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Abstract

Background: The computational processing and analysis of small molecules is at heart of cheminformatics and
structural bioinformatics and their application in e.g. metabolomics or drug discovery. Pipelining or workflow tools
allow for the Lego™-like, graphical assembly of I/O modules and algorithms into a complex workflow which can
be easily deployed, modified and tested without the hassle of implementing it into a monolithic application. The
CDK-Taverna project aims at building a free open-source cheminformatics pipelining solution through combination
of different open-source projects such as Taverna, the Chemistry Development Kit (CDK) or the Waikato
Environment for Knowledge Analysis (WEKA). A first integrated version 1.0 of CDK-Taverna was recently released to
the public.

Results: The CDK-Taverna project was migrated to the most up-to-date versions of its foundational software
libraries with a complete re-engineering of its worker’s architecture (version 2.0). 64-bit computing and multi-core
usage by paralleled threads are now supported to allow for fast in-memory processing and analysis of large sets of
molecules. Earlier deficiencies like workarounds for iterative data reading are removed. The combinatorial chemistry
related reaction enumeration features are considerably enhanced. Additional functionality for calculating a natural
product likeness score for small molecules is implemented to identify possible drug candidates. Finally the data
analysis capabilities are extended with new workers that provide access to the open-source WEKA library for
clustering and machine learning as well as training and test set partitioning. The new features are outlined with
usage scenarios.

Conclusions: CDK-Taverna 2.0 as an open-source cheminformatics workflow solution matured to become a freely
available and increasingly powerful tool for the biosciences. The combination of the new CDK-Taverna worker
family with the already available workflows developed by a lively Taverna community and published on
myexperiment.org enables molecular scientists to quickly calculate, process and analyse molecular data as typically
found in e.g. today’s systems biology scenarios.

Background
Current problems in the biosciences typically involve
several domains of research. They require a scientist to
work with different and diverse sets of data. The recon-
struction of a metabolic network from sequencing data,
for example, employs many of the data types found
along the axis of the central dogma, including recon-
struction of genome sequences, gene prediction, deter-
mination of encoded protein families, and from there to

the substrates of enzymes, which then form the meta-
bolic network. In order to work with such a processing
pipeline, a scientist has to copy/paste and often trans-
form the data between several bioinformatics web por-
tals by hand. The manual approach involves repetitive
tasks and cannot be considered effective or scalable.
Especially the processing and analysis of small mole-

cules comprises tasks like filtering, transformation, cura-
tion or migration of chemical data, information retrieval
with substructures, reactions, or pharmacophores as
well as the analysis of molecular data with statistics,
clustering or machine learning to support chemical
diversity requirements or to generate quantitative
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structure activity/property relationships (QSAR/QSPR
models). These processing and analysis procedures itself
are of increasing importance for research areas like
metabolomics or drug discovery. The power and flexibil-
ity of the corresponding computational tools become
essential success factors for the whole research process.
The workflow paradigm addresses the above issues

with the supply of sets of elementary workers (activities)
that can be flexibly assembled in a graphical manner to
allow complex procedures to be performed in an effec-
tive manner - without the need of specific code develop-
ment or software programming skills. Scientific
workflows allow the combination of a wide spectrum of
algorithms and resources in a single workspace [1-3].
Earlier problems with iterations over large data sets [4]
are completely resolved in version 2.0 due to new imple-
mentations in Taverna. Taverna 2 allows control struc-
tures such as “while” loops or “if-then-else” constructs.
Termination criteria for loops may now be evaluated by
listening to a state port [5]. In addition the user inter-
face of the Taverna 2 workbench has clearly improved:
The design and manipulation of workflows in a graphi-
cal workflow editor is now supported. Features like
copy/paste and undo/redo simplify workflow creation
and maintenance [6].
The CDK-Taverna project aims at building a free

open-source cheminformatics pipelining solution
through combination of different open-source projects
such as Taverna [7], the Chemistry Development Kit
(CDK) [8,9], or the Waikato Environment for Knowl-
edge Analysis (WEKA) [10]. A first integrated version
1.0 of CDK-Taverna was recently released to the public
[4]. To extend usability and power of CDK-Taverna for
different molecular research purposes the development
of version 2.0 was motivated.

Implementation
The CDK-Taverna 2.0 plug-in makes use of the
Taverna plug-in manager for its installation. The man-
ager fetches all necessary information about the plug-
in from a XML file which is located at http://www.ts-
concepts.de/cdk-taverna2/plugin/. The information
provided therein contains the name of the plug-in, its
version, the repository location and the required
Taverna version. Upon submitting the URL to the
plug-in manager it downloads all necessary dependen-
cies automatically from the web. After a subsequent
restart the plug-in is enabled and the workers are visi-
ble in the services. The plug-in uses Taverna version
2.2.1 [6], CDK version 1.3.8 [11] and WEKA version
3.6.4 [12]. Like its predecessor it uses the Maven 2
build system [13] as well as the Taverna workbench
for automated dependency management.

CDK-Taverna 2.0 worker implementation
The CDK-Taverna 2.0 plug-in is designed to be easily
extendible: The implementation allows to create new
workers by simply inheriting from the single abstract
class org.openscience.cdk.applications.
taverna.AbstractCDKActivity (which is the ana-
logue of the CDKLocalWorker interface of CDK-
Taverna version 1.0). The class is located in the cdk-
taverna-2-activity module. It provides all neces-
sary data for the underlying worker registration mechan-
ism which frees the software developer from handling
these tasks manually. The methods which need to be
overwritten in order to implement a worker are:

• public void addInputPorts(), public
void addOutputPorts(): Specify the ports for
passing data between workers.
• public String getActivityName(), pub-
lic String getFolderName(): Return name
and folder of a worker.
• public void work(): Entry point for the work-
er’s central algorithm that performs its core
function.
• public String getDescription(): Provides
descriptive text that explains a worker’s function.
• public HashMap <String, Object> getAd-
ditionalProperties(): Specifies additional
properties like file extensions, the number of concur-
rent threads to use, etc.

Finally a new worker has to be registered to be avail-
able in the Taverna workbench. For this purpose
Taverna offers the class net.sf.taverna.t2.spi.
SPIRegistry.SPIRegistry to register Service Pro-
vider Interfaces (SPI). It is necessary to add the new
worker’s full name including its package declaration to
the file org.openscience.cdk.applications.
taverna.AbstractCDKActivity which contains
the names and packages of all available workers. This
file is located at cdk-taverna-2-activity-ui/src/main/
resources/META-INF/services.
Besides the basic implementation it is possible to

define a configuration panel for a worker which allows
the specification of parameters. A configuration panel
has to inherit from the abstract class org.open-
science.cdk.applications.taverna.Activi-
tyConfigurationPanel. The GUI element itself has
to be defined in the constructor of the class and may
contain any Java Swing element. The following methods
are the backbone of a configuration panel:

• public boolean checkValues(): Validates
all GUI values.
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• public boolean isConfigurationChanged
(): After the validity check this method is used to
compare the current worker settings with the GUI
settings to detect changes.
• public void noteConfiguration(): The
properties of the worker are saved in a bean struc-
ture. The changes of the configuration bean object
are updated by this method.
• public void refreshConfiguration():
Updates the GUI values itself.
• public CDKActivityConfigurationBean
getConfiguration(): Access to the configura-
tion bean.

The configuration panel has to be registered in the
CDKConfigurationPanelFactory class of the
org.openscience.cdk.applications.
taverna.ui.view package. More details on how to
write workers and their configuration panels are pro-
vided at the project’s wiki page http://cdk-taverna-2.ts-
concepts.de/wiki/index.php?title=Main_Page.

Requirements
CDK-Taverna 2.0 supports 64-bit computing by use
with a Java 64-bit virtual machine. The CDK-Taverna
2.0 plug-in is written in Java and requires Java 6 or
higher. The latest Java version is available at http://
www.java.com/de/download/. The CDK-Taverna 2.0
plug-in is developed and tested on Microsoft Windows
7 as well as Linux and Mac OS/X (32 and 64-bit).

Results and Discussion
The CDK-Taverna 2.0 plug-in provides 192 workers for
input and output (I/O) of various chemical file and line
notation formats, substructure filtering, aromaticity
detection, atom typing, reaction enumeration, molecular
descriptor calculation and data analysis. Parallel com-
puting with multi-core processors by use of multiple
concurrent threads is flexibly implemented for many
workers where operations scale nearly linear with the
number of cores. Especially the machine learning and
the molecular descriptor calculation workers benefit
from parallel computation. An overview is given in

Tables 1 and 2. Many workers are described by example
workflows available at http://cdk-taverna-2.ts-concepts.
de/wiki/index.php?title=Main_Page. Additionally, the
workflows can be found at http://www.myexperiment.
org/.
CDK-Taverna 1.0 was confined to 32-bit Java virtual

machine and thus was restricted to in-memory proces-
sing of data volumes of at most 2 gigabyte in practice.
Version 2.0 also supports 64-bit computing by use of a
64-bit Java virtual machine so that the processable data
volume is only limited by hardware constraints (mem-
ory, speed): 64-bit in-memory workflows were success-
fully performed with data sets of about 1 million small
molecules. Since the memory restrictions of version 1.0
were a main reason to use Pgchem::tigress as a molecu-
lar database backend [4] the corresponding version 1.0
workers were not migrated to the current version 2.0
yet.

Advanced reaction enumeration
CDK-Taverna 1.0 provided basic functions for combina-
torial chemistry related reaction enumeration: They sup-
ported the use of two reactants, a single product and
one generic group per reactant. The new enumeration
options used by CDK-Taverna 2.0 offer major enhance-
ments like multi-match detection, any number of reac-
tants, products or generic groups as well as variable R-
groups, ring sizes and atom definitions. The extended
functionality was developed and applied in industrial
cooperation projects. Advanced reaction enumeration
features are illustrated in Figure 1. The Variable RGroup
feature allows the definition of chemical groups which
can be flexibly attached to predefined atoms with syntax
[A:B,B,B...-RC] where A is a freely selectable identifier, B
are numbers from an Atom-to-Atom-Mapping defining
the atoms to which the generic group can be attached
and C is the chemical group identifier which can be any
number. The Atom Alias feature offers the possibility to
define a wild card for preconfigured elements. The syn-
tax is [A:B,B,B...] where A is a freely selectable identifier
and B are the string representations of the possible ele-
ments. The Expandable Atom feature enables the defini-
tion of freely sizeable rings or aliphatic chains with

Table 1 CDK-Taverna 2.0 workers

Function # workers Examples

File I/O 18 SDFReader, SmilesReader

Iterative File I/O 8 IterativeSDFileReader, LoopSDFileReaderActivity

String Converter 10 CMLStringToStructureConverter

Molecular descriptor calculation 99 AtomCount, LargestChain, WienerIndex

Machine learning 30 kMeans, Perceptron, SVM

Miscellaneous 27 JChemPaint, ReactionEnumerator

Overview on CDK-Taverna 2.0 workers categorized by their function.
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syntax [A:[]B] where A is a freely selectable identifier
and B is the maximum number of atoms to insert. Fig-
ure 2 depicts a workflow for reaction enumeration. The
capabilities of the advanced reaction enumerator imple-
mentation are summarized in Figure 3 which also
demonstrates multi-match detection, i.e. multiple reac-
tion centers within one molecule.

Evaluation of small molecules for natural product likeness
In recent years, computer assisted drug design studies
use natural product (NP) likeness as a criterion to
screen compound libraries for potential drug candidates
[14,15]. The reason to estimate NP likeness during can-
didate screening is to facilitate the selection of those
compounds that mimic structural features that are natu-
rally evolved to best interact with biological targets.
Version 2.0 of CDK-Taverna provides two groups of

workers that re-implement the work of Ertl et al to
score small molecules for NP-likeness [14]. The workers
in the Molecule Curation folder are dedicated to the
pre-processing of chemical structures: The Molecule
Connectivity Checker worker removes counter ions and

disconnects fragments, the Remove Sugar Groups
worker removes all sugar rings and linear sugars from
structures and the Curate Strange Elements worker dis-
cards structures that are composed of elements other
than non-metals. This set of curation workers finally
creates scaffolds olds and sub structures. From these
structures atom signatures [16] are generated using the
Generate Atom Signatures worker and exploited as
structural descriptors in charting the compound’s region
in the chemical structure space. The combined workflow
of curation and atom signature generation workers is
illustrated in Figure 4. Using this workflow, atom signa-
tures can be generated for user-defined training (Natural
products and synthetics) and testing (compound
libraries) structural dataset. Workers of the Signature
Scoring folder use atom signatures generated from com-
pound libraries and rank them for NP-likeness based on
the statistics suggested by Ertl et al [14]. This scoring
workflow is illustrated in Figure 5. The whole package
of workflows is available for free download at http://
www.myexperiment.org/users/10069/packs. The curation
and signature scoring workers may not only be applied

Table 2 Overview on multi-threading CDK-Taverna 2

Function Worker

Calculation of molecular descriptors QSAR Descriptor Threaded

Significance of input components evaluation using a genetic algorithm GA Attribute Selection

Significance of input components evaluation using a ‘Leave-One-Out’ strategy Leave-One-Out Attribute Selection

Partitioning datasets into training and test sets Split Dataset Into Train-/Testset

Construction of clustering models Weka Clustering

Construction of regression models Weka Regression

Construction of classification models Weka Classification

Overview on CDK-Taverna 2.0 workers which are capable of using multiple threads for their calculations.

Figure 1 Advanced reaction enumeration features: (left) The Variable RGroup feature allows the definition of chemical groups which
can be flexibly attached to predefined atoms. (middle) The Atom Alias feature offers the possibility to define a wild card for preconfigured
elements. (right) The Expandable Atom feature enables the definition of freely sizeable rings or aliphatic chains.
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Figure 2 Workflow for reaction enumeration: After loading a generic reaction (IN REACTION, from a MDL RXN file) and two educt
lists (IN REACTANTS 1, IN REACTANTS 2, from MDL SD files) the Reaction Enumeratorworker performs the enumeration with
the results stored as MDL RXN files. An additional PDF file is created which shows all enumerated reactions in a tabular manner. The results
are stored in the output folder determined by the OUT input port.

Figure 3 Capabilities of the advanced reaction enumerator: The sketched generic reaction contains three different generic groups
labelled X, Y and Z. Group × defines a Variable RGroup which can freely attach to all atoms of the ring. The Atom Alias group labelled Y is a
wild card for the elements carbon, oxygen and nitrogen. The Expandable Atom group Z defines a variable ring size: The ring can be expanded
by up to two additional carbon atoms. The enumerated products with the small letters a and b originate from multi-match detection.
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in evaluating the NP-likeness of compound libraries but
also in evaluating the metabolite-likeness of theoretical
metabolites for predicting whole metabolomes. The lat-
ter application was the original purpose for the worker
development and corresponding results will be pre-
sented in a subsequent publication.

Clustering and machine learning applications
Unsupervised clustering tries to partition input data into a
number of groups smaller than the number of data whereas
supervised machine learning tries to construct model func-
tions that map the input data onto their corresponding out-
put data. If the output codes continuous quantities a
regression task is defined. Alternatively the output may

code classes so that a classification task is addressed. Mole-
cular data sets for clustering consist of input vectors where
each vector represents a molecular entity and consists of a
set of molecular descriptors itself. Molecular data sets for
machine learning add to each input vector a corresponding
output vector with features to be learned - thus they consist
of I/O pairs of input and output vectors.
The clustering and machine learning workers of CDK-

Taverna 2.0 allow the use of distinct WEKA functional-
ity. As far as clustering is concerned the ART-2a worker
of version 1.0 is supplemented with five additional
WEKA-based workers which offer

• Expectation Maximisation (EM): Expecta-
tion maximisation algorithm for iterative maximum
likelihood estimation of cluster memberships [17].
• Farthest First: Heuristic 2-approximation
algorithm for solving the k-center problem [18].
• Hierarchical Clusterer: Hierarchical clus-
tering methods: The distance function and the link-
age type are freely selectable [19].
• Simple KMeans: Simple k-means clustering algo-
rithm [20].
• XMeans: Extended k-means clustering with an effi-
cient estimation of the number of clusters [21].

Figure 4 Molecule curation and atom signature descriptor
generation workflow: The Iterative SDfile Readertakes
the Structure-Data File (SDF) of compounds (Input SDF) as
input and pass the structures down the workflow for molecule
curation and atom signature generation. The number of
structures to be read, and pumped down the workflow can be
configured (Iterations). As soon as the molecule is read, the
Tag Molecules with UUID worker tags the molecule with
Universal Unique IDentifier (UUID) to keep track of it during the
process. The Molecule connectivity checker worker
checks the connectedness of the structure and removes counter
ions and disconnected fragments. The Remove sugar groups
worker removes linear and ring sugars from the structures. The
Curate Strange Elements worker removes structure
containing elements other than non-metals. Finally, the Generate
Atom Signatures worker generates atom signature for each
atom in a curated compound, tagged with the respective UUID of
the compound. The generated atom signatures are written out to a
text file (signatures file) using the Text File Writer
worker. The SDF of compound structures can be written out to a
file, after tagging with UUID (Tagged SDFile), and also after any
curation step (Curated SDF) using the SDFile Writer worker.
This workflow can be freely downloaded at http://www.
myexperiment.org/workflows/2120.html.

Figure 5 NP-likeness scoring workflow: This workflow take
inputs of atom signatures file generated from the user defined
natural products library (NP file) as well as synthetics (SM
file) and compound libraries (Query file) and score the
compound libraries (Query file) for NP-likeness. The higher
the score the more is the NP-likeness of a molecule. The Query
fragments scorer worker generates score for each compound
in the Query file tagged with the corresponding UUID of the
compound. Pairs of compound’s UUID and score are written out to
a text file (Score file) which can also be passed to the Plot
Distribution As PDF worker to see the distribution of the
score density of the complete query dataset. The Query
fragments scorer worker also regenerates structure for every
atom signature and tags it with its corresponding fragment score
and UUID of the compound to which it belong to. These fragment
structures with scores are written out to a SDF file (Fragments
SDF), as they are helpful in identifying fragments with high NP-
likeness. This workflow can be freely downloaded at http://www.
myexperiment.org/workflows/2121.html.
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Machine learning workers support the significance
analysis of single components (i.e. features) of an input
vector to obtain smaller inputs with a reduced set of
components/features, the partitioning of machine learn-
ing data into training and test sets, the construction of
input/output mapping model functions and model based
predictions as well as result visualization. There is a
total of six WEKA-based machine learning methods
available: Two workers allow regression as well as classi-
fication procedures...

• Three-Layer Perceptron-Type Neural
Networks: Neural network implementation using
the backpropagation algorithm for weight optimisa-
tion [22].
• Support Vector Machines: Support Vector
Machine implementation using the LibSVM library
[23].
... two workers do only support regression...
• Multiple Linear Regression: Multiple linear
regression algorithm.
• M5P regression trees: M5 regression algo-
rithm for constructing tree-based linear models
[24,25].
... and two workers are restricted to classification
tasks:
• Naive Bayes: Bayesian classifier for the estima-
tion of continuous variables [26].
• J46 C4.5 decision tree: Decision tree imple-
mentation based on the C4.5 classification algorithm
[27].

For selection of an optimum reduced set of input vec-
tor components there are two workers available. The GA
Attribute Selection worker generates an opti-
mum reduced set of input components of predefined
length (smaller than the full input vector length) on the
basis of a genetic algorithm. The initial random popula-
tion is refined by mutation and cross-over steps plus
Roulette Wheel selection in each generation. A mutation
switches an input component between an “on” or “off”
state and a cross-over interchanges a random interval of
“on/off” states between two randomly chosen chromo-
somes (where the number of attributes with “on” state
remains fixed). As a fitness function the inverse square

root mean squared error
( 1
RMSE

)2 is used - based on the

complete dataset or using n-fold cross-validation. Figure
6 illustrates the procedure. The Leave-One-Out
Attribute Selection worker uses a “Leave-One-
Out” strategy for evaluating the significance of each
input vector component [28]. In each iteration the single
component is discarded that has the smallest in influ-
ence on the RMSE - up to a last “most significant”

component. Figure 7 shows a result of a “leave-one-out”
analysis and Figure 8 depicts the related workflow.
For training and test set partitioning the Split

Dataset Into Train-/Testset worker is available
which offers three strategies [28]:

• Random: Data are split randomly into a training
and test set of defined sizes.
• Cluster Representatives: First the input
data of the I/O pairs are clustered with the number
of clusters to be equal to the number of training
data by application of the Simple KMeans algorithm.
Then a single input point of each cluster is chosen
randomly as a representative and the corresponding
I/O pair is inserted into the training set. The
remaining I/O pairs are transferred to the test set.
• Single Global Max: Cluster representatives are
evaluated in a first step. These representatives are
then re ned by an iterative procedure that exchanges
data between training and test set that belong to the
same cluster. The latter constraint assures that the
input data of training and test set have a similar spa-
tial diversity. A single iteration determines the test
set I/O pair with the largest deviation between data
and model. This I/O pair is then transferred to the

Figure 6 Genetic algorithm for selection of an optimum
reduced set of input vector components: The algorithm starts
with a random population in which each chromosome consists
of a random distribution of enabled/disabled (on/off) input
vector components denoted A1 to An (where the number of
components with “on” status remains fixed during evolution).
This distribution is changed by mutation and cross-over. The fitness
of each chromosome is evaluated by the inverse square RMSE. The
selection process for each generation is performed by Roulette
wheel selection where chromosomes are inherited with probabilities
that correspond to their particular fitness.
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training set while the best predicted I/O pair of the
same cluster in the training set is transferred to the
test set in exchange. Oscillations during the refine-
ment steps may be suppressed by blacklisting
exchanged I/O pairs.

Figure 9 shows a workflow using the Split Data-
set Into Train-/Testset worker. The Weka
Regression worker is used to build machine learning

Figure 8 Workflow for “Leave-One-Out” analysis: First a
regression dataset is generated from a CSV file with UUID and
molecular descriptor input data for each molecule (IN QSAR)
and a CSV file containing the UUID of the molecule and the
corresponding output (regression) value (IN RTID). Then the
Leave-One-Out Attribute Selection worker evaluates the
significance of the input components and generates a dataset for
each evaluation step. Afterwards the composed datasets are coded
as XRFF files. A CSV file with the sequence of discarded input vector
components is generated. In addition the results are visualised with
a PDF output file. Instead of the Leave-One-Out Attribute
Selection worker a GA Attribute Selection worker may
be used to determine a minimum molecular descriptor subset with
maximum predictability. The results are stored in the output folder
determined by the OUT input port.

Figure 9 Partitioning into training and test set: A regression
dataset is split into a training and a test set which is
performed by the Split Dataset Into Train-/Testset.
Then a regression model is created by the Weka Regression
worker and evaluated by the Evaluate Regression Results
as PDF which stores the results in a PDF file. The dataset is read
from a XRFF file (IN XRFF). The generated test and training sets
are coded as XRFF files and stored on hard disk. The OUT input
port determines the result output folder.

Figure 10 Configuration panel for the Weka Regression
worker: The configuration for a three-layer perceptron neural
networks is selected. Each machine learning method consists of a
parameter panel for individual configuration.

Figure 7 “Leave-One-Out” analysis to estimate the significance
of input vector components: The root mean square error
(RMSE) rises with an increasing number of discarded
components (i.e. a decreasing number of input vector
components used for the machine filearning procedure). The
relative RMSE shift from step to step may be correlated with the
significance of the discarded component. In this case it is shown
that the first fifty components do only have a negligible in
influence on the machine learning result and thus may be excluded
from further analysis.
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models which may be evaluated and visualized by the
Evaluate Regression Results as PDF worker.
The Weka Regression worker provides a configura-
tion menu as shown in Figure 10. Classification workers
may be used in an equivalent manner. Figure 11 depicts
diagrams and output of a QSPR analysis to predict
HPLC retention times for small molecules: The experi-
mental dataset consists of 183 I/O pairs with a set of
molecular descriptors for each small molecule as an
input and the corresponding retention time as an out-
put. The molecular descriptors were calculated with the
QSAR Descriptor Threaded worker. Afterwards the
GA Attribute Selection worker was used to deter-
mine an optimized minimum subset of 75 molecular
descriptors (from an original 155) with maximum pre-
dictability. For machine learning a three-layer percep-
tron type neural network worker with three hidden
neurons was used. The diagrams shown for the regres-
sion analysis are a scatter plot with experimental versus

predicted output values and two kinds of residual plots.
In addition characteristic quantities like the root mean
squared error or the correlation coefficient are calcu-
lated for the generated model.

CDK-Taverna 2.0 Wiki
Based on the free MediaWiki framework a Wiki was
developed for the CDK-Taverna 2.0 project [29]. The
web page provides general information about the pro-
ject, documentation about available workers/workflows
and on how to create them as well as about installation
procedures. The Wiki can be found at http://cdk-
taverna-2.ts-concepts.de/wiki/index.php?
title=Main_Page.

Conclusions
CDK-Taverna 2.0 provides an enhanced and matured
free open cheminformatics workflow solution for the
biosciences. It was successfully applied and tested in

Figure 11 Diagrams for machine learning results: (upper left) Scatter plot with experimental versus predicted output values. (upper right)
Residuals plot with differences between the predicted and experimental output values. (lower left) Experimental output data are plotted over
corresponding sorted predicted output data. (lower right) Characteristic quantities of the predicted model.
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academic and industrial environments with data
volumes of hundreds of thousands of small molecules.
Combined with available workers and workflows from
bioinformatics, image analysis or statistics CDK-Taverna
supports the construction of complex systems biology
oriented workflows for processing diverse sets of biolo-
gical data.
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