
SOFTWARE Open Access

Multilevel Parallelization of AutoDock 4.2
Andrew P Norgan1†, Paul K Coffman2†, Jean-Pierre A Kocher3, David J Katzmann1 and Carlos P Sosa2,4*

Abstract

Background: Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a
popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions.
AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In
this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4).

Results: Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to
multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output
(I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on
two multiprocessor computers.

Conclusions: Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor
systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall
screening time. Multithreading of AutoDock’s Lamarkian Genetic Algorithm with OpenMP increases the speed of
execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the
execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular
docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP)
parallelization to best fit both workloads and computational resources.

Background
Virtual screening, the use of computers to predict the
binding of libraries of small molecules to known target
structures, is an increasingly important component of
the drug discovery process [1,2]. Although high-
throughput biochemical screening is still the predomi-
nant technique for lead compound discovery, the suc-
cess of in silico screening in identifying drug leads has
led to the growing use of virtual screening as a comple-
ment to traditional empirical methods [3,4]. There are a
large number of software packages for conducting the
molecular docking simulations used in virtual screening,
with the open-source packages AutoDock and DOCK,
and the commercial packages GOLD, FlexX and ICM,
among the most popular [5]. Of those five packages the
most widely cited is AutoDock, which has been success-
fully used in a number of virtual screens and in the
development of the HIV integrase inhibitor raltegravir

[5-7]. This work is focused on AutoDock’s most recent
major version, AutoDock 4.2 [8].
In its current iteration, AutoDock 4.2’s (AD4) default

search function is a Lamarkian Genetic Algorithm
(LGA), a hybrid genetic algorithm with local optimiza-
tion that uses a parameterized free-energy scoring func-
tion to estimate binding energy [8,9]. To perform a
ligand-receptor docking experiment, the software
accepts as inputs ligand and macromolecule coordinates,
and then utilizes the LGA to generate ligand positions
and minimize binding energies using precalculated pair-
wise potential grid maps [10]. Each docking is comprised
of multiple independent executions of the LGA, limited
to a user specified number of energy evaluations (ga_e-
vals) or generations (ga_num_generations). The indivi-
dual LGA executions (ga_runs) are clustered and ranked
to generate the final docking result.
While AD4 has been widely used for virtual screening,

one limitation to its usefulness is its docking speed
[11,12]. A potential way to increase AD4 performance is
to parallelize aspects of its execution. Trends in proces-
sor architecture (multicore and multithreaded), and the
increasing importance of highly parallel hardware such

* Correspondence: cpsosa@us.ibm.com
† Contributed equally
2IBM, Rochester, MN, USA
Full list of author information is available at the end of the article

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

© 2011 Norgan et al; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:cpsosa@us.ibm.com
http://creativecommons.org/licenses/by/2.0

as graphics cards in scientific computation, underscore
the importance of optimizing applications for parallel
workloads. AD4 is a serial application not originally
designed for computational clusters or to take advantage
of parallel processing. There have been several previous
efforts to parallelize aspects of AD4 and enable its use
on high performance clusters, including: DOVIS and
DOVIS 2.0 (Linux/UNIX clusters), Dockres (Linux/
UNIX clusters), VSDocker (Windows clusters), and
recently Autodock4.lga.MPI (an MPI implementation of
Autodock4) [13-17]. In general, these programs either
encapsulate AutoDock in code wrappers or supply
scripts that automate aspects of the preparation, distri-
bution, execution and load balancing of AutoDock on
clusters. DOVIS 2.0 uses multithreading or SSH for
cluster execution, while VSDocker utilizes MPICH2 or
MSMPI for cluster communication [14,16]. Dockres
runs in conjunction with several different cluster queu-
ing systems, as does DOVIS 2.0 [15,16]. One challenge
in parallelizing AutoDock for a cluster environment is
that the program can generate significant network I/O
during the loading of grid maps at the beginning of
each docking, and when writing log files as dockings fin-
ish. Though log file writing can not easily be avoided,
reuse of grid maps is a possibility as the majority of grid
maps will be the same in each docking. One potential
solution, if sufficient RAM is available, is to keep the
grid maps in memory. This approach was used in both
DOVIS and Autodock4.lga.MPI (with maps repackaged
into an efficient binary format), with significant
decreases in I/O observed when grid maps are loaded
only once for each node [13,17].
In addition to optimizing AutoDock’s execution on

clusters, several previous efforts parallelized individual
dockings. In a standard docking, the most time intensive
task is the repeated execution of AutoDock’s LGA,
which is run tens or hundreds of times with identical
structure files, grid maps and parameters. The LGA was
the focus of parallelization efforts by Thormann and
Pons, who parallelized the LGA of AutoDock 3.0 using
OpenMP, and Khodade et al., who parallelized Auto-
Dock 3.0 and a beta version of AutoDock 4.0 using MPI
[18,19]. These approaches both resulted in a significant
increase in AD4 execution speed, with Thormann and
Pons reporting an approximately 95% × N(where N = 8)
speedup, and Khodade et al. observing near linear speed
increases on a 96-core POWER5 system [18,19].
Extending on these previous approaches, we had three

goals for parallelization of AD4: 1) enable parallel execu-
tion of AD4 across multiple HPC architectures, 2)
reduce I/O, and 3) parallelize the execution of individual
docking jobs. Accordingly, we parallelized AD4 at multi-
ple levels by: 1) utilizing MPI to distribute AD4 docking
jobs across a system, 2) developing a grid map reuse

scheme (conceptually similar to that implemented in
DOVIS) to reduce I/O, and 3) implementing OpenMP
parallelization of the LGA to achieve node-level paralle-
lization. This standards-based parallelization scheme is
significant in that it results in a highly portable parallel
implementation of AD4 with user customizability in the
balance between system-level and node-level parallel
execution.

Implementation
AutoDock 4.2 (AD4) was parallelized at multiple levels
using the MPICH2 implementation of the MPI standard
and OpenMP application programming interface, result-
ing in the parallel code mpAutoDock 4.2 (mpAD4). The
implementation of MPI and OpenMP in mpAD4 is
standards compliant and portable to any architecture
with a suitable compiler. MPI was used to parallelize the
main() function of AD4 to facilitate virtual screening on
MPI-enabled clusters, while OpenMP was used to
implement multi-threading of the AD4 LGA. Scaling of
the mpAD4 code in multithreaded and serial operation
was evaluated using an IBM BlueGene/P system and a
32-core IBM POWER7 server.

MPI Parallelization
To facilitate system-level parallelization, the mpAD4
main() function was rewritten as a function call from
the MPI driver. In this context, mpAD4 is executed
within a master-slave scheme in which node-0 is the
master node and all other nodes are slave nodes. The
master node coordinates all docking activities by reading
a list of docking directories from an ASCII file and then
assigns individual dockings to specific slave nodes via
MPI_Send(). Once the docking assignment has been
received via MPI_Recv(), the slave nodes perform the
docking work by loading necessary files, calling the
mpAD4 main() function to dock the ligand that the
master node has assigned to it, and writing the docking
log file. To allow the user to monitor progress, the mas-
ter writes three log files to track submitted dockings
(MPI_Send() call from the master), successful dockings
(MPI Send() call from a slave with data indicating dock-
ing success received by the master via MPI_Recv()) and
failed dockings (MPI Send() call from a slave with data
indicating docking failure received by the master via
MPI_Recv()).

I/O Optimization
AD4 requires the precalculation of one electrostatic
map, one desolvation map, and individual atomic affinity
grid maps for each AD4 atom type found in the ligand
(s). The default AD4 behavior is to load all grid maps
required for a specific docking into memory from the
file system and to release that memory at the end of the

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 2 of 9

docking. Thus, when the next docking begins many of
the same grid maps are reloaded. In addition to the
time required to load the grid maps, this behavior gen-
erates significant I/O that is unnecessary given that dif-
ferent dockings utilize the same electrostatic and
desolvation maps, and often atomic affinity maps.
Therefore, a parameter has been added to the mpAD4
executable to control grid maps persistence from one
docking to another on the slave nodes. With mpAD4, as
the main() function begins execution on the slave the
default behavior is to load all grid maps required to
dock the first ligand into compute node memory. Any
remaining atomic affinity maps are loaded for subse-
quent dockings at the node only when required by a
ligand with a previously unused atom type. Once loaded,
a map persists in node memory until program termina-
tion (Figure 1). To accomplish this, the scope of the
multi-dimensional array holding the grid map data
changed from local (in the main() function) to global,
allowing the grid map data to persist from docking to
docking on a slave node. In addition, the code that man-
ages and references this grid map array was modified to

initially load only atomic affinity maps required for the
first docking, and then subsequently load appropriate
atomic affinity maps when required. This approach
minimizes startup I/O by loading the smallest possible
amount of initial data onto the compute nodes. The
user can specify grid map persistence at runtime using
the flags (reload_maps or reuse_maps). Except were
otherwise indicated, benchmarks were run with grid
map reuse (gm = reuse).

OpenMP Parallelization
The majority of an AD4 docking is spent within the
search and scoring routines, making them appealing tar-
gets for parallelization. AD4 includes several search
functions, including simulated annealing (SA), genetic
algorithm (GA), local search (LS) and a hybrid GA/LS
(LGA). The LGA was chosen for parallelization as it was
previously demonstrated to outperform either the SA or
GA alone, and the LS is useful primarily for minimizing
already docked structures [10,18]. To parallelize the
LGA with OpenMP, modifications to the input seed
value generation and docking output handling code

Figure 1 Workflow of mpAutoDock. mpAD4 uses an MPI-driver to distribute work to individual nodes. With grid map reuse enabled, the
precomputed grid maps, receptor and docking parameter files are loaded at the node level and reused for each additional docking. An
individual docking on each node can be parallelized by running multiple instances of Lamarkian Genetic Algorithm in parallel using OpenMP
threads.

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 3 of 9

were required. The AD4 random number generator
(RNG) utilizes a deterministic IGNLGI algorithm to
generate a time-based random number seed for each
LGA run. Thus, when OpenMP threads were created
simultaneously with an unmodified RNG, each thread
would receive an identical seed value. Therefore, the
mpAD4 RNG was changed to include thread ID in the
time-based seed passed to the RNG to generate unique
seeds for each thread. The other code change required
was related to how log information about each iteration
of the LGA is written to the docking log. In the AD4,
the LGA writes information to the docking log piece-
wise for each iteration. When the code was multi-
threaded, log information appeared scrambled as
different threads simultaneously wrote LGA outputs. To
resolve this issue in mpAD4, LGA outputs are buffered
and then written en bloc after thread completion,
thereby keeping the output of each ga_run contiguous
within the docking log.

Performance Profiling
In addition to the parallelization code, performance pro-
filing has been added to mpAD4. Profiling can be turned
on or off at compile time with a compiler directive.
When profiling is enabled, a .csv file is updated as each
docking finishes, so a user can monitor the progress of
individual docking jobs and be made aware of any perfor-
mance issues while the program is running. The profiling
records calculation and communication start/stop times
and durations from the moment the master sends the
MPI message to the slave to the moment the master
receives the return message from the slave with the dock-
ing status, and writes the values to a single comma delim-
ited entry in the profiling log. Profiling outputs may be of
interest to users of mpAD4 for characterizing perfor-
mance bottlenecks on their system and for future develo-
pers of mpAD4. When not otherwise indicated,
benchmarks were run with profiling enabled.

Blue Gene/P and POWER7 architectures
In this study two architectures were used to test mpAD4
performance, an IBM Blue Gene/P (BG/P) system and a
shared-memory 32-core POWER7 p755 server [20,21].
The BG/P system is composed of dense racks of IBM
PowerPC 450 processors running at 850 MHz with 4
cores and 4 GB RAM per compute node connected by a
high performance interconnect to a storage array run-
ning the General Parallel File System (GPFS). BG/P can
be configured in several different modes, including sym-
metric multi-processing (SMP) and virtual node (VN)
[21]. In SMP mode, each compute node executes a sin-
gle task with a maximum of four threads, with node
resources including memory and network bandwidth
shared by all processes. In VN mode, four single-

threaded tasks are run on each node, one task per core,
with each task having access to 1/4 of the total node
memory. Thus, in comparing VN and SMP mode, VN
mode will run four times the number of simultaneous
independent MPI tasks as SMP mode, but the same
number of total CPU cores will are utilized in each
mode. The SMP and VN modes were used to examine
differences in mpAD4 scaling and performance using
MPI with multithreading SMP(OMP = 4) or MPI alone
VN(OMP = 1). BG/P compute nodes do not have local
disk storage, and I/O requests to the storage array are
handled by dedicated I/O nodes that communicate with
the network file system. Compute nodes connect to I/O
nodes via a high-bandwidth “global collective network”
that moves process and application data to and from the
I/O nodes [21]. Each compute and I/O Node has three
bidirectional links to the global collective network at
850 MBps per link, for a total of 5.1 GBps bandwidth
per node. I/O nodes, in turn, are connected to the
external file filesystem by a 10 Gb ethernet link. A BG/P
system can be configured to run with a variable number
of I/O nodes to model I/O replete or I/O poor systems.
In this study we tested two configurations, I/O poor (1

I/O node per 512 CPU cores) and I/O replete (1 I/O
node per 64 CPU cores). When not otherwise indicated,
an I/O replete configuration was used. The p755 system
is a POWER7 3.3 GHz server with 32 cores and 128 GB
of RAM, running the AIX 6.1 operating system. Multi-
parallel AD4 was compiled for BG/P with the XL C++
thread-safe cross-compiler v9.0 (bgxlC_r) and for
POWER7 using the AIX XL C++ thread-safe v11.1
(xlC_r). For both POWER7 and BG/P, compiler optimi-
zation flag -O3 was used and the -qsmp = omp
OpenMP option was specified, unless otherwise indi-
cated. For POWER7 the -q64 flag was also used.

Ligand Libraries and Parameters
The receptor-ligand complex 1HPV (indivinavir and
HIV protease), and subsets of a diverse set of 34,841
compounds from the ZINC8 drug-like subset, were used
to evaluate mpAD4 performance [22]. For the 1HPV,
AutoDockTools (from MGLTools) was used to prepare
the receptor and ligand [23]. Polar hydrogen atoms were
added to the ligand and receptor .pdb files, and Gastei-
ger charges assigned. Indinavir libraries were then cre-
ated with 4,000 copies (4 k indinavir), 8,000 copies (8 k
indinavir), and 32,000 copies (32 k indinavir). The
ZINC8 library ligands were prepared using the python
scripts included in MGLTools package. To generate the
34,841 compound ZINC library (34 k ZINC), the 70%
diversity subset of the drug-like subset was downloaded
and compounds that failed any preparation step were
discarded. A 9,000 compound subset of this library (9 k
ZINC) was generated from the first 9,000 members of

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 4 of 9

the 34 k ZINC library. To generate grid maps, grid box
centers were defined as the center of the bound indina-
vir (1HPV), extending 60 grid points (0.375 Å per point)
on each side. Unless otherwise specified, LGA runs were
set at 20 (ga_runs), with population size (ga_popsize) of
150, energy evaluations (ga_num_evals) 250,000 and
maximum number of generations (ga_num_generations)
27,000. All other parameter values were default for
AutoDock 4.2. Except where indicated, the reuse_maps
(gm = reuse) option was used in all benchmarks.

Results and Discussion
To assess the performance characteristics of the hybrid
parallelization and grid map reuse code, the 32 k indina-
vir library was docked on a 2,048(8,192) node(core) Blue
Gene/P system with intermediate I/O settings (1 I/O
node per 128 cores). Figure 2a shows the relative docking
time in 4 different modes: VN(OMP = 1, gm = reload),
VN(OMP = 1, gm = reuse), SMP(OMP = 4, gm = reload)
and SMP(OMP = 4, gm = reuse). Grid map reuse
reduced single-threaded execution time by approximately
17.5% due to reductions in I/O (Figure 2a). Multi-
threaded execution in SMP mode further reduced dock-
ing time by 10%, for an overall improvement of 25% over
VN(OMP = 1, gm = reload) (Figure 2a). The improve-
ment in docking speed observed with multithreading was
due to system I/O bottlenecks experienced with single-
threaded execution, as in VN mode each compute node
CPU core receives an independent MPI task (8,192 in
this instance), while in SMP mode only physical compute
nodes (2,048 in this instance) receive a task, so that one
fourth as many tasks run concurrently.
We examined the impact of system I/O on docking

using I/O times recorded by the profiling code. The
major sources of I/O when running mpAD4 were the
loading of grid maps and the writing of log files, while
MPI communication was a negligible percentage of net-
work traffic. I/O saturation was most apparent at the
end of the initial wave of docking jobs when multiple
log files are simultaneously written to disk and grid
maps for the next docking jobs are loaded. In our test-
ing with the 32 k indinavir library, instituting grid map
reuse diminished VN mode average file loading time by
77%, while SMP mode (OMP = 4, gm = reuse) file load-
ing time was 1% that of VN mode (OMP = 1, gm =
reload) (Table 1). Similarly, average log file writing time
was reduced by 92% with grid map reuse, and over 99%
in SMP mode (Table 1). Though grid map reuse signifi-
cantly reduced I/O times in our tests, the impact on
overall docking times was variable.

I/O and Performance
To further examine the contribution of I/O to the per-
formance we observed, we docked an 8 k indinavir

library on 1,024(4,096) node(core) BG/P system config-
ured to be I/O poor (8 I/O nodes) or I/O replete (64 I/
O nodes). In the I/O poor setting, VN mode with grid
map reuse resulted in only a small increase in execution
speed over VN(OMP = 1, gm = reload), while SMP
mode (OMP = 4, gm = reuse) execution time was
decreased by 33% (Figure 2b). Such differences were lar-
gely unapparent in an I/O replete configuration, where
grid map reuse showed no benefit in overall docking
speed, and SMP-mode gains were only 3% (Figure 2b).
When I/O was sufficiently limited (e.g., 1,024(i8)), grid
map reuse had limited impact on overall performance,
likely because the I/O generated by the slave nodes

0.0

0.5

1.0

1.5

VN - Reload
VN - Reuse
SMP - Reload
SMP - Reuse

2048(i64)

R
el

at
iv

e
R

un
tim

e

1024(i8) 1024(i64)
0.0

0.5

1.0

1.5
VN - Reload
VN - Reuse
SMP - Reuse

R
el

at
iv

e
R

un
tim

e

A

B

Figure 2 Impact of grid map reuse, OpenMP multithreading,
and I/O on mpAD4 execution speed. (A) A 32,000 copy indinavir
library was docked with mpAD4 on a 2,048(8,192) node(core) BG/P
system in VN node mode (MPI + OpenMP with 1 OpenMP thread/
node, 4× virtual nodes) with either grid map reloading or reuse and
SMP mode (MPI + OpenMP with 4 OpenMP threads/node) with
grid map reloading or reuse. The system was configured with 64 I/
O nodes (1 I/O node per 128 cores). Runtimes were normalized to
the fastest case (SMP, gm = reuse). (B) An 8,000 copy indinavir
library was docked on a 1,024(4,096) node(core) BG/P system in VN
mode (gm = reload or gm = reuse) and SMP mode (gm = reuse)
configured with either 8 I/O nodes (I/O poor) or 64 I/O nodes (I/O
replete). Runtimes were normalized to the fastest case (SMP, gm =
reuse, I/O = 64).

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 5 of 9

writing log files was still sufficient to saturate the I/O
poor system. Similarly, grid map reuse did not greatly
improve performance in an I/O replete setting, as suffi-
cient I/O capacity was available for simultaneous grid
map loading and log file writing. Thus, grid map reuse
greatly reduces I/O activity and can significantly
improve docking performance in some settings, allowing
larger systems to be effectively used for a given I/O
capacity. Similarly, 4-way OpenMP multithreading
reduces I/O by 75% for a given system size and I/O
times by 90%, again allowing larger systems to be
employed than with MPI alone.

Hybrid Scalability
To test mpAD4 scalability, small molecule libraries
including a 34 k ZINC, 9 k ZINC and 4 k indinavir
were run on 512(2,048), 1,024(4,096), 2,048(8,192), and
4,096(16,384) node(core) BG/P systems. Figure 3a shows
the speedup observed with the 34 k ZINC library in
SMP and VN modes (gm = reuse). SMP mode scaling
was nearly linear at approximately 92% ideal speed on
the 16,384 core system. VN mode deviated to a greater
degree at 72% ideal on the 16,384 core system, a 22%
decrease from SMP-mode performance (Figure 3a).
Interestingly, this performance decrease was not due to
I/O differences, but instead reflected improved system
utilization efficiency in the multithreaded execution
mode. For both SMP and VN mode, deviations from
ideal occur on larger systems as a virtual screen comes
to the end and fewer ligands remain to be docked than
capacity of the system, resulting in portions of the sys-
tem remaining idle while the remaining active jobs fin-
ish. Multithreaded execution helps to alleviate this
inefficiency in two ways: 1) when using multithreading
there are fewer MPI nodes in the system and a virtual
screen proceeds closer to completion before nodes
become idle, and 2) individual dockings are executed
more quickly when multithreaded, reducing time spent
with idle nodes. For very large screening libraries, node

utilization efficiency differences at the end of screening
are unlikely to contribute to significant difference overall
docking time. However, the opposite is true as library
size shrinks in comparison to system size, as demon-
strated in the scaling of the 9 K ZINC library where
node utilization inefficiencies are apparent in both VN
and SMP mode, though SMP mode is less effected (Fig-
ure 3b).
In addition to multithreading, node utilization can be

improved by pre-ordering ligands to be docked by com-
plexity (descending number of torsional angles). For a
sorted 9 k indinavir library docked in VN mode on a
2,048 core system, sorting improved docking speed by
10%, though it was still 9% slower than SMP mode
(data not shown). In cases where the availably of CPUs
greatly exceeds the number of molecules to be screened,
multithreading is particularly useful for increasing the
usefully employable system size. For example, a 4 k
indinavir library in single-threaded execution (VN,
OMP = 1) is unable to take advantage of more than
4,000 cores (Figure 3c). In contrast, multithreading
(SMP, OMP = 4) allows up to 16,000 cores to be
employed, decreasing the docking time by over 70%
(Figure 3c and Figure 3d). For larger systems, combin-
ing OpenMP multithreading with MPI allows for more
efficient utilization of system resources at the end of
screens. For smaller screens, multithreading has a clear
advantages over serial execution when the number of
available cores exceeds the number of ligand-receptor
complexes to be docked.

OpenMP Scalability
To test the scalability of the OpenMP implementation, a
1HPV complex was docked with mpAD4 on POWER7
p755 32-core server. Docking parameters were modified
as follows: ga_runs = 128, ga_num_evals = 5,000,000.
Table 2 shows apparent speedups and percent of ideal
runtimes for a single docking of the 1HPV complex run
as serial mpAD4 code (compiled without OpenMP) or

Table 1 Impact of grid map reuse and OpenMP multithreading on I/O.

VN (gm = reload) VN (gm = reuse) SMP (gm = reuse)

FLD MAP LIG LOG FLD MAP LIG LOG FLD MAP LIG LOG

ave 2.5 25.9 90.0 150.5 0.3 5.1 21.2 12.0 0.0 0.6 0.3 0.3

rms 8.0 50.8 335.8 584.1 1.5 13.8 40.8 55.4 0.1 2.4 0.3 0.3

med 0.3 13.4 1.9 0.2 0.0 0.0 1.5 0.3 0.0 0.0 0.2 0.2

max 247.2 542.3 3567.5 3630.0 54.6 187.9 469.6 546.8 1.7 14.0 2.9 3.2

% 14.6 19.7 23.6 8.0 1.1 2.5 0.4 0.3

A 32,000 copy indinavir library was docked with mpAD4 on a 2,048(8,192) node(core) BG/P system in VN node mode (MPI + OpenMP with 1 OpenMP thread/
node, 4× virtual nodes) with either grid map reloading or reuse, and SMP mode (MPI + OpenMP with 4 OpenMP threads/node) with grid map reloading or reuse.
Statistics for total duration (in seconds) of .fld map load time (FLD), atomic affinity map load time (MAP), ligand load time (LIG), and docking log write time (LOG)
are shown for VN (gm = reload), VN (gm = reuse) and SMP (gm = reuse). Pairwise comparisons of average I/O times (seconds) between VN (gm = reload) and VN
(gm = reuse) or SMP (gm = reuse) were calculated, and are shown as percent of VN (gm = reload) times. I/O differences between SMP (gm = reload) and (gm =
reuse) were negligible, and are not shown.

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 6 of 9

utilizing from 1 to 32 OpenMP threads. On the
POWER7 system, single-threaded OpenMP incurred a
12% overhead versus serial code. Overhead increased
with thread number; with an apparent speedup of 1.5×
for 2 threads to 22.3× for 32 threads (Table 2). Our test-
ing on BG/P showed an overhead of approximately 10%
for either OMP = 1 or OMP = 4, with little or no addi-
tional cost for 4 threads over 1 (data not shown). Due
to the overhead incurred with OMP = 1 vs. serial, a

user intending to use mpAD4 only in single-threaded
applications may benefit from compiling mpAD4 with-
out OpenMP. We anticipate the specific OpenMP over-
head will vary with both system characteristics and
compiler options. Though here we have only demon-
strated multithreading up to 32 cores, the code is cur-
rently implemented to allow up to 128 simultaneous
threads, which we expect will allow further improve-
ments total in docking speed.

Figure 3 Scaling of MPI alone versus MPI with OpenMP multithreading. Virtual compound libraries were docked in VN and SMP modes on
BG/P systems of 512(2,048), 1,024(4,096), 2,048(8,192) and 4,096(16,384) nodes(cores). (A) A 34,841 compound ZINC library was docked on
variable BG/P systems sizes. Ideal speedup was calculated from the fastest 512 node result (SMP), and the relative speedup SMP and VN mode
results were plotted. (B) A 9,000 compound subset ZINC library was docked on variable BG/P systems sizes, and ideal speedup was calculated
from the fastest 512 node result (SMP). (C) A 4,000 copy indinavir library was docked on variable BG/P systems sizes, and an ideal speedup line
was calculated from the fastest 512 node result (SMP). (D) Relative execution times for the 4,000 copy indinavir library were calculated for SMP
and VN modes at each system size.

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 7 of 9

Output Comparison
The binding modes generated by single or multi-
threaded execution of mpAD4 were determined for a
set of 76 crystallographically determined ligand-protein
complexes using a BG/P system size of 512 cores in
SMP(OMP = 4) and VN(OMP = 1 or serial) modes
[24]. For each docked complex, pairwise RMSDs were
calculated for the overall lowest energy ligand and low-
est energy member of largest ligand cluster. When the
lowest energy ligand was not also a member of the lar-
gest ligand cluster, the lesser pairwise RMSD value was
used. The RMSDs from VN(serial) to VN(OMP = 1) or
SMP(OMP = 4), and between VN(OMP = 1) and SMP
(OMP = 4) were calculated (Table 3). The mean RMSD
values in all three comparisons were less than 1.0, with
median values less than 0.2 (Table 3). We therefore con-
sider the outputs to be substantially similar.

Performance Expectations
The implementation of MPI and OpenMP in mpAD4 is
portable to systems with a suitable compiler and the
required libraries. In the case of distributed-memory

architectures using either Intel or AMD ×86 micropro-
cessors, we expect similar trends in terms of perfor-
mance. Environmental factors that may have a large
impact on performance are network bandwidth, com-
pute node microprocessor speed, memory and the avail-
ability of node local disk storage (potentially
ameliorating I/O issues associated with writing log files).
Multiparallel AD4 generates little MPI communication,
and we therefore anticipate that it will scale well even
on clusters with limited I/O bandwidth if they possess
node local disk storage and sufficient RAM to store grid
maps in memory. Similarly, we would predict that the
OpenMP multithreading will generate performance
gains on any modern multicore microprocessor, though
overhead and absolute scalability may vary with compi-
lers, compiler options and microprocessor architecture.

Conclusions
We have parallelized AutoDock 4.2 using MPI and
OpenMP to create mpAD4, a standards compliant and
portable parallel implementation of AutoDock, with user
customizability in the balance between serial and paral-
lel execution, a capability to reuse grid maps, and exten-
sive profiling features for performance monitoring. In
our tests, grid maps reuse drastically reduced system I/
O, allowing for nearly linear scaling of mpAD4 on sys-
tem sizes of up to 16,384 CPU cores. OpenMP multi-
threading scaled up to 32 threads, resulting in a
maximum speedup of 22× over single-threaded execu-
tion. We propose three potential use cases for mpAD4:
1) combining MPI and OpenMP parallelization on large
systems to balance system-level and node-level paralleli-
zation to manage I/O and achieve the best possible
throughput, 2) enabling larger systems to be used for
screening small libraries, and to improve system utiliza-
tion at all library sizes, 3) facilitating the rapid docking
of one or a small number of ligand-recepor complexes
on shared memory systems.

Availability and Requirements
Project name: mpAutoDock 4.2
Project home page: http://autodock.scripps.edu/down-

loads/multilevel-parallel-autodock4.2
Operating system(s): Platform independent
Programming language: C++
Other requirements: MPI (MPICH2), OpenMP
License: GNU GPL v3

Acknowledgements
We thank Cindy Mestad and Steven Westerbeck at IBM Rochester, David
Singer and Fred Mintzer at IBM Watson and Sharon Selzo at IBM
Poughkeepsie for technical assistance, and IBM corporation for providing
access to the Blue Gene/P and POWER7 systems used in this study. We
acknowledge the Minnesota Supercomputing Institute for providing
technical support and computational resources for this study. We are

Table 2 OpenMP Multithreading Speedup

Threads Speedup % Ideal

serial 1.0× 100

1 0.9× 88

2 1.5× 75

4 3.0× 74

8 5.8× 72

16 11.3× 71

32 22.3× 70

The speedup using OpenMP threads was calculated for 1 to 32 threads on a
3.3 GHz POWER7 p755 32-core server. A reference speed was calculated using
mpAD4 compiled without OpenMP (serial). The numbers are scaled to a single
serial docking run with the default benchmark parameters with modifications:
ga_runs = 128, ga_num_evals = 5,000,000.

Table 3 Parallel and Serial Docking of 76 Receptor-
Ligand complexes

RMSD Comparisons

s vs 1 s vs 4 1 vs 4

ave 0.414 0.439 0.366

rms 0.525 0.667 0.510

med 0.168 0.170 0.139

min 0.005 0.008 0.003

max 2.526 4.332 3.255

76 Receptor-Ligand complexes were docked using a 128 node (512 core) BG/
P system using the benchmark parameters with modifications: ga_runs = 70,
ga_num_evals = 5,000,000. Pairwise RMSD values between VN (serial) and VN
(OMP = 1), VN (serial) and SMP (OMP = 4), and VN (OMP = 1) and SMP (OMP
= 4) for both the lowest energy docked ligands and the lowest energy
member of the largest ligand cluster were calculated. When the pairwise
RMSD between lowest energy-lowest energy and largest cluster-largest cluster
were not equal, the lesser RMSD value was used (approximately 20% of
comparisons). Statistics for the three comparisons were calculated.

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 8 of 9

http://autodock.scripps.edu/downloads/multilevel-parallel-autodock4.2
http://autodock.scripps.edu/downloads/multilevel-parallel-autodock4.2

grateful to Michael Pique for thoughtful discussions and reviewing this
manuscript. This work was supported by an American Heart Association
Predoctoral Fellowship 09PRE2220147 (APN), NIH Predoctoral Fellowship
F30DA26762 (APN), and University of Minnesota-Rochester, Bioinformatics
and Computational Biology (BICB) Program Seed Grant (DJK, CPS, JPK). The
distribution of the mpAD4 software is supported by NIH Grant R01
GM069832 (A. Olson, The Scripps Research Institute).

Author details
1Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester,
MN, USA. 2IBM, Rochester, MN, USA. 3Division of Biomedical Statistics &
Informatics, Mayo Clinic, Rochester, MN, USA. 4Biomedical Informatics and
Computational Biology Program, University of Minnesota, Rochester, MN,
USA.

Authors’ contributions
APN participated in the design of this work, performed validation and
benchmarking of the parallel code, and wrote this manuscript. PKC
parallelized the AutoDock code, and assisted in drafting this manuscript. JPK
participated in the design of this work, and in revising this manuscript for
publication. DJK assisted in the analysis of the data, and in revising this
manuscript for publication. CPS conceived this study, participated in the
design of this work, coordinated its execution, and helped to revise this
manuscript for publication. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 18 January 2011 Accepted: 28 April 2011
Published: 28 April 2011

References
1. Shoichet BK: Virtual screening of chemical libraries. Nature 2004,

432(7019):862-5.
2. Köppen H: Virtual screening - what does it give us? Curr Opin Drug Discov

Devel 2009, 12(3):397-407.
3. McInnes C: Virtual screening strategies in drug discovery. Curr Opin Chem

Biol 2007, 11(5):494-502.
4. Kolb P, Ferreira RS, Irwin JJ, Shoichet BK: Docking and chemoinformatic

screens for new ligands and targets. Curr Opin Biotechnol 2009,
20(4):429-36.

5. Sousa SF, Fernandes PA, Ramos MJ: Protein-ligand docking: current status
and future challenges. Proteins 2006, 65:15-26.

6. Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, McCammon JA:
Discovery of a novel binding trench in HIV integrase. J Med Chem 2004,
47(8):1879-81.

7. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ: Virtual
screening with AutoDock: theory and practice. Expert Opin Drug Dis 2010,
5(6):597-607.

8. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS,
Olson AJ: AutoDock4 and AutoDockTools4: Automated docking with
selective receptor flexibility. Journal of Computational Chemistry 2009,
30(16):2785-91.

9. Goodsell DS, Morris GM, Olson AJ: Automated docking of flexible ligands:
applications of AutoDock. J Mol Recognit 1996, 9:1-5.

10. Morris G, Goodsell D, Halliday R, Huey R, Hart W, Belew R, Olson A:
Automated docking using a Lamarckian genetic algorithm and an
empirical binding free energy function. Journal of Computational
Chemistry 1998, 19(14):1639-1662.

11. Park H, Lee J, Lee S: Critical assessment of the automated AutoDock as a
new docking tool for virtual screening. Proteins 2006, 65(3):549-54.

12. Chang MW, Ayeni C, Breuer S, Torbett BE: Virtual screening for HIV
protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS ONE
2010, 5(8):e11955.

13. Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J: DOVIS: an
implementation for high-throughput virtual screening using AutoDock.
BMC Bioinformatics 2008, 9:126.

14. Prakhov ND, Chernorudskiy AL, Gainullin MR: VSDocker: a tool for parallel
high-throughput virtual screening using AutoDock on Windows-based
computer clusters. Bioinformatics 2010, 26(10):1374-5.

15. Mezei M, Zhou MM: Dockres: a computer program that analyzes the
output of virtual screening of small molecules. Source Code Biol Med
2010, 5:2.

16. Jiang X, Kumar K, Hu X, Wallqvist A, Reifman J: DOVIS 2.0: an efficient and
easy to use parallel virtual screening tool based on AutoDock 4.0. Chem
Cent J 2008, 2:18.

17. Collignon B, Schulz R, Smith JC, Baudry J: Task-parallel message passing
interface implementation of Autodock4 for docking of very large
databases of compounds using high-performance super-computers.
Journal of Computational Chemistry 2011, 32(6):1202-9.

18. Thormann M, Pons M: Massive docking of flexible ligands using
environmental niches in parallelized genetic algorithms. Journal of
Computational Chemistry 2001, 22(16):1971-1982.

19. Khodade P, Prabhu R, Chandra N, Raha S, Govindarajan R: Parallel
implementation of AutoDock. Journal of Applied Crystallography 2007,
40(3):598-599.

20. Vetter S, Anselmi G, Blanchard B, Cho Y, Hales C, Quezada M: IBM Power
750 and 755 Technical Overview and Introduction. RedBook REDP-4638-00
2010.

21. Sosa CP: IBM System Blue Gene Solution: Blue Gene/P Application
Development. RedBook SG24-7287 2008.

22. Irwin JJ, Shoichet BK: ZINC-a free database of commercially available
compounds for virtual screening. Journal of chemical information and
modeling 2005, 45:177-82.

23. Sanner M: Python: a programming language for software integration and
development. J Mol Graphics Mod 1999, 17:57-61.

24. Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N,
Rizzo RC: Development and validation of a modular, extensible docking
program: DOCK 5. J Comput Aided Mol Des 2006, 20(10-11):601-19.

doi:10.1186/1758-2946-3-12
Cite this article as: Norgan et al.: Multilevel Parallelization of AutoDock
4.2. Journal of Cheminformatics 2011 3:12.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Norgan et al. Journal of Cheminformatics 2011, 3:12
http://www.jcheminf.com/content/3/1/12

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/15602552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19396741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17936059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19733475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19733475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15055986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19399780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19399780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8723313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8723313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16988956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16988956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20694138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20694138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18304355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18304355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20378556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20378556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20378556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20205801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20205801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18778471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18778471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21387347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21387347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21387347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15667143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15667143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17149653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17149653?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	MPI Parallelization
	I/O Optimization
	OpenMP Parallelization
	Performance Profiling
	Blue Gene/P and POWER7 architectures
	Ligand Libraries and Parameters

	Results and Discussion
	I/O and Performance
	Hybrid Scalability
	OpenMP Scalability
	Output Comparison
	Performance Expectations

	Conclusions
	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

