ability of docking approaches to predict the affinity or
even the rank of the structures [6]. In spite of these nega-
tive examples, there exists a remarkable list of successful
structure-based VS stories [7].

Ligand-based methods operate only on one or several
known active ligands. Therefore, ligand-based approaches
are the method of choice if no protein structure is availa-
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ble. The underlying assumption of ligand-based approach
is that similar structures have similar biological activity.
Maggiora and Johnson [8] introduced the similarity-prop-
erty principle that implies that the chemical similarity can
be related to the biological activity of structures. Although
Martin et al. [9] reported that the correlation between
structural similarity and biological activity is not so
strong, the correlation between activity and similarity is of
course the result of the used similarity measure and varies
between different methods. Thus, a wide variety of differ-
ent similarity measures have been proposed in recent
years [10,11]. All methods can be divided into different
classes concerning the type of information used to calcu-
late the similarity between two structures. A simple and
fast approach is to encode the information in fingerprints
based on features that are included in the structure. Those
topological or structural fingerprints, like the MACCS keys
[12] or Daylight fingerprints [13], are often used but lack
the ability to perform "scaffold-hoppings" [14]. A more
elaborate approach is based on molecular graphs in com-
bination with maximum common substructure or maxi-
mum common edge subgraph isomorphism as used by
the RASCAL algorithm or different reduced graph
approaches [15-17]. Feature Trees are another reduced
graph method which uses a reduced tree representation of
important molecular fragments like hydrophobic parts or
functional groups [18]. The topological based
MOLPRINT2D approach uses count vectors of atom types
in different layers as molecular atom environment finger-
prints and has shown to be useful descriptors for naïve
Bayesian classifiers in VS experiments [19].

Similarity measures, based on three-dimensional coordi-
nates, include geometrical information of arbitrary
objects defined on structures. The type of an object varies
between different methods and can be classified into three
types: pharmacophores, molecular shapes or volumes,
and molecular (interaction) fields. Pharmacophore based
methods generate patterns of distances between prede-
fined molecular properties like aromatic systems or
hydrogen bond acceptors/donors [20,21] and calculate a
similarity value by a comparison of the corresponding
patterns. Molecular shape or volume approaches try to
maximize the overlap of shapes or volumes and deter-
mine a similarity value based on the overlap. Ballester et
al. introduced a non-superposition comparison algorithm
for molecular shapes, called Ultrafast Shape Recognition,
and applied it in VS experiments [22]. ROCS uses three-
dimensional Gaussian functions to describe the volume
of query structures and to screen databases in search of
structures with similar shapes [23]. Molecular interaction
field methods like GRID [24] or CoMFA [25] were origi-
nally introduced in the field of quantitative structure-
activity relationship modelling (QSAR) but are also suita-
ble for VS experiments [26]. FieldScreen, a recently pub-

lished method by Cheeseright et al. [27], uses four
different types of molecular fields and reduces these fields
to the local maximal values. These values, referred to as
"field points" [28], serve as the descriptors. This method
has shown an improved "scaffold-hopping" behavior on
various data sets and improved enrichment rates in com-
parison to DOCK.

The concept of an optimal assignment of arbitrary objects
of molecular graphs was introduced in the field of chem-
informatics by Fröhlich et al. [29,30]. Just like CoMFA
studies [25,31], the optimal assignment on molecular
graphs was used to derive QSAR and quantitative struc-
ture-property relationship models. Despite several proofs
of the usability of this concept on several data sets and dif-
ferent problems [29,30,32-34], no experiments have been
conducted to evaluate this idea in the field of ligand-based
VS.

There are two objectives of this study. First, we want to
evaluate the existing optimal assignment similarity meas-
ure and its flexibility extension on a set of different ligand-
based VS experiments. Second, we introduce two new
methods based on the optimal assignments. The experi-
ments were designed with emphasis on the evaluation of
the "scaffold-hopping" behavior of the methods. This was
achieved by using recently suggested VS metrics based on
chemotype clustering and extended receiver operating
characteristics [35-41]. To benchmark the optimal assign-
ment methods, we compared the results with FieldScreen,
the 166 bit MACCS keys and DOCK.

The results show an improved early recognition perform-
ance for the optimal assignment methods in comparison
to selected literature methods. The performance over the
complete data set suffers from late retrievals of dissimilar
chemotypes reducing the arithmetic weighted version of
the area under the receiver operating characteristic curve
values. One of the optimal assignment methods, which is
based on two different assignment steps, shows an
increased performance on both types of evaluation. The
presented methods have low computation times; conse-
quently, they can be applied to screen large databases.

Methods
In this section we first summarize the optimal assignment
problem and give a general definition of the problem.
Afterwards, a detailed description of the different meth-
ods which are evaluated in the scope of ligand-based VS,
follows.

The optimal assignment problem is one of the basic dis-
crete optimization problems. The fundamental task is to
find the set of assignments that minimizes (or maximizes)
the overall cost of the assignments. A mathematical
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description of the optimization problem is to find a min-
imum (or maximum) weight matching in a complete
weighted bipartite graph. Given two disjoint sets of arbi-
trary objects X = (x1, x2,..., xn) and Y = (y1, y2,..., ym) with n
≥ m without loss of generality, the optimization problem
can be defined as:

where π is a subset of the indices 1,..., n of size m describ-
ing the assigned objects of the set X and w(xπ(i), yi) is the
weight (cost) of mapping the object xπ(i) onto yi. The
Kuhn-Munkres algorithm (also called Hungarian
Method) [42,43] is one popular algorithm to solve this
optimization problem.

Fröhlich et al. introduced the concept of the optimal
assignment in the field of cheminformatics as a kernel
function for attributed molecular graphs [29,30].
Although this function is not a valid kernel function [44],
it can be used as a similarity function based on molecular
graphs.

Optimal Assignment Kernel
The idea of the Optimal Assignment Kernel (OAK)
[29,30] is to find a mapping of the atoms of the smaller
molecule onto the atoms of the other molecule, maximiz-
ing the sum of the pairwise atom similarities. The first step
of this approach is the calculation of all pairwise atom
similarities. For this purpose, a radial basis function (RBF)
calculates a similarity value based on physico-chemical
descriptors of the atoms (Equation 2, where ai and bi are
the ith descriptor value of the atom a and b, σ2 represents
the variance of a descriptor). To calculate the similarity
between two atoms, the OAK uses 24 atom and 8 bond
descriptors of the expert system of JOELib2 [45,46]. For a
complete list of the descriptors, we refer to Additional file
1 of this study.

To improve the chemical interpretation of the similarity
calculation, the information of the topological neighbors
and the bonds up to a predefined depth is integrated into
the atom-wise similarity calculation. The integration is
realized by a recursive atom-wise similarity calculation of
the neighbors. In addition, a decay parameter reduces the
influence of atoms with increased topological distance.
Given two molecules A and B with atoms a1,..., an and
b1,..., bm the primal form of the optimal assignment prob-
lem is modified to Equation 3.

The result of Equation 3 is the sum of all atom-wise simi-
larity values. Hence, the function yields higher results if
the molecules have more atoms. To reduce the impact of
the number of atoms on the final similarity value, the
result of the optimal assignment is normalized by Equa-
tion 4 to a final value in the range of [0; 1].

An example of an optimal assignment on molecular
graphs can be seen in Figure 1.

Optimal Assignment Kernel with Flexibility Extension
The original OAK computes the similarity of two mole-
cules using the sets of atoms augmented with their local
neighborhood. The idea of the OAK can also be applied to
approximate the similarity of the conformational space of
two molecules [34]. This is achieved by breaking down
the overall molecular flexibility into a set of local flexibil-
ities similar to the local atom environments used by the
OAK. The local flexibility is defined as the spatial posi-
tions on which the neighbors of a center (core) atom
could be found depending on the length and angles of the
bonds by which they are connected to the core (e.g. Figure
2). Only the flexibility of the second and third order
neighbors are considered and the information is stored in
the core atom.

The spatial positioning possibilities are expressed by using
internal coordinate parameters like bond lengths and
angles. These parameters are regarded as only depending
on the hybridization of the atoms that connect the core
with the neighbor. Non-bonding interactions like electro-
static and steric interactions, which would also influence
the conformational space, are not considered. Ring bonds
and non-single bonds are generally regarded as rigid.
Therefore, the approach only approximates the real spatial
positioning of the neighbor. The details of the parametri-
zation of the local flexibility can be found in [34].

The overall similarity of the approximated conforma-
tional spaces is computed by augmenting the local atom
similarity in the original OAK formulation with the simi-
larity of the local flexibility (i.e. the parametrization of the
spatial positioning of the neighbors) of the center atoms
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(OAKFLEX). The flexibility similarity between two atoms is
the weighted sum of the flexibility similarities of the sec-
ond and third order neighbors. The weighted sum is
adjusted by an internal parameter. Additionally, the con-
tribution of the flexibility similarity to the original OAK
similarity is set by a second parameter. We used the first
default parametrization as suggested by Fechner et al. [34]
(OAK weight = 0.95, flexibility extension weight = 0.05,
second order neighbor weight = 0.3, and third order
neighbor weight = 0.7)

Two-Step Hierarchical Assignment
An accurate investigation of the assignments of the OAK
discloses failures and shows that the OAK is not able to
generate a substructure preserving assignment of the
atoms in some cases. These topological errors result in an
assignment that scatters the atoms of a substructure over
the complete other molecule. The assignments maximize
the overall similarity, but from a chemical point of view
some mappings are problematic. An example of an OAK

assignment with topological errors can be seen in Figure
3.

Our analysis uncovered that the occurrence of these errors
is favored by the existence of multiple aromatic or con-
densed ring systems with a small number of substitutions
and the presence of conjugated environments. To reduce
the number of topological errors, we developed a two-step
hierarchical assignment approach (2SHA). The basic idea
is to perform two different assignments on different types
of objects. The first assignment step operates on a sub-
structure level and maps similar substructures of the mol-
ecules onto each other. For this purpose, a preprocessing
step is necessary to identify condensed, aromatic, and
conjugated systems (e.g. Figure 4). The ring detection is
done with a modified biconnected component algorithm
that operates on the molecular graph. The identification
of the aromaticity and conjugated environments is done
by the expert system of JOELib2 [45,46]. To compute the
similarity between two substructures, we use a modified

Optimal atom assignmentFigure 1
Optimal atom assignment. Optimal atom assignment of two angiotensine-converting enzyme molecules. The assignments 
are based on local atom similarity calculations of the OAK. The color of the mapping edges indicates the atom similarity: green 
represents a high similarity whereas red edges indicate a low similarity.
Page 4 of 23
(page number not for citation purposes)



Journal of Cheminformatics 2009, 1:14 http://www.jcheminf.com/content/1/1/14

Page 5 of 23
(page number not for citation purposes)

Local flexibilityFigure 2
Local flexibility. Visualization of the local flexibility for one core atom. The colored shapes represent possible positions of 
the equal colored atoms. The black core atom is the source of the flexibility objects.

Optimal atom assignment with topological errorsFigure 3
Optimal atom assignment with topological errors. Atom mapping of the OAK on two benzodiazepine derivatives dis-
closing topological errors. Each of the four intersecting edges maps one atom of the aromatic system on the condensed sys-
tem.
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Fragmentation and assignment of fragmentsFigure 4
Fragmentation and assignment of fragments. Result of the fragmentation algorithm and the first assignment step. The 
aromatic and condensed systems were mapped onto each other. The terminal nitro group forms a conjugated fragment but 
has no assignment partner and remains unassigned.
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version of the original OAK that computes a similarity
score without performing the normalization as given in
Equation 4. The advantage of omitting this step is a
reduced computation time because the self-similarities
Sim(A, A) and Sim(B, B) are not necessary and are not
computed.

The algorithm computes the first optimal assignment cal-
culation based on the substructure similarity values and
maps one fragment of the smaller molecule on exactly one
fragment of the other molecule. An example of such a
mapping process is shown in Figure 4 on the two benzo-
diazepine derivatives used to explain the topological
errors. The information of the fragment-based mapping is
stored in each atom of a mapped fragment. This knowl-
edge is used to establish constraints for the second assign-
ment on the atomic level that reduces the frequency of
topological errors.

An additional aim of this approach is the inclusion of geo-
metrical information into the similarity calculation. To
achieve this, we integrate an extra calculation step
between the two assignment calculations. The initial pre-
processing of the structures identifies aromatic systems,
condensed rings, and conjugated environments, which
are all rigid scaffolds of molecules. Our idea is to superim-
pose the rigid substructures which were mapped in the
first assignment step. To realize the superposition, the
substructures are treated as individual molecules and an
algorithm based on quaternions, which represents an
equivalent method to the well-known Kabsch algorithm,
was used [47-49]. Note that the necessary information of
matching atoms of the Kabsch algorithm is the result of
the similarity calculation between the substructures. The
reason for this is the optimal assignment of the atoms of
the substructures to calculate the similarity. Although the
algorithm calculates a superposition minimizing the root-
mean-square deviation, our approach uses the three-
dimensional atom coordinates and integrates the infor-
mation into the second assignment step.

The second assignment is the final optimal assignment on
the atomic level, which includes all information of the
previous steps. Each atom has information about its inte-
gration into substructures and the mapping of these sub-
structures. Considering this information, all atoms of the
molecules can be divided into three different atom classes:
First, atoms that are not part of a substructure, like linkers
or side-chains. Second, atoms that are part of fragments
which were not mapped in the first assignment. Third,
atoms that are part of fragments which were mapped.
Using these three classes we obtain six different unordered
2-element subsets. Each subset represents a different case
of the atom-wise similarity calculation using different
information and parameters. The case in which both

atoms are part of a fragment and both fragments were not
mapped cannot occur because of the nature of the optimal
assignment problem. This reduces the number of different
cases to five, which have to be regarded in the similarity
calculation on the atomic level. However, the case in
which both atoms are part of a fragment has to be divided
into two cases, depending on whether the fragments were
mapped onto each other or not. So we need to consider six
cases overall. To include this discrimination, we inte-
grated the following case differentiation into the original
atom-wise similarity calculation:

1. Both atoms are not part of a fragment. Calculate the
similarity using the original RBF of the OAK.

2. Both atoms are part of a fragment and the fragments
were not mapped onto each other. This case is the
main cause of topological errors. Therefore, the
method has to penalize the similarity score to avoid a
mapping of those atoms. The penalization is done by
a decreased σ value in the RBF. This modification
sharpens the RBF and reduces the overall score of the
atom-wise similarity calculation.

3. Both atoms are part of a fragment and the fragments
were mapped onto each other. The method makes use
of the geometrical information of the superposition of
the fragments. Given two atoms from the two super-
imposed fragments, the method calculates a vector
based on the two atom coordinates and maps the vec-
tor into a two-dimensional plane using an isometric
mapping. The initial and terminal points of the two-
dimensional vector represent the coordinates of the
atoms in the two-dimensional plane. An RBF is cen-
tered at each point using the van der Waals radius of

the corresponding atom as σ value (σvdW). Equation 5

calculates the final geometrical similarity value for two
mapped atoms a and b using two RBF and the half

atomic distance  as input. The result of this geo-

metrical atom-wise similarity calculation is integrated
into the original RBF of the OAK in the form of an
additional numerical descriptor.

4. One atom is part of a fragment, but this fragment is
not mapped. The other atom is not part of a fragment.
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In this case the method tries to map an atom of a rigid
fragment onto a side-chain or linker atom. The frag-
ment was not mapped in the first assignment step, but
this mapping is also doubtful and has to be penalized.
The technique for penalizing those mappings is the
same as in the second case.

5. One atom is part of a fragment which is mapped.
The other atom is not part of a fragment. This case is
related to the previous one, but the fragment was
mapped in the first assignment step. If the atom-wise
similarity calculation results in a high similarity value,
the possibility that the atom of the fragment is
assigned to an atom of the corresponding fragment of
the other molecule is reduced. Depending on the
structure of the two molecules, this increases the pos-
sibility of topological errors. Therefore, the penalty
has to be higher than in the fourth case.

6. Both atoms are part of a fragment, but only one frag-
ment was mapped. This case is also related to the
fourth and fifth one, but the mapping of two atoms of
fragments is more reasonable from a chemical point of
view. However, the risk of topological errors is also
increased, and therefore we use the same penalization
as in the fourth case.

The separate σ values of each case can be set individually
and have a great impact on the final similarity value. The
optimal parametrization depends on the structures of a
data set. Based on a chemical interpretation of the differ-
ent cases, we expected the following relations between the
different σ values: σ2 <σ5 <σ6 ≤ σ4, where the indices rep-
resent the number of the case. We performed a grid search
in the range [0.25, 0.5, �, 10.0] to define the σ values for
the penalization and to validate our hypothesis concern-
ing the relation between the values. The result of the grid
search yields the following values: σ2 = 2.5, σ5 = 5.0, σ6 =
4.0, and σ4 = 4.0. The empirical results of the grid search
differ only in the relation between the σ values of the fifth
and sixth case. Thus, the different cases of the 2SHA
method show a correlation with the chemical interpreta-
tion.

The final result of the optimal assignment of the atoms,
based on the atom-wise similarity calculations using the
differentiation with the six cases, is shown in Figure 5 on
the same molecules causing topological errors using the
original OAK. The assignment preserves the mapping of
the substructures and reduces the occurrence of topologi-
cal errors. The assignment of the atom from the con-
densed ring system onto the nitrogen of the nitro group is
penalized.

Optimal Local Atom Pair Environment Assignment

This variant of the optimal assignment approach uses
local atom pair environments (OAAP). There are two fun-
damental types of atom pairs: topological and geometrical
atom pairs. We employed the binned geometrical distance

matrix  between the three-dimensional coordi-

nates of atoms i, j of a molecule in this study. The geomet-
rical bin size b was set to 1 Å. Therefore, this method can
be considered as a geometrical similarity measure. The
computation time of D has a quadratic complexity with
the number of atoms. The matrix is symmetric, so it is suf-
ficient to compute the upper half of each matrix. The dis-
tance in the diagonal equals zero.

D is used as lookup table to store the information of all
geometrical atom pairs from atom i in a trie. A trie is a pre-
fix search tree that can be applied to patterns with a read-
ing direction. In our case, we have a star-shaped local
atom environment. At the root of the trie of atom i the
hash code of the atomic symbol i is placed. Next, the pat-
terns of the form

are inserted as ordered triplets. Note that symbol can be
any atom type or fragment representation and hash(sym-
bol) any suitable hash function hash : symbol →N. By using
a trie, the collection of patterns is non-redundant, because
the trie is updated whenever a known part of a pattern is
inserted. If the whole pattern is already contained in the
trie, the count is incremented by one. For many similarity
metrics, it is necessary to know basic properties of a trie,
for example the total number of patterns or the number of
unique patterns (number of leaves). Therefore, our trie
implementation has a method to compute such proper-
ties. A geometrical local atom pair environment and the
corresponding trie of the marked atom is shown in Figure
6.

The representation of the local atom environments as tries
allows us to apply efficient recursive similarity computa-
tions. A well-known similarity metric for nominal features
is the Tanimoto coefficient. The computation of the Tani-
moto coefficient of two local atom environments is
reduced to a comparison of two tries.

Let LA, LB be the sets of local atom pair environments of

two molecular graphs A, B and  the tries

i, j of the nominal features (atom pair environments of
atoms i, j). Now, the Tanimoto coefficient can be defined
as:

D
dij
b
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The overall molecular similarity is computed by the score
of the optimal assignment of the local atom pair environ-

ments. The cost of computing the local similarity matrix is
O(nml) for n, m atoms of the molecules A, B and l leaves
of the larger trie. The lookup for a pattern has a constant
computation time, because the depth of the tries is fixed.

We computed the OAAP similarity between two structures
on single low-energy conformations. In spite that, it is
possible to extend this method to conformational ensem-

Sim( , )l l
lAi lB j

lAi lB j

A Bi j
=

∩

∪
(6)

Optimal atom assignment using the two-step hierarchical assignmentFigure 5
Optimal atom assignment using the two-step hierarchical assignment. Result of an optimal assignment using the 
two-step hierarchical assignment approach with the case differentiation of the pairwise atom similarity calculation. The hierar-
chical assignment reduces the number of topological errors and shows a substructure preserving mapping. The mapping of the 
carbon atom of the condensed ring system onto the nitrogen of the nitro group is an example of the sixth case and results in a 
penalized mapping.
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bles. This could be accomplished by simply averaging the
distances as a case in point. The approach was imple-
mented using the Chemistry Development Kit (CDK)
library [50,51].

Parameters and Computation Time
All presented methods have internal parameters, which
allow modifications of the similarity measures. These
modifications can improve the results on a specific prob-
lem and data set. The optimization of the parameters is a
complex process making extensive methods like grid
searches necessary. However, one aim of this work was to
evaluate the usability of optimal assignment methods on

molecular graphs for ligand-based VS experiments. There-
fore, we used the described standard parameters for each
method, which were constant for all data sets to obtain
comparable results of the overall performance.

The computation time of the methods depends on the
number of atoms, which have to be mapped in the assign-
ment step. In addition, each method has its own type of
preprocessing and mining the chemical information. This
yields differences in the performance depending on the
data set. Instead of giving a complete overview of the com-
putation time for each method and data set, we report an
averaged computation time, as it can be expected for drug-

Binned geometrical distances, spheres and trieFigure 6
Binned geometrical distances, spheres and trie. The upper left figure shows the spheres of the binned geometrical dis-
tances of 1.0, 2.0, and 3.0 Å for the centered carbon atom. The sphere of the binned geometrical distance of 0.0 Å (distances 
in the range [0.0;1.0)) is not visualized as individual sphere because it contains no atoms. The upper right figure illustrates the 
resulting local atom pair environment of binned geometrical distances. For simplicity, only the distances to non-carbon atoms 
are displayed. The lower figure visualizes the corresponding trie of geometric atomic distances of the annotated atom in the 
upper figures. The root and leaves are labeled with the corresponding atom type. The leaves contain additionally the total 
number of occurrences in the local atom pair environment.
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like structures, for each method. The original OAK has an
averaged performance of 27.34 ± 3.40 similarity calcula-
tions per second. The flexibility extension OAKFLEX yields
41.03 ± 7.32 calculations per second. This speed-up of the
OAKFLEX is the result of a reduction of the used features.
The OAAP method achieves a performance of 51.49 ±
18.07 similarity calculations per second (computation
time for the atom typing is not included). The 2SHA
method has the highest computation time, because of the
two assignment steps and the superposition of the frag-
ments. However, the approach is capable to perform
14.04 ± 1.78 calculations per second. All values were
measured on a Intel Core2Duo CPU with 2 GHz using
one core and 1 GB memory, Java 1.6.0_07, Ubuntu
8.04.3, Linux kernel 2.6.24.

Experimental
The setup of the VS experiments is based on the work of
Cheeseright et al. in which the FieldScreen approach is
introduced and compared against a docking algorithm.
We decided to use this workflow to create a common
setup of the data sets with the objective to achieve compa-
rable results.

Data Sets and Preparation
All ligand-based VS experiments were performed using a
modified version of the Directory of Useful Decoys
(DUD) Release 2 [52,53]. The DUD contains known
actives and mimetic [39] decoys for 40 target proteins. This
collection of data sets was compiled to serve as an unbi-
ased community benchmark database for the evaluation
of docking algorithms. Therefore, the original version of
the DUD is not suited for ligand-based VS experiments
[41]. A modification of the active structures of the DUD
database, suggested by Good and Oprea [35], solves this
problem by applying a lead-like filter [54] and a cluster
algorithm [55]. The clustering identifies analogue struc-
tures and can be used to reduce the bias of analogue or
trivial enrichment. Additionally, each cluster can be seen
as an individual chemotype and allows the analysis of the
"scaffold-hopping" behavior of the methods.

The active structures for the VS experiments were prepared
as follows. We obtained the modified active structures of
Good and Oprea from the DUD site [38]. These data sets
contain only topological information about the struc-
tures. Thus, we used CORINA3D [56] to generate initial
geometrical seed structures. Those were refined with Mac-
roModel 9.6 [57] using the OPLS 2005 force field and the
limited Broyden-Fletcher-Goldfarb-Shanno optimization
method with 5000 iterations and a gradient criterion of
0.0001 RMSD for the atomic movement between two iter-
ations. The final data sets were used as active structures.

The original decoys of the DUD release 2 were obtained
from the DUD site [52]. Using these decoys, together with
the filtered actives from Good and Oprea, would intro-
duce a bias of an artificial enrichment based on the dis-
tinction of physical property values. To remove this
artificial enrichment bias, we applied the same lead-like
filter, used by Good and Oprea to filter the active struc-
tures, on the decoys. Thus, the AlogP value and the molec-
ular weight was calculated for each structure with dragonX
1.4 [58]. All structures with an AlogP value > = 4.5 (5.5 for
nuclear hormone receptor data sets) or a molecular

weight  were removed. The initial three-

dimensional coordinates were further optimized using
the same configuration of MacroModel as for the active
structures.

The described preparation protocol was applied on all 40
data sets of the DUD. The SD files of the prepared actives
and decoys are directly obtainable from the DUD site
[52].

To obtain results that are not biased by a low number of
chemotypes, it is advisable to use data sets with a suffi-
cient number of chemotypes. Therefore, we used the same
subset of DUD targets as used by Cheeseright et al. This
subset has a minimum of 17 and a maximum of 44 chem-
otypes. A comprehensive overview of the data sets can be
seen in Table 1.

Ligand-based VS methods need a biologically active struc-
ture that serves as a query in the experiment. In the work
of Huang et al. [53] complexed crystal structures were
used to identify the binding sites for the docking algo-
rithm. Cheeseright et al. [27] used the ligands of the same
complexed crystal structures as query structures to evalu-
ate the FieldScreen approach. To allow a comparison with
FieldScreen, we extracted the same bounded ligands from
the protein data bank [59,60] and corrected the bonds
lengths with MacroModel 9.6. These structures serve as
queries for the VS experiments in this study.

Evaluation of VS Performance
In the following section we describe the metrics for the
evaluation of VS experiments used in our work. Addition-
ally, we explain why we used these metrics and show their
correlation to well-known established metrics.

The evaluation and comparison of VS performance is an
important but also an error-prone process [39,40,61]. In
recent years, a plethora of evaluation metrics have been
published, each metric with its strengths and weaknesses.
For an overview, we refer to the work of Kirchmair et al.

>= 450 g
mol
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[62] There is no standard protocol for the analysis and
publication of VS results. Thus, the comparison of differ-
ent works is a challenging task. It is necessary to analyze
the results, regarding three different aspects, to character-
ize the performance of a VS method. The first aspect is the
early recognition problem and originates from real-world
screening applications, where only top ranked molecules
were selected for testing in biological assays because of
high costs and expenditure of time. Truchon and Bayly
developed for this purpose the BEDROC score [63], which
uses a decreasing exponential weighting function. The
drawback of this metric is its lack of interpretability and
the dependency of an extrinsic variable [39]. To resolve
these problems, Jain and Nicholls suggested to report the
enrichment values at predefined false positive fractions
[40]. These values can be obtained by dividing the sensi-
tivity value by the fraction of false positives. Equation 7
represents the interrelation between the ROC value and
the ROC enrichment for a predefined false positive frac-

tion.  and  is the number of

true positives (actives retrieved) and false positives
(decoys retrieved), respectively, found in the range con-

taining a false positive rate of X%. TP, TN, FP, and FN are
the entries of the confusion matrix ranking X% false posi-
tives.

We decided to report the ROC enrichments at false posi-
tive rates of 0.5%, 1.0%, 2%, and 5%, as suggested by Jain
and Nicholls [40].

The second aspect of characterizing the performance of VS
methods is the evaluation of the performance considering
the complete data set. This overall performance can be vis-
ualized plotting the receiver operating characteristic
(ROC), which should always be part of VS results [39,64].
However, a comparison of many ROC plots is not
straightforward, thus we report the area under the ROC
curve to provide a better overview of the results. Equation
8 shows the calculation of the area under the ROC curve
(AUC), where Nactives and Ndecoys are the numbers of active

Nactives selected
X% Ndecoys selected

X%
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actives selected
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spec%

N
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=
−1 iificity

y value ROC point
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Table 1: Data sets. 

target number actives number decoys number clustersa PDB codeb

acec 46 1796 19p 1o86
ached 100 3859 18 1eve
cdk2e 47 2070 32 1ckp
cox2f 212 12606 44 1cx2
egfrg 365 15560 40 1m17
fxah 64 2092 19 1f0r
hivrti 34 1494 17 1rt1
inhaj 57 2707 23 1p44
p38k 137 6779 20 1kv2
pde5l 26 1698 22 1xp0
pdgfrbm 124 5603 22 1t46
srcn 98 5679 21 2src
vegfr2o 48 2712 31 1fgi

Overview of the used data sets containing the number of actives, decoys, different chemotype clusters, and the PDB code of the complexed crystal 
structure which contains the search query.
aNumber of clusters using the reduced graph algorithm from Barker et al. [55]
b PDB code of the complexed crystal structures from which the search queries were taken.
c Angiotensine-converting enzyme
d Acetylcholinesterase
e Cyclin-dependent kinase
f Cyclooxygenase-2
g Epidermal growth factor receptor
h Factor Xa
i HIV reverse transcriptase
j Enoyl ACP reductase
k P38 mitogen activated protein
l Phosphodiesterase 5
m Platelet derived growth factor receptor kinase
n Tyrosine kinase
o Vascular endothelial growth factor receptor
p The molecule with the ZINC ID 03814157 does not contain a ring and therefore it is assigned to a dummy cluster forming one additional cluster.
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and decoy structures, respectively  is the

number of decoys that are higher ranked than the ith
active structure.

The last point of characterizing the performance of VS
methods is the evaluation of the retrieval of new scaffolds.
As already mentioned, ligand-based VS suffers from the
bias caused by enrichments of analog structures. To
reduce the influence of this overestimated enrichments on
the result metrics, Clark and Webster-Clark recommended
an adaption of the ROC and AUC calculation [36]. They
proposed an arithmetic and a harmonic weighting scheme
to reduce the influence of structurally similar structures.
Using the arithmetic weighting, each structure has a
weight that is inversely proportional to the size of the clus-
ter it belongs to. Therefore, the weight of all structures
taken from one cluster is equal. This leads to the equation:

, where wij is the weight of the ith structure taken

from the jth cluster with Nj structures. As a result of this,

the true positive value of the sensitivity is no more the
number of true active structures seen in a predefined frac-
tion of the data set. Instead, it is the sum of the weights

resulting in the equation  The

value of  is 1 if the ith structure of the jth cluster is

contained in the fraction of the data set, otherwise it is 0.
Nclusters is the number of clusters in the data set and Nj is

the number of structures in the jth cluster.

The harmonic weighting scheme uses weights represent-
ing the ranks of the active structures within each cluster.
Top-ranked structures of a cluster have a higher weight,
motivated by the idea that those structures have the high-
est information content. The weight of the structures is

defined as , where i is the ith structure of the jth

cluster in decreasing rank order. A recently published
analysis of the weighting schemes conducted by Mackey
and Melville discloses that the arithmetic weighting
scheme has better properties and is more robust than the
harmonic scheme [65]. Therefore, we decided to use the
arithmetic weighting scheme. Integrating this scheme into
the basic ROC enrichment leads to an arithmetic weighted
version (awROC enrichment) given by Equation 9.

This weighting scheme can also be embedded into the
AUC calculation. The modified version (awAUC) can be
seen in Equation 10.

To account for intrinsic variances [39] of the active and
decoy structures, we bootstrapped the data sets and
approximated the error of the awROC enrichments and
awAUC. We performed 25000 iterations removing ran-
domly 20% of the data set. The standard deviation of the
25000 metric results were used as an error of the result
using the complete data set.

Comparison against Other Methods
The docking study by Huang et al. [53] provides the
energy scores of the DOCK algorithm for each target of the
DUD. We used these rankings to calculate the awROC
enrichments and awAUC on the same data sets as our
approaches. Hence, extensive properties such as active to
decoy ratio and data set size are identical and permit a
comparison of the results. A direct comparison of docking
algorithms with ligand-based VS tools is critical because
of the different techniques and information included in
the methods. We calculated the results of the docking
algorithm with the objective to provide an impression of
the performance of the DOCK algorithm using the
awROC and awAUC evaluation metrics.

We considered the results of the FieldScreen approach to
include a sophisticated ligand-based method. To reduce
the information content solely to the information
obtained from the query structure, the results without the
excluded volume of the protein were used. Although the
data set sizes and active to decoy ratios of the FieldScreen
results deviate from our setup, the use of awROC enrich-
ments ensures the comparability because the ROC enrich-
ment is independent from extensive quantities [39].

Introducing a new method to a well-established field, like
ligand-based VS, it is necessary to justify it by comparing
the results to a common approach. To meet these require-
ments, we compared our approaches to the 166 bit
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MACCS keys [12] using the Tanimoto coefficient to calcu-
late a similarity value. Although the results of the MACCS
keys are inferior in comparison to other fingerprints [66]
we provide the results of the MACCS keys to give a base-
line for the performance on the data sets. The MACCS keys
were calculated using the CDK 1.1.5 [50,51].

Results and Discussion
The results of the four optimal assignment based methods
and the three comparison approaches are organized as
follows. The awROC enrichments for each target at a pre-
defined false positive fraction of 0.5%, 1.0%, 2.0%, and
5.0% can be seen in the Tables 2, 3, 4 and 5. The awAUC
values are compiled in Table 6. Each value in the Tables 2,
3, 4, 5 and 6 has a standard deviation, which is the result
of the error approximation using the bootstrapping
approach. The bold value in each row indicates the best
result concerning the data set and evaluation metric. The
last row in each Table contains the rank of each method
averaged over all data sets. These values describe the over-
all performance of one method considering the results of
all other methods.

In addition to the already mentioned VS metrics, Addi-
tional file 2 contains the complete ranking of all structures
and several VS metrics for each method and data set.

Virtual Screening Results
The results of Table 2 show the awROC enrichments at a
false positive rate of 0.5%, which implies that the early
recognition problem is focused in this evaluation. The
best overall performance is achieved by the (OAAP). The
results of the original OAK and the flexibility extension
are similar and only marginally worse than the OAAP. The
2SHA approach obtains an average rank that lies in
between the other optimal assignment methods and

FieldScreen. The MACCS keys show an increased perform-
ance on the fxa and vegfr2 data set, but the overall per-
formance is lower than all other methods except the
DOCK algorithm. The ranking of the methods at higher
false positive fractions changes, but there is a tendency
observable. The 2SHA yields the best average rank at 1%,
2%, and 5%. Additionally, the average rank decreases with
an increasing false positive fraction. FieldScreen shows a
similar behavior resulting in comparable results at 5% in
comparison to OAK and OAAP. The average ranks of the
MACCS keys, OAK, OAKFLEX, and OAAP increased with
higher false positive fractions by a value of ≈ 0.7. The aver-
age rank of the DOCK algorithm alternates between 6.54
and 5.54, showing no dependency on the false positive
rate.

The increasing performance of the FieldScreen and 2SHA
approach can be explained by the ability to perform "scaf-
fold-hoppings". The other optimal assignment methods
have a good early enrichment as seen in Table 2, but these
enrichment values are the result of retrievals of chemical
similar scaffolds with respect to the search query. Those
methods are not able to hold up the high retrieval rates of
the chemotypes and the discovery of new chemotypes
stagnates. The influence of this bias is reduced with
increasing false positive fraction and the more robust
methods became apparent. Regarding the technique of
FieldScreen, the improved "scaffold-hopping" behavior is
probably the result of the conformational sampling
together with the similarity calculation which is based on
molecular fields. The 2SHA method yields a similar effect
by the identification of rigid scaffolds, their assignment
and superposition. This procedure can be seen as an
inherent heuristic of a flexible alignment of the search
query and the screening structures. The method assumes
that the linker between two fragments has the flexibility to

Table 2: awROC Enrichments at 0.5%. 

target DOCK FieldScreen MACCS OAK OAKFLEX 2SHA OAAP

ace 17.0 ± 6.2 14.7 55.7 ± 8.5 94.5 ± 8.7 94.5 ± 9.6 73.5 ± 8.6 30.5 ± 8.4
ache 0.0 ± 0.0 16.7 19.1 ± 4.6 24.5 ± 4.8 24.9 ± 4.8 24.8 ± 4.9 23.1 ± 4.7
cdk2 4.0 ± 6.1 7.5 9.4 ± 1.8 9.4 ± 1.8 9.4 ± 1.8 9.4 ± 3.7 24.1 ± 4.7
cox2 1.9 ± 0.6 48.8 17.0 ± 3.0 25.7 ± 3.6 42.5 ± 4.5 38.3 ± 6.4 68.4 ± 5.5
egfr 7.6 ± 2.2 52.4 40.3 ± 3.2 56.6 ± 3.9 47.4 ± 3.6 103.6 ± 6.9 53.1 ± 4.3
fxa 15.1 ± 6.8 0.0 30.0 ± 7.4 20.0 ± 6.3 10.0 ± 4.6 10.0 ± 4.6 20.0 ± 6.3
hivrt 4.4 ± 1.8 40.0 22.0 ± 5.5 20.1 ± 5.6 20.1 ± 5.6 20.1 ± 5.6 34.8 ± 8.0
inha 0.0 ± 0.0 56.7 49.9 ± 7.7 31.8 ± 8.7 43.9 ± 8.4 57.9 ± 13.5 60.7 ± 7.4
p38 0.0 ± 0.0 3.7 1.0 ± 0.4 22.2 ± 5.9 18.8 ± 5.0 28.2 ± 6.3 10.7 ± 4.3
pde5 4.4 ± 4.3 6.8 4.3 ± 3.3 8.6 ± 4.0 8.6 ± 4.0 4.3 ± 2.3 0.0 ± 0.0
pdgfrb 0.0 ± 0.0 27.3 42.0 ± 7.4 47.0 ± 6.7 44.4 ± 6.7 43.9 ± 6.7 57.7 ± 6.8
src 0.0 ± 0.0 13.7 0.0 ± 0.0 5.7 ± 1.2 9.2 ± 1.2 4.3 ± 1.6 4.7 ± 1.0
vegfr2 6.2 ± 3.0 12.9 18.7 ± 4.5 6.3 ± 1.6 12.5 ± 3.4 12.5 ± 3.4 12.5 ± 4.1

avg. rank 6.27 4.08 4.35 3.23 3.27 3.54 3.12

awROC Enrichments at 0.5% false positive fraction of DOCK, FieldScreen, MACCS keys, and the optimal assignment methods.
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perform the translation and rotation which is needed for
the superposition of the assigned fragments. Additionally,
this assumes a comparable length of the linkers in both
molecules. Considering these facts, the inherent flexible
alignment of the method is a rough approximation, but it
increases the ability to do "scaffold-hoppings" without
the use of a time-consuming conformational sampling.

A comparison of the OAK with its flexibility extension
shows a comparable overall performance at 0.5%. The gap
between the methods increases at higher false positive
fractions concerning the average rank. In contrast to the
average rank, the difference on each data set is marginal
with an advantage for the OAK.

As a result, the OAK obtains lower ranks and the differ-
ence of the average rank increases. Major differences

regarding the performance on each data set can only be
seen at 0.5% false positive rate. Surprising is the improved
performance of the OAKFLEX on the cox2 data set. The
inhibitors of the cox2 are usually rigid scaffolds consisting
of two or three ring systems. Hence, there should not be a
performance gain using an approach that integrates the
local flexibility of the atom neighborhood. The active
structures of the cox2 data set have terminal substitutions
with a depth of two or three bonds. These substitutions
form the flexible part of the molecules and have an opti-
mal depth for the local flexibility approach of the OAK-

FLEX. The flexibility information of the terminal
substitutions is stored in the atom which is part of the ring
system. Therefore, the method has an improved ability to
distinguish different substitution stages like ortho, meta
and para substitutions. Additionally, the existence of rigid
and flexible parts with an ideal length yields a better dis-

Table 3: awROC Enrichments at 1.0%. 

target DOCK FieldScreen MACCS OAK OAKFLEX 2SHA OAAP

ace 13.5 ± 4.1 12.6 36.8 ± 4.9 47.3 ± 4.8 52.5 ± 4.8 42.0 ± 4.9 20.5 ± 4.3
ache 0.0 ± 0.0 20.4 9.8 ± 2.4 13.0 ± 2.5 14.2 ± 2.6 15.2 ± 2.8 11.8 ± 2.4
cdk2 9.5 ± 2.7 3.8 4.9 ± 1.0 6.5 ± 1.5 4.9 ± 1.5 11.1 ± 2.4 15.7 ± 2.8
cox2 5.3 ± 1.4 29.5 10.7 ± 1.7 17.2 ± 2.0 24.0 ± 2.4 33.7 ± 2.9 46.1 ± 3.1
egfr 7.7 ± 1.6 29.5 20.4 ± 1.6 40.3 ± 3.1 26.2 ± 1.8 56.2 ± 2.5 28.3 ± 2.0
fxa 13.5 ± 3.6 2.8 15.7 ± 3.9 10.5 ± 3.3 5.2 ± 2.4 5.2 ± 2.4 10.5 ± 3.3
hivrt 2.2 ± 0.9 11.7 10.7 ± 3.7 10.7 ± 2.8 10.7 ± 2.8 10.7 ± 2.8 19.6 ± 4.0
inha 0.0 ± 0.0 31.2 31.0 ± 4.0 25.2 ± 3.6 22.9 ± 3.6 42.3 ± 4.2 31.8 ± 3.7
p38 0.0 ± 0.0 1.8 0.5 ± 0.2 14.1 ± 3.2 11.8 ± 2.5 16.3 ± 3.2 5.6 ± 2.2
pde5 6.7 ± 3.1 4.5 2.3 ± 1.7 4.5 ± 2.0 4.5 ± 2.0 2.3 ± 1.2 0.0 ± 0.0
pdgfrb 0.0 ± 0.0 13.6 23.2 ± 3.5 23.9 ± 3.4 22.9 ± 3.4 22.3 ± 3.4 31.4 ± 3.4
src 4.7 ± 2.1 7.0 0.0 ± 0.0 3.8 ± 0.5 5.4 ± 0.6 9.7 ± 2.2 2.8 ± 0.5
vegfr2 3.2 ± 1.5 8.1 9.4 ± 2.2 3.1 ± 0.8 6.3 ± 1.7 9.4 ± 3.1 9.4 ± 2.2

avg. rank 5.54 4.00 4.73 3.65 4.04 2.73 3.23

awROC Enrichments at 1.0% false positive fraction of DOCK, FieldScreen, MACCS keys, and the optimal assignment methods.

Table 4: awROC Enrichments at 2.0%. 

target DOCK FieldScreen MACCS OAK OAKFLEX 2SHA OAAP

ace 8.2 ± 1.9 8.9 21.3 ± 2.4 30.2 ± 2.6 27.6 ± 2.5 21.0 ± 3.0 14.7 ± 2.6
ache 0.0 ± 0.0 13.5 5.3 ± 1.2 7.5 ± 1.3 7.5 ± 1.3 10.1 ± 1.4 6.3 ± 1.3
cdk2 7.0 ± 1.4 1.9 2.5 ± 0.5 5.5 ± 1.2 4.8 ± 1.1 7.9 ± 1.4 8.6 ± 1.3
cox2 5.9 ± 1.3 17.8 6.8 ± 0.8 14.1 ± 1.6 17.6 ± 1.5 22.9 ± 1.4 24.6 ± 1.4
egfr 7.2 ± 0.8 18.1 11.0 ± 0.8 24.1 ± 1.3 20.5 ± 1.3 29.2 ± 1.2 15.8 ± 1.1
fxa 6.8 ± 1.8 5.4 7.9 ± 2.0 5.3 ± 1.7 2.6 ± 1.2 2.6 ± 1.2 5.3 ± 1.7
hivrt 2.2 ± 0.5 11.7 8.8 ± 1.8 8.3 ± 2.1 5.4 ± 1.8 5.4 ± 1.4 9.8 ± 2.0
inha 0.0 ± 0.0 15.6 17.5 ± 2.0 15.9 ± 1.9 13.8 ± 1.7 22.2 ± 2.1 16.2 ± 2.0
p38 0.8 ± 0.6 0.9 0.8 ± 0.3 9.8 ± 1.9 9.3 ± 1.6 8.8 ± 1.6 5.7 ± 1.7
pde5 7.8 ± 1.7 9.7 1.1 ± 0.8 2.3 ± 1.0 3.4 ± 0.8 4.5 ± 0.8 0.0 ± 0.0
pdgfrb 0.0 ± 0.0 9.1 12.8 ± 1.8 12.1 ± 1.7 11.5 ± 1.7 11.3 ± 1.7 18.8 ± 1.7
src 2.5 ± 1.1 3.7 0.0 ± 0.0 2.5 ± 0.2 6.4 ± 1.1 7.7 ± 1.2 1.6 ± 0.3
vegfr2 3.2 ± 1.1 7.3 6.4 ± 1.3 3.2 ± 0.9 3.2 ± 0.9 9.5 ± 1.5 4.8 ± 1.1

avg. rank 6.54 3.62 4.93 3.58 4.12 2.81 3.73

awROC Enrichments at 2.0% false positive fraction of DOCK, FieldScreen, MACCS keys, and the optimal assignment methods.
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tinction between rigid and flexible parts of a molecule.
The last point was already observed in QSAR experiments
reported by Fechner et al. [34] The active structures of the
egfr data set contain also a rigid basic scaffold with various
substitutions among the molecules. Based on the previous
observation, the OAKFLEX should attain a higher awROC
enrichment as the OAK. Obviously, it is not the case as it
can be seen in Table 2. This contradictory result can be
explained by the chemical nature of the search query.
Erlotinib has two flexible substitutions each with five
heavy atoms forming a chain. These substitutions increase
the number of rotatable bonds to 11. The average number
of rotatable bonds in the active data set of egfr is 4.07. For
that reason, the OAKFLEX has difficulties to map the 10
flexible atoms of the search query onto the atoms of the
active structures. These mappings reduce the overall simi-
larity and performance on the egfr data set. An evidence

for this hypothesis is the result on the vegfr2 data set. The
search query of the vegfr2 data set has five rotatable
bonds, whereas the actives have a mean value of 4.2.
Therefore, the penalty of the OAKFLEX mapping is reduced
and results in a higher enrichment rate, because of the dif-
ferent flexibility properties. The OAAP method achieves
good results on the cox2, cdk2, and pdgfrb data set. These
results are a consequence of the binning approach on the
geometrical distances. The binning represents a fuzzy geo-
metrical distance measure that allows minor changes in
the basic scaffold of a structure without reducing the sim-
ilarity value. This increases the ability to perform "scaf-
fold-hoppings" to related chemotypes with a similar basic
structure.

The awROC enrichment of the 2SHA algorithm at 0.5%
on the egfr data set is remarkable. The enrichment on this

Table 5: awROC Enrichments at 5.0%. 

target DOCK FieldScreen MACCS OAK OAKFLEX 2SHA OAAP

ace 4.6 ± 0.9 4.7 10.7 ± 1.2 12.1 ± 1.0 12.1 ± 1.0 11.6 ± 1.0 8.0 ± 1.0
ache 0.8 ± 0.2 7.3 2.1 ± 0.5 3.9 ± 0.6 4.4 ± 0.6 5.4 ± 0.6 4.0 ± 0.6
cdk2 2.8 ± 0.6 0.8 2.6 ± 0.6 2.6 ± 0.4 2.6 ± 0.4 3.5 ± 0.5 3.5 ± 0.7
cox2 5.5 ± 0.5 10.4 4.9 ± 0.5 9.0 ± 0.6 8.8 ± 0.6 9.7 ± 0.6 12.2 ± 0.6
egfr 4.5 ± 0.4 9.5 5.0 ± 0.4 11.6 ± 0.5 11.3 ± 0.5 12.1 ± 0.5 7.3 ± 0.5
fxa 5.5 ± 1.0 5.4 3.1 ± 0.8 2.1 ± 0.7 1.1 ± 0.5 2.6 ± 0.8 2.1 ± 0.7
hivrt 2.2 ± 0.6 5.1 3.5 ± 1.1 3.3 ± 0.8 3.3 ± 0.8 3.5 ± 0.7 5.1 ± 1.1
inha 0.0 ± 0.0 6.5 7.0 ± 0.8 8.6 ± 0.8 5.7 ± 0.7 9.4 ± 0.8 7.0 ± 0.8
p38 1.4 ± 0.5 0.5 0.5 ± 0.1 4.3 ± 0.7 4.0 ± 0.6 5.0 ± 0.7 2.9 ± 0.7
pde5 4.3 ± 0.8 4.8 0.5 ± 0.3 2.3 ± 0.6 1.4 ± 0.3 2.7 ± 0.6 1.4 ± 0.6
pdgfrb 0.0 ± 0.0 3.8 6.0 ± 0.7 4.9 ± 0.7 4.9 ± 0.7 4.5 ± 0.7 8.6 ± 0.7
src 1.0 ± 0.4 2.5 0.1 ± 0.0 3.7 ± 0.7 4.5 ± 0.8 6.4 ± 0.7 1.0 ± 0.1
vegfr2 1.3 ± 0.5 3.5 2.6 ± 0.5 1.3 ± 0.4 1.3 ± 0.4 4.5 ± 0.7 2.6 ± 0.5

avg. rank 5.54 3.69 5.04 3.69 4.19 2.23 3.62

awROC Enrichments at 5.0% false positive fraction of DOCK, FieldScreen, MACCS keys, and the optimal assignment methods.

Table 6: awAUC values. 

target DOCK FieldScreen MACCS OAK OAKFLEX 2SHA OAAP

ace 0.67 ± 0.03 0.64 0.86 ± 0.02 0.84 ± 0.03 0.81 ± 0.03 0.86 ± 0.03 0.72 ± 0.04
ache 0.57 ± 0.02 0.62 0.37 ± 0.03 0.44 ± 0.03 0.46 ± 0.04 0.50 ± 0.04 0.50 ± 0.03
cdk2 0.53 ± 0.03 0.44 0.55 ± 0.02 0.55 ± 0.02 0.46 ± 0.02 0.48 ± 0.03 0.53 ± 0.03
cox2 0.68 ± 0.02 0.82 0.56 ± 0.02 0.77 ± 0.02 0.77 ± 0.01 0.79 ± 0.01 0.87 ± 0.01
egfr 0.55 ± 0.02 0.82 0.60 ± 0.02 0.72 ± 0.02 0.70 ± 0.02 0.72 ± 0.02 0.49 ± 0.02
fxa 0.72 ± 0.03 0.74 0.45 ± 0.03 0.46 ± 0.03 0.50 ± 0.03 0.56 ± 0.03 0.57 ± 0.03
hivrt 0.73 ± 0.02 0.63 0.54 ± 0.04 0.53 ± 0.03 0.47 ± 0.03 0.53 ± 0.04 0.65 ± 0.03
inha 0.26 ± 0.02 0.72 0.64 ± 0.03 0.53 ± 0.04 0.52 ± 0.04 0.64 ± 0.03 0.59 ± 0.04
p38 0.36 ± 0.02 0.27 0.38 ± 0.02 0.47 ± 0.03 0.49 ± 0.03 0.76 ± 0.01 0.43 ± 0.03
pde5 0.48 ± 0.04 0.62 0.28 ± 0.03 0.37 ± 0.04 0.32 ± 0.03 0.38 ± 0.03 0.35 ± 0.03
pdgfrb 0.40 ± 0.02 0.40 0.54 ± 0.03 0.58 ± 0.03 0.52 ± 0.03 0.49 ± 0.03 0.58 ± 0.03
src 0.52 ± 0.02 0.39 0.50 ± 0.02 0.66 ± 0.02 0.72 ± 0.02 0.74 ± 0.01 0.30 ± 0.02
vegfr2 0.42 ± 0.03 0.53 0.42 ± 0.03 0.31 ± 0.03 0.33 ± 0.02 0.54 ± 0.03 0.41 ± 0.03

avg. rank 4.27 3.42 4.50 4.04 4.62 3.08 3.92

awAUC values of DOCK, FieldScreen, MACCS keys, and the optimal assignment methods.
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data set outperforms the results of the other methods. To
elucidate this result, we analysed the similarity calcula-
tions of the 2SHA on the egfr structures in detail. The
active structures have a common property that favors the
computation technique of the 2SHA. Each active cluster
has a so-called parent molecule. This molecule is the
smallest molecule of the cluster regarding the number of
heavy atoms [38]. We compared these parent molecules
and identified a common basic scaffold, which is included
in 32 of 40 clusters and in the search query. Figure 7
shows four examples of this basic scaffold, which consists
of a ring system and a condensed heterocyclic system with
two or three rings. These systems are aromatic in the query
structure and in 25 out of 32 clusters. The 2SHA method
identifies the aromatic systems and maps the correspond-
ing systems onto each other in the first assignment step.
The superposition of the fragments yields minimal dis-
tances of the mapped atoms, because of the planarity of
aromatic systems. This results in a high similarity score
based on this common basic scaffold and is an explana-
tion of the high awROC enrichment value at 0.5%. Our
hypothesis confirms the results of the 2SHA on egfr at
higher false positive rates. The method still has the highest
enrichment rates, but in comparison to the other methods
the difference is significantly reduced.

The awAUC values of Table 6 represent the performance
of each method using the complete data set. The 2SHA
approach yields the best result with an average rank of
3.08. The FieldScreen method performs better than the
remaining optimal assignment techniques OAAP, OAK,
and OAKFLEX. The DOCK algorithm improves the results
and obtained an average rank of 4.27 and achieves a better
result than the MACCS keys. Table 6 confirms with the
tendency over the awROC enrichments and assigns the
best "scaffold-hopping" performance to the 2SHA and
FieldScreen. The reduced performance of the other opti-
mal assignment methods can be explained by the results
of the chemotype enrichment. Figure 8 shows the chemo-
type enrichment of the four optimal assignment methods,
the MACCS keys, and the random performance on the
p38 data set. All optimal assignment methods have a com-
parable chemotype retrieval until ≈ 50% of the chemo-
types are retrieved, which is consistent with the results of
the Tables 2, 3, 4, 5. From that point on, the retrieval of
the OAK, OAKFLEX, and OAAP stagnates and their chemo-
type enrichment is reduced to the level of the random per-
formance. The reduced enrichment performance of those
three optimal assignment methods at higher false positive
rates explains the improved results of the FieldScreen
approach regarding the awAUC values. Only the 2SHA

Example of egfr clustersFigure 7
Example of egfr clusters. The figure visualizes four parent structures of different egfr clusters. Although these structures 
belong to different clusters, they share a common basic scaffold.
Page 17 of 23
(page number not for citation purposes)



Journal of Cheminformatics 2009, 1:14 http://www.jcheminf.com/content/1/1/14
approach has the ability to achieve a higher generalization
of the chemotypes which results in an increased retrieval
rate over the complete data set.

Correlation of Optimal Assignment Methods
The presented optimal assignment methods are based on
the same functional principle. On the one hand, they use
different representations and algorithms, but on the other
hand, the final similarity computation between two mol-
ecules is the result of the assignment algorithm. Hence, it
is possible that the two new optimal assignment methods
(2SHA and OAAP) are only marginally different com-
pared to the two existing methods (OAK and OAKFLEX).
The results in the previous section are an evidence that
there are differences in the rankings of active and inactive
structures. Another interesting question is the order of the
chemotype discovery of the individual methods. Different
sequences of the chemotype retrieval indicate that the
methods explore the chemspace in various directions.
Therefore, we analyzed the sequences of all optimal
assignment methods on all data sets. We calculated the
Kendall's τ rank correlation coefficient for each data set to
obtain a measure for the correlation of the chemotype
retrieval between two methods. This results in 13 correla-
tion coefficients for each pair of methods. The results are
illustrated in Figure 9 in form of box plots.

The correlation analysis shows that the 2SHA and OAAP
approach have the lowest median of the correlation coef-

ficients. This is the result of a different calculation process
to determine the similarity between two atoms. The
increased correlation between 2SHA and OAKFLEX as well
as between 2SHA and OAK can be explained by a com-
mon subset of descriptors and the fact that the similarity
between two atoms in all three methods is calculated by a
RBF. 2SHA has a higher correlation with the OAKFLEX than
with the OAK. This indicates the already mentioned inher-
ent flexibility consideration of the method. In contrast to
the 2SHA, the OAAP method shows a superior correlation
to the OAK method without flexibility information. The
strong correlation between OAK and OAKFLEX is not sur-
prising because the OAKFLEX is an extension of the OAK
and the standard parametrization of the OAKFLEX uses a
weight of 0.95 for the OAK similarity [34].

To further analyse the optimal assignment methods and
their characteristic behaviour in chemspace, we con-
ducted the same experiment and evaluated the correlation
between the optimal assignment methods and DOCK or
the MACCS keys. The results can be seen in Figure 10.

The results show that the chemotype retrieval sequence of
the optimal assignment methods has no correlation with
the sequence retrieved by DOCK. The correlation to the
methods considering flexibility information (2SHA and
OAKFLEX) is marginal increased in comparison to the
other methods. This is probably the result of the flexible-
ligand method that is used by DOCK allowing the incor-

Chemotype enrichment and "scaffold-hoppings" on p38Figure 8
Chemotype enrichment and "scaffold-hoppings" on p38. The left figure visualizes the chemotype enrichment of the 
four optimal assignment methods, the MACCS keys, and the random performance on the p38 data set. A chemotype is consid-
ered as retrieved if one structure of the chemotype is ranked. The right figure shows five different chemotypes that were only 
retrieved by the 2SHA method ranking 25% of the data set.
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poration of the flexibility [53]. The overall low correlation
is not surprising given the fundamental differences of lig-
and-based and docking approaches. The correlation coef-
ficients between the optimal assignment methods and the
MACCS keys are comparable to the coefficients in the pre-
vious experiment between two optimal assignment meth-
ods. From these results, it follows that the similarity of the
chemotype retrieval sequence between the MACCS keys
and an optimal assignment method is comparable to the
similarity of two optimal assignment methods. Therefore,
the optimal assignment methods and the MACCS keys

explore the chemspace in a comparable direction, but the
VS results show that each method has its strengths on dif-
ferent data sets.

The enrichment results of the DOCK algorithm in the
Tables 2, 3, 4, 5, 6 show an inferior performance in com-
parison to the other methods. The findings of the chemo-
type retrieval sequence disclose an interesting property of
DOCK. The uncorrelated sequences demonstrate that
DOCK explores the chemspace in an orthogonal manner
with respect to the other methods. Accordingly, DOCK

Rank correlation coefficient of the chemotype discovery between optimal assignment methodsFigure 9
Rank correlation coefficient of the chemotype discovery between optimal assignment methods. The diagram 
illustrates all pairwise rank correlation coefficient of the order of the chemotype discovery between two optimal assignment 
methods. A high correlation indicates that the order of the chemotype discovery between two methods is similar. Each box 
plot was created using the correlation of the order of the chemotype discovery on each data set used in this study.
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retrieves different chemotypes that will only be found by
the optimal assignment methods and the MACCS keys if
a large part of the data set is ranked.

Conclusion
We have introduced the concept of the optimal assign-
ment approach in the field of ligand-based VS. We pre-
sented two new optimal assignment methods. The OAAP
method is based on geometrical distance atom pairs. The
2SHA computes two assignment steps. Each method uses
the optimal assignment approach on different types of
objects showing the wide field of application of the

approach. Another advantage is the interpretability of the
mappings using visualizations as shown in Figure 1.

We evaluated the methods on 13 modified DUD data sets
covering a wide range of different molecules and chemo-
types. In order to grade the results of the optimal assign-
ment approaches we compared the results with a state-of-
the-art ligand-based VS method that uses a conforma-
tional sampling and molecular fields. Additionally, we
provided the results of the 166 bit MACCS keys in combi-
nation with the Tanimoto coefficient and the perform-
ance of the DOCK algorithm on the same data sets. The

Rank correlation coefficient of the chemotype discovery between optimal assignment methods and DOCK/MACCS keysFigure 10
Rank correlation coefficient of the chemotype discovery between optimal assignment methods and DOCK/
MACCS keys. The boxplots show the correlation coefficients of the order of the chemotype discovery between the optimal 
assignment methods and DOCK as well as the MACCS keys. The experimental setup is equal to the previous correlation anal-
ysis between two optimal assignment methods.
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results show an improved early enrichment performance
of all optimal assignment methods. Analyses show that
these early enrichments are the results of the retrievals of
chemical similar chemotypes with respect to the search
query. With increasing false positive rates this bias is
reduced and the gap between the optimal assignment
methods and the literature results is successively closed.
Only the 2SHA approach has the ability to perform the
necessary "scaffold-hoppings" to maintain a robust
enrichment and obtained the overall best results. The cal-
culations of the 2SHA method approximate an implicit
flexible alignment of the substructures and enables the
retrieval of chemotypes that have larger distances to the
query in chemspace. Further research will be spent on the
2SHA method in combination with multiple query
screenings. The fragmentation and the two assignment
steps enable a substructure based data fusion on the frag-
ment level.

The first assignment step can disclose fragment classes
with similar fragments of two or more search queries.
These classes can be used to enumerate all combinations
of the fragments resulting in an increased chemotype cov-
erage. This procedure can further improve the "scaffold-
hopping" performance and contribute to the robustness
of the method.

The presented methods are fast enough to screen more
than one million structures within one day on a single
core CPU. This high throughput performance qualifies the
presented methods to perform screenings on large data-
bases with the aim to select relevant subsets for a given
problem. These subsets can be used in combination with
biological screenings or more time-consuming docking
algorithms.
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