
Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13
http://www.jcheminf.com/content/4/1/13

RESEARCH ARTICLE Open Access

Systematic benchmark of substructure search
in molecular graphs - From Ullmann to VF2
Hans-Christian Ehrlich and Matthias Rarey*

Abstract

Background: Searching for substructures in molecules belongs to the most elementary tasks in cheminformatics
and is nowadays part of virtually every cheminformatics software. The underlying algorithms, used over several
decades, are designed for the application to general graphs. Applied on molecular graphs, little effort has been spend
on characterizing their performance. Therefore, it is not clear how current substructure search algorithms behave on
such special graphs. One of the main reasons why such an evaluation was not performed in the past was the absence
of appropriate data sets.

Results: In this paper, we present a systematic evaluation of Ullmann’s and the VF2 subgraph isomorphism
algorithms on molecular data. The benchmark set consists of a collection of 1235 SMARTS substructure expressions
and selected molecules from the ZINC database. The benchmark evaluates substructures search times for complete
database scans as well as individual substructure-molecule pairs. In detail, we focus on the influence of substructure
formulation and size, the impact of molecule size, and the ability of both algorithms to be used on multiple cores.

Conclusions: The results show a clear superiority of the VF2 algorithm in all test scenarios. In general, both
algorithms solve most instances in less than one millisecond, which we consider to be acceptable. Still, in direct
comparison, the VF2 is most often several folds faster than Ullmann’s algorithm. Additionally, Ullmann’s algorithm
shows a surprising number of run time outliers.

Keywords: Substructure search, Subgraph isomorphism, Algorithm, Benchmark, SMARTS, Chemical pattern search

Background
Today’s drug discovery faces a constantly growing num-
ber of commercially available or synthetically accessible
compounds maintained in large databases [1,2]. In order
to efficiently search such databases, computational search
strategies comprising various search criteria have been
developed over more than four decades [3-14]. Search
criteria range from retrieving the one exact compound
over selecting compounds via substructure features to the
application of various similarity measures. In the follow-
ing, we focus on methods that test compounds for the
presence of certain functional groups or substructures.
Modeling molecular structures as labeled graphs has a

long tradition and gives the basis for modern cheminfor-
matics methods. A graph-based representation is chemi-
cally intuitive and forms a solid theoretical foundation for

*Correspondence: rarey@zbh.uni-hamburg.de
Center for Bioinformatics, University of Hamburg, Bundestraße 43, 20146
Hamburg, Germany

computer-aided processing. Furthermore, graphs allow
the substructure search problem to be solved by graph iso-
morphism techniques, i.e., searching molecules for sub-
structures is equivalent to testing two labeled graphs for
subgraph isomorphism. The subgraph isomorphism prob-
lem is well studied [15-17] and one of the oldest and most
applied algorithms [18-22] was introduced by Ullmann in
1976 [7]. Over the years that followed, only a few sub-
graph isomorphism methods were introduced [11,16,23],
the most recent being the VF2 algorithm [12].
Until now, each comparison of (sub-)graph isomor-

phism algorithms [16,17] only employs synthetic graph
data. The data is most often constructed to show the
algorithms’ behavior on medium to large graphs. There-
fore, it is unclear how these algorithms behave on
rather small graphs like molecular data. To our knowl-
edge, no subgraph isomorphism comparison directly
addresses the problem of searching chemical substruc-
tures in molecules. One of the main reasons why such a

© 2012 Ehrlich and Rarey; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 2 of 17
http://www.jcheminf.com/content/4/1/13

benchmark was not performed in the past was the lack of
suitable and publicly available benchmark data sets.
This article describes such various data sets and dis-

cusses the differences between the Ullmann and the VF2
subgraph isomorphism algorithm applied on substruc-
tures and molecules. In the following, we introduce the
graph theoretical concepts, summarize the two algorithms
of interest, introduce different benchmark data sets and
compare the algorithms’ performance in various molecu-
lar modeling scenarios.

Preliminaries
For almost 150 years, chemists have used chemical and
structural formulas to represent molecules. A structural
formula is closely related to the mathematical concepts of
graphs which makes graph theory and algorithms directly
applicable in cheminformatics.

Graph theoretical background
A graph G = (V , E) is defined by a set of nodes V and
a set of connecting edges E. The edges of an undirected
graph have no fixed orientation and if labels are assigned
to nodes or edges the graph is denoted as labeled. If a path
from each node to every other nodes exists, the graph is
called connected. In the following, all graphs are labeled,
undirected and connected except when stated otherwise.

Subgraph isomorphism
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor-
phic if a bijective projection between nodes V1 and nodes
V2 exists such that two nodes from V1 are connected by
an edge from E1 if and only if their image nodes in V2 are
connected by an edge from E2. An induced subgraph of
a graph G = (V , E) is defined as a graph G′ = (V ′, E′)
whose nodes V ′ are a subset of V and whose edges E′ are
all possible edges from E that connect two nodes in V ′.
An induced subgraph isomorphism between a query graph
G1 and a target graph G2 exists if G1 is isomorphic to
an induced subgraph of G2, i.e., the query graph G1 is a
subgraph of the target graph G2.
The problem of finding an isomorphic induced sub-

graph is believed to be a problem for which no efficient
solution exists, i.e., it belongs to the class of NP-complete
problems [5,24]. Therefore, every subgraph isomorphism
algorithm will show exponential run times with respect to
the input graph size.

Molecular graphs
A molecular graph is given by nodes and edges that rep-
resent atoms and bonds, respectively. Often nodes and
edges are labeled with atom and bond properties. Obvi-
ously, molecular graphs are undirected. The number of
edges connecting each node is limited by the number of

covalent bonds an atom can form. Therefore, the number
of edges in a molecular graph linearly depends on the
number of nodes.
Molecules are equal or isomorphic if their molecular

graphs are isomorphic and the labels of the atoms and
bonds are equal to the labels of their mapped atoms and
bonds respectively.When twomolecules differ in size, one
can be a substructure of the other, i.e., a subgraph iso-
morphism between the two molecules exists. The small
number of atoms and the linear atom degree allow for a
fast subgraph isomorphism test on molecules.

Substructuregraphs
A substructure graph can be a molecule fragment, e.g.,
a functional group, or a more generalized construct. For
example, a single halogen node might represent a fluo-
rine, chlorine, bromine or iodine atom. The same applies
to edges, e.g., an edge is either a single or a double bond. In
the following, we will use substructure graphs with such
general labels. Figure 1 shows an example.
Substructure graphs are compared with molecules to

detect subgraph isomorphisms. The goal is to determine
the presence or location of a functional group or a spe-
cific molecular structure. Nodes and edges are mapped
to atoms and bonds in accordance with their labels.
Since edges are explicitly assigned to bonds, the detected
isomorphic subgraph might not be induced, i.e., non-
circular substructures can bemapped to circular molecule
parts.
For a clear differentiation, we will use the terms atoms

and bonds for molecular target graphs and nodes and
edges for query substructure graphs.

Substructure pattern languages
A substructure graph can be formulated by using a sub-
structure pattern language like SMILES Arbitrary Target
Specification (SMARTS) [25], Sybyl Line Notation (SLN)
[26] or Wiswesser Line Notation (WLN) [27]. All lan-
guages define a substructure graph in a textual line nota-
tion similar to a molecule’s chemical formula. They allow
the definition of a substructure’s topology and node and
bond properties, including logical alternatives. SMARTS
even provides the opportunity to specify additional infor-
mation like a chemical environment. In this study, all
substructures are formulated as SMARTS expressions.

Figure 1 Carboxylic acid pattern and heptonic acid. A carboxylic
acid pattern (left) with ‘*’ indicating any atom. Heptonic acid (right).

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 3 of 17
http://www.jcheminf.com/content/4/1/13

Methods
The Ullmann and the VF2 algorithms are two algo-
rithms that solve the subgraph isomorphism problem.
Applied to substructure and molecular graphs, they can
be used to detect substructures in molecules. Both algo-
rithms calculate an exact solution, i.e., the exact sub-
structure must be present, and their application is not
restricted to a special class of graphs, i.e., is not limited to
molecular graphs.

Ullmann algorithm
The Ullmann algorithm [7] is a backtracking procedure
that employs a relaxation-based refinement step to reduce
the search space. It operates on a n × m matrix M of
boolean values, where n is the number of substructure
nodes and m the number of molecule atoms. An entry
at position (i, j) marks the compatibility of labels for sub-
structure node i and molecule atom j. Additionally, it
uses a boolean vector f of length m marking mapped
atoms. Algorithms 1 and 2 show Ullmann’s match and
refinement procedure. Figure 2 illustrates one step of
the algorithm.
The refinement is the crucial step of the algorithm. It

evaluates the surrounding of every possible node-atom
mapping. For a valid mapping, every neighbor node must
have a compatible atom as illustrated in Figure 3. Other-
wise, themapping is invalid which is marked by setting the
corresponding matrix entry to zero. The evaluation takes
place for every possible mapping downstream the current
row and is repeated until all remainingmappings are valid.
Although the refinement procedure is the key for an

efficient reduction of the search space it does not take

full advantage of topological constraints. For example, in
the case of a small substructure and a large molecule, it
evaluates entries topologically too far away from already
mapped node-atom pairs.

VF2 Algorithm
The VF2 algorithm [12] iteratively extends a partial solu-
tion using a set of feasibility criteria to decide whether
to extend or backtrack. It operates on an intermediate
algorithm state s which is composed of a partial solu-
tion M(s) and adjacency sets T1(s) and T2(s). A pair
(n,m) ∈ M(s) represents an atom-node mapping of the
partial solution. M1(s) and M2(s) describe the atoms and
nodes, respectively, that belong to the partial solution.
T1(s) and T2(s) hold atoms and nodes adjacent to atoms
in M1(s) and nodes in M2(2), respectively. The algorithm
modifies the state s in two steps. From the sets T1(s) and
T2(s), it creates a candidate set P(s) of atom-node pairs
with compatible labels. Then, it explores every candidate
(n,m) ∈ P(s) that fulfills the feasibility rules Fsyn or back-
tracks if P(s) is empty. Figure 4 graphically depicts one
step of the algorithm.
Fsyn(s, n,m) (Equation 1) describes the feasibility of can-

didates (n,m) in state s. It is composed out of two terms,
Radj (Equation 2) and Rinout (Equation 3). The first fea-
sibility rule Radj guarantees that each atom n′ and node
m′ adjacent (Adj) to the atom n and node m of a candi-
date pair (n,m) are mapped to each other in the partial
solution (n′,m′) ∈ M(s). The second rule Rinout per-
forms a 1-look-ahead in the search procedure based on
the nodes’ cardinality (Card) and allows an early pruning

Algorithm 1

1: input compatibility matrix M, row index k, mapped atoms vector f
2: output permutation matrix that represents a one-to-one mapping of nodes to atoms
3: procedureMATCH(M, k, f)) � first call: Match(M,−1; f = 0)
4: if k = n then � complete mapping of substructure to molecule
5: returnM
6: else
7: for l ← 0 to m − 1 do � go over the complete row
8: ifM(k+1,l) = 1 and fl = 0 then � look for a possible mapping
9: Msave ← M � save state for backtracking
10: fsave ← f
11: for j = 0 tom − 1 do
12: M(k+1,j) ← 0 � remove all possible mappings of current node
13: M(k+1,l) ← 1 � fix one node-atom mapping
14: fl ← 1 �mark atom as used
15: if Refine(M, k + 1) then � refine rest of the matrix
16: Match(M, k + 1, f) � continue with the next row
17: M ← Msave � restore previous solution for backtracking
18: f ← fsave

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 4 of 17
http://www.jcheminf.com/content/4/1/13

Algorithm 2

1: input reference to compatibility matrix M, row index k
2: output true when all substructure nodes still have an option to be mapped onto the molecule
3: procedure REFINE(&M,k)
4: repeat
5: changed ← false � flag that marks matrix changes
6: for allM(i,j) with i > k andM(i,j) = 1 do � check all possible mappings (i,j)
7: valid ← true � flag that marks the valid mapping of a neighbor node
8: for all x adjacent to i ∈ G1 do � check all nodes adjacent to node i in substructure G1
9: found ← false
10: for all y adjacent to j ∈ G2 do � check all atoms adjacent to atom j in molecule G2
11: ifM(x,y) = 1 then � possible mapping of compatible pair (x,y)
12: if edge [i,x] = edge [j,y] then � edge type is compatible to bond type
13: found ← true � valid mapping of neighbor found
14: break � leave loop over adjacent atoms
15: if found = false then � adjacent node has no possible mapping
16: valid ← false
17: break � leave loop over adjacent nodes
18: if valid = false then � at least one adjacent node can not be mapped
19: M(i,j) ← 0 �mark mapping of node i to atom j invalid
20: changed ← true �mark matrix as changed
21: ifM(i,h) = 0 for 0 ≤ h ≤ m − 1 then � check if node i can not be mapped anymore
22: return false � induce backtracking in match procedure
23: until changed = false � repeat refinement because mapping(s) became invalid
24: return true

of the search tree. Figure 5 and Figure 6 give an illustration
of the feasibility rules.
The problem of reaching the same state, i.e., the same

partial solution M(s), via different paths is handled by
imposing an arbitrary total order ≺ onto the subgraph
nodes and processing only smallest feasible candidates
with regard to that order. Therefore, feasible candidates
(ni,mj) in P(s) are not processed ifmk ≺ mj ∈ P(s).

The main difference between the two algorithms is
the way they account for the topology of the sub-
structure. The Ullmann algorithm processes a com-
patibility matrix top-down. In every step it fixes one
node-atom mapping and checks all other possible assign-
ments for validity. Therefore, it processes substructure
nodes in an non-topological, arbitrary order. In contrast,
the VF2 iteratively adds node-atom pairs to a current

Fsyn(s, n,m) = Radj ∧ Rinout (1)

Radj = (∀n′ ∈ M1(s) ∩ Adj(G1, n))∃m′ ∈ Adj(G2,m)|(n′,m′) ∈ M(s))

∧(∀m′ ∈ M2(s) ∩ Adj(G2,m))∃n′ ∈ Adj(G1, n)|(n′,m′) ∈ M(s)) (2)

Rinout = Card(Adj(G1 , n) ∩ T1(s)) ≥ Card(Adj(G2,m) ∩ T2(s)) (3)

Figure 2 Iteration of Ullmann algorithm. One step of the Ullmann algorithm. The initial compatibility matrix (left) shows carboxylic acid
substructure nodes as rows and heptonic acid molecule atoms as columns. A non-zero entry indicates the compatibility of a node-atom pair. Zero
entries are not shown. In the current row, indicated in gray, the algorithm choses one compatible node-atom mapping (middle) and refines all
unprocessed rows (right). The algorithm continues with the next row. Figure 3 illustrates the refinement.

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 5 of 17
http://www.jcheminf.com/content/4/1/13

Figure 3 Refinement of Ullmann algorithm. Ullmann refinement
step. For a mapping of node i to atom j, all adjacent nodes xmust
have at least one valid mapping y. If this condition is not fulfilled, the
mapping (i, j) is invalid and the corresponding matrix entry at (i, j) is
set to zero.

solution and therefore directly explores the substructure’s
topology.

Substructure pattern formulation for efficient computation
The formulation of substructure patterns is a tedious task.
Most pattern languages are difficult to read and evenmore
difficult to write, especially when defining isomeric or tau-
tomeric structures. As a result, substructure formulations
are focused on a correct chemical representation of a pat-
tern. That formulation might be suboptimal for computa-
tional processing. Therefore, we present simple guidelines
to optimize patterns for the search in molecules.
For an optimal formulation, the substructure must be

in an order that allows an early processing of unusual
nodes and edges, rare fragments and functional groups.
Obviously, certain elements are more common than oth-
ers. The same applies for substructure nodes that define
a high number of atom properties or are part of an
aromatic system. Unusual edges define aromatic bonds

or those with a high bond order. Therefore, we write
optimized substructures such that nodes with the rarest
element, highest property specification and aromaticity
as well as high order or aromatic bond definitions occur
first. Additionally, we place substructure parts that are
rather common or difficult to process at the end of the
formulation. Nodes that specify generic atoms, hydrogen
atoms, carbon atoms, and ring atoms are common. Chem-
ical environments are difficult to process for most search
algorithms, since they enforce an additional search step.
In the followingwe perform every pattern reformulation

by hand. Nevertheless, both algorithms are well suited for
an automated optimization process. Ullmann’s algorithm
processes substructure nodes according to their row num-
bers in the compatibility matrix. Since row numbers are
assigned arbitrarily, they can resemble the order employed
by applying the given optimization rules. The VF2 uses an
arbitrary node relation to obtain a total order. Therefore,
the optimized order can be directly used.

Data sets
Both algorithms are tested in different application setups
like complete database scans, substructure-based filter
scenarios and individual substructure-molecule searches.
The tests show the dependency of the algorithm run
times on substructure formulation, substructure size and
molecule size.
The data sets comprise 1336 SMARTS from the liter-

ature [28-37] and molecules out of ZINC lead-like and
ZINC everything database [1]. All data sets are provided
in Additional file 1.

Substructure search set
Molecule size is a crucial factor with respect to the
algorithmic search time. To explore the influence of
molecule size, we select a subset from the initial 1336

Figure 4 Iteration of VF2 algorithm. One VF2 iteration. The algorithm extends the current solution M(s) of state s by one candidate (1, a) chosen
from P(s). T1(s) and T2(s) show the nodes adjacent to mapped atoms and nodes.

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 6 of 17
http://www.jcheminf.com/content/4/1/13

Algorithm 3

1: input intermediate state s; first call with M(s0) = (n,m)

2: outputmapping M of substructureG2 = (N2,B2) onto molecule G1 = (N1,B1)
3: procedureMATCH(s)
4: if | M(s) |=| G2 | then � all substructure nodes are mapped onto the molecule
5: returnM(s)
6: else
7: m ← mi | ∀mj ∈ T2(s)\{mi} : mi ≺ mj � choose smallest node m according to relation ‘≺’
8: for all n ∈ T1(s) do � process all ordered atoms adjacent toM1(s)
9: ifm and n are compatible then � check if node-atom labels agree
10: P(s) ∪ (n,m) � P stores compatible pairs adjacent toM
11: for all p = (n,m) ∈ P(s) do � process all possible extensions
12: if Fsyn(s, n,m) then � check if node-atom pair is feasible
13: ssave ← s � save state for backtracking
14: M(s) ← M(s) ∪ p � extend partial solution by one node-atom mapping
15: T1(s) ← ⋃

n∈M1(s) Adj(G1, n) \ M1(s) � update atoms adjacent to the partial solution
16: T2(s) ← ⋃

m∈M2(s) Adj(G2,m) \ M2(s) � update nodes adjacent to the partial solution
17: Match(s) � continue with the next extension
18: s ← ssave � backtrack

SMARTS. All duplicate expressions, expressions with
errors, extensions and those that define isotopes or
are disconnected are removed. The resulting set com-
prises 1235 SMARTS whose property overview is given
in the Additional file 2: Table S1. SMARTS allows the
explicit formulation of hydrogen atoms and the defi-
nition of atom environments. When explicit hydrogen
atoms are used a search procedure must evaluate all
hydrogen atoms, which roughly doubles the number of
atoms to be evaluated. Atom environments induce an

Figure 5 VF2 feasibility rule for node cardinality. VF2 feasibility
rule for node cardinality. The rule guaranties a one-to-one mapping
of edges in the current solutionM(s). For a candidate mapping (n,m),
all atoms (n′ and n” inM1(s)) adjacent to nmust be mapped to the
corresponding nodes (m′ andm” in M1(s)) adjacent tom. Otherwise
the candidate mapping is not feasible.

additional search step during the actual search pro-
cedure. In order to circumvent misinterpretations of
the results, we group the SMARTS patterns by the
presence/absence of explicit hydrogens and recursive
environments into individual sets. The Additional file 2:
Table S2 – S19 give detailed statistics on SMARTS prop-
erties for every set.
The final sets contain all SMARTS patterns for which

100 molecules containing the pattern could be randomly
selected from ZINC lead-like and ZINC everything.

Figure 6 VF2 feasibility rule for node cardinality (1-look-ahead).
VF2 feasibility rule for node cardinality (1-look-ahead). The rule
prohibits an extension of the current solution M(s) by candidates
with a substructure cardinality that can not be fully mapped onto the
graph. In the given example, nodem has one edge into T2(s) and is
mapped to atom n with a cardinality of two. Therefore, the mapping
is feasible.

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 7 of 17
http://www.jcheminf.com/content/4/1/13

Table 1 shows the number of SMARTS for which the
selection process was successful. The molecular property
distribution of each set is similar to the correspond-
ing ZINC database as shown in the Additional file 2:
Table S23 – S24.

Molecule search set
Substructure size is the second major factor regarding
pattern matching time. A set to measure its impact is
composed by randomly selecting molecules from ZINC
lead-like containing all-in-all 80 different substructures of
various size. The presence of so many substructures in a
single molecule is rather rare but selecting molecules with
less patterns gives poor results. A selection was only pos-
sible for the set of SMARTS having no explicit hydrogen
nodes and no recursive environments. The other three
sets contain patterns of much higher complexity which
are rarely present in one molecule or patterns that are
designed to be complementary to each other, e.g., PAINS.

PAINS substructure set
For a detailed case study, we choose 16 PanAssayINter-
ferenceStructures(PAINS) described by Baell et al. [38] as
‘filter family A’. The PAINS substructures should describe
unspecific binders in protein-protein interaction assays.
PAINS were originally given in SLN and converted to
SMARTS by Rajarshi Guha using Cactvs [39]. The con-
verted PAINS patterns include hydrogen atoms and recur-
sive environments. The PAINS’s property distribution is
shown in the Additional file 2: Table S20 and Additional
file 3: Figure S2 – S5 depict each substructure.

Worst-case test
Since highly symmetric molecules impose a challenge
for substructure search algorithms, we test a phenylring
query against a fulleren target as a worst-case search
scenario.

Database subset
The database subset comprises the first 100.000molecules
from ZINC lead-like as of February 12th, 2011 and is
designed to resemble a complete database. Its property
distribution is similar to that of the full ZINC lead-like
database as shown in Additional file 2: Table S25.

Results and discussion
Search speed is measured on a single Intel(R) Xeon(R)
CPU E5630 2.53GHz core. Each matching is repeated 400
times and average values are recorded. Average matching
times are raw matching times excluding File I/O, molecule
initialization and post-processing of search results, i.e.,
matching time only.
We are aware of the fact that the evaluation is done

with an example implementation of both algorithms that
most likely has some room for optimization. Neverthe-
less, we believe that our results allow general conclusions
regarding the algorithms’ behavior on molecular data.

Overall search speed
An overview of the VF2 and Ullmann matching times
is shown in Figure 7. The times are measured on the
46900 substructure-molecule pairs of the Substructure
Search Set. Both substructure algorithms search for all
occurrences of each substructure. The histograms show
that both algorithms have most match times in a range
below 1 milliseconds (ms) (92.3% VF2, 73,4% Ullmann)
with a median of 0.04ms for the VF2 and 0.1ms for the
Ullmann, respectively. While the maximum VF2 match-
ing time is below 30ms, the Ullmann shows times of more
than 100ms for 1.12% (5352 pairs) and more than 1000ms
for 0.22% (104 pairs) of the data set. Interestingly, the
Ullmann search times do not change drastically in the case
where the search is constrained to the first occurrence of
each substructure. In contrast, the VF2 outlier times drop
down by one half. In conclusion, both algorithms can solve
most instances in reasonable time and the median run
times differ by a factor of 2.5 betwenn VF2 and Ullmann’s
algorithm. In rare cases, the Ullmann algorithm is up to
1000 times slower than the VF2.

Explicit vs. implicit hydrogens
A closer analysis of Ullmann and VF2 matching times
reveals a slight increase in run times for SMARTS patterns
with explicit hydrogens, which is documented by the his-
tograms in Figure 8. The median search times of the VF2
are 0.08ms for substructures with only implicit hydrogens
and 0.19ms with explicit hydrogens, 0.22ms and 1.09ms
for the Ullmann, respectively. In accordance, the max-
imum run time of the VF2 doubles, while that of the

Table 1 SMARTS, ZINC lead-like, ZINC everything test sets

all SMARTS ZINC lead-like set ZINC everything set

no H nodes H nodes no H nodes H nodes no H nodes H nodes

no recursion 504 432 347 56 400 43

recursion 234 65 48 18 106 39

All processable SMARTS split by the presence/absence of explicit hydrogen nodes and recursive environment specifications and the subsets used in the ZINC lead-like
and ZINC everything set.

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 8 of 17
http://www.jcheminf.com/content/4/1/13

Figure 7 Overall run time histogram. Histogram over VF2 (top) and Ullmann (bottom) matching times on the Substructure Search Set. The
algorithms search for the first (left) and all (right) occurrence(s) of the substructure. All plots are double logarithmic and times are given in
milliseconds (ms).

Ullmann algorithm is roughly four times larger. The rea-
son for an increase in run times is twofold. About 50% of
atoms in a small molecule are hydrogens. Therefore, when
matching patterns with explicit hydrogens, in contrast to
patterns with only implicit hydrogens, all hydrogen atoms
have to be evaluated. This doubles the number of evalu-
ated atoms during the search, and hence, increases the run
time. Additionally, for every hydrogen node, an explicit
placement must be found, as opposed to the comparison
of the sheer number of hydrogens attached to an atom.
This raises the number of evaluated atoms as well as the
number of found mappings, and therefore increases the
run time.

Recursion vs. no recursion
An interesting aspect of the SMARTS pattern language
is the ability to recursively define the chemical environ-
ment of an atom. To match a pattern that includes one or
more nodes with atom environments, a subgraph search
algorithm has to recursively perform a subgraph isomor-
phism test during the actual search. Figure 9 shows the
impact on matching times when recursive environments
are defined. Median run times for the VF2 are 0.04ms

for SMARTS without and 0.35ms for SMARTS with
environment specifications, 0.15ms and 4.87ms for Ull-
mann’s algorithm, respectively. Surprisingly, the Ullman
algorithm is much more sensitive to recursive patterns.
The presence of environment specifications can lead to a
30 times increase in Ullmann matching times while VF2
times maximal rise by a factor of two. The sensitivity is
due to the fact that Ullmann’s algorithm creates a matrix
that represents all possible mappings of nodes to atoms.
Since most recursive environments are rather small, the
construction and evaluation of such a matrix represents a
computational overhead that is reflected in an increase of
the overall search time.

Molecule size
In order to explore the influence of molecule size we
examine 469 substructure-molecule pairs from the Sub-
structure Search Set. As almost all results are similar,
we chose only some representative substructure-molecule
pairs shown in Figure 10. All figures, given in Additional
file 1, show a significantly smaller matching time for the
VF2 and a linear influence of the molecule size on the
matching time. The difference between VF2 and Ullmann

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 9 of 17
http://www.jcheminf.com/content/4/1/13

Figure 8 Explicit vs. Implicit hydrogens run time histogram. Histogram of VF2 (up) and Ullmann (down) matching times with (left) and without
(right) explicit hydrogens on the Substructure Search Set. The algorithms search for all occurrences of the substructure. All plots are double
logarithmic and times are given in milliseconds (ms).

matching times becomes even more prominent when
examining the cases where explicit hydrogens (Figure 11
top-left), recursive environments (Figure 11 bottom-right)
or both (Figure 11 bottom-left) are present. The linear
impact of the molecule size on the run time is explained
by the constant number of bonds an atom can form as can
be obtained from a theoretical analysis of backtracking
algorithms for subgraph isomorphism [40,41].

Subgraph size
The impact of subgraph size regarding the matching time
was evaluated with a meaningful test set for substructures
with only implicit hydrogens and no recursive environ-
ments. Unfortunately, a suitable test set could only be
constructed for SMARTS patterns without explicit hydro-
gens and recursive environments. From observing 100
molecules in which at least 80 substructures with dif-
ferent size could be matched, we assume an exponential
run time development with increasing subgraph size for
both algorithms. The exponential increase seems to be
slower for the VF2 in all cases. An example is given in
Figure 12 and all plots are provided in Additional file 1.
The difference in matching times drastically decreases
when only the presence of a substructure, rather than all

occurrences, is of interests. The exponential match time
of both algorithms regarding the substructure size is again
in agreement with a theoretical analysis of the subgraph
isomorphism problem [40,41].

Worse-case test
As a worse-case substructure search scenario, we test
a phenyl-ring query against a C70 fullerene target. The
Ullmann finds the first occurrence in 51.11ms and all
matches in 106.94ms. The VF2 is about 130 times
faster when it solves the problem for the first occur-
rence (0.39ms) and about 5 times when searching for all
matches (21.67ms). Clearly, the phenyl-fullerene example
is not the worse-case when considering SMARTS sub-
structures. Substructures with explicit hydrogen nodes
or recursive atom environments yield much higher run
times. Nevertheless, the phenyl-fullerene experiment
gives good guidance on how the Ullmann and VF2 algo-
rithms behave on highly symmetrical structures.

Complete database search
Often substructure search algorithms are used in database
search scenarios in which a database is scanned for all

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 10 of 17
http://www.jcheminf.com/content/4/1/13

Figure 9 Recursion vs. no Recursion run time histogram. Histogram of VF2 (up) and Ullmann (down) matching times with (left) and without
(right) recursive environments on the Substructure Search Set. The algorithms search for all occurrences of the substructure. All plots are double
logarithmic and times are given in milliseconds (ms).

molecules that contain a given query structure. Even
though most database search systems are able to elimi-
nate a large number of molecules from the actual sub-
graph isomorphism search using screening techniques
[10,22,41,43-46], a remarkable number of molecules
might remain. The following test simulates a sequential
subgraph isomorphism test over a large set of molecules.
We search all 1235 patterns from the Substructure Search
Set against the Database Subset and measure the com-
plete time to identify all molecules which contain such
a substructure. Since the majority of the first 100.000
molecules of the ZINC lead-like database do not contain
a given pattern, the search time is dominated by the algo-
rithm’s ability to quickly identify the non-occurrence of
a substructure in a molecule. A good screening method
would of course enrich the molecules submitted to the
isomorphism test withmolecules containing the substruc-
ture of interests. Nevertheless, testing both algorithms
for the ability of quickly detecting molecules without a
given pattern will reveal further insights into the algorith-
mic behavior. This test is only performed once, as minor
changes in run time do not affect the order of magnitude.
From the two histograms in Figure 13, it is clear that

the VF2 algorithm is much faster in sequentially scanning

a large number of molecules. The median search time of
the VF2 is 2.84 s and 38.7 s for the Ullmann. The VF2
algorithm finishes 53.06% of the search queries below 10s
and 97.61% below 102 s, while the Ullmann completes
3.73% below 10s, 54.24% below 102 s, 92.36% below 103 s
(16.6 min), 98.76% below 104 s (2.78 h) and 99.85% below
105s (27.78 h). All in all, in rare instances a database search
system that uses the Ullmann algorithm might need over
a day to give results for a single query, even though, most
of the molecules might be eliminated from the subgraph
isomorphism test.

Parallelization scaling
The subgraph isomorphism problem is nearly perfectly
suited for parallel computing when matching one query
structure against many target structures. One simple but
effective solution is a parallelization by data separation
of the target structures. An alternative is an algorithm
level parallelization based on the algorithms’ recursion.
Since most substructure searches are below 1ms and most
molecules consist of less than 100 atoms, a paralleliza-
tion of one substructure against one target search is most
likely not as efficient as searching in parallel on the data

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 11 of 17
http://www.jcheminf.com/content/4/1/13

Figure 10Molecule size experiment patterns. Depiction of SMARTS pattern with no explicit hydrogens and no recursion (top-left), explicit
hydrogens and no recursion (top-right), no explicit hydrogens and recursion (middle) and with explicit hydrogens and recursive atom environments
(bottom). The legend can be found in the Additional file 3: Figure S1. Depictions are created by SMARTSViewer [42].

level. The situation might change when searching large
query substructures against large target structures, e.g.,
searching for motifs in proteins.
In order to evaluate the efficiency of data level paral-

lelization, we test both algorithms with the same data
separation strategy on the PAINS Substructure Set against
the complete ZINC lead-like database on different num-
bers of CPU cores. The target structures are split into
equal blocks such that each core gets the query structures
and a the same number of molecules. The measurement
on one core is performed in sequential and parallel mode
so that the computational overhead for parallelization
becomes directly present. Detailed tables on the match-
ing times and scaling factors on different numbers of cores
can be found in Additional file 2: Table S26 – S27.

Both algorithm show good scaling behavior on all
instances. On 8 cores the search times are decreased by an
average factor of 5.6 for the VF2, and 6.92 for Ullmann’s
algorithm respectively. The overall slightly better scal-
ing of the Ullmann algorithm can be explained by the
longer matching times. Longer matching times reduce the
parallelization overhead relative to the matching time.

SMARTS pattern case studies
To explore the possibility of reducing search speed by
rearranging the subgraph formulation we created three
different formulations for each substructure of the PAINS
Substructure Set. The original substructure formulation
as created by Cactvs, an optimized version by applying

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 12 of 17
http://www.jcheminf.com/content/4/1/13

Figure 11Molecule size search example. Run time comparison between Ullman and VF2 searching for all substructure occurrences with various
molecule sizes. The different plots show a linear increase in run time with respect to the molecule size. The top-left pattern does not include explicit
hydrogens nor recursive environments. The top-right pattern does include explicit hydrogens but not recursive environments. The bottom-left
pattern does not include explicit hydrogens but recursive environments. The bottom-right pattern includes explicit hydrogens and recursive
environments. Figure 10 shows a graphical depiction of all four patterns. Times are given in milliseconds (ms).

Figure 12 Subgraph size search example. Run time comparison between Ullman and VF2 searching for all (left) and the first (right) substructure
occurrence(s) with varying subgraph size. The plots show an exponential increase in run time with respect to the substructure size. Times are given
in milliseconds (ms).

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 13 of 17
http://www.jcheminf.com/content/4/1/13

Figure 13 Database scan run time histogram. Run time histogram for the VF2 (left) and Ullmann (right) when searching the first 100.000
molecules from ZINC lead-like for the first substructure occurrences. Both plots are double logarithmic and times are given in seconds(s).

the re-formulation guidelines described in the “Substruc-
ture Pattern Formulation” section, and an anti-optimized
version by applying the rules in reverse. All three formu-
lations are searched against the complete ZINC lead-like
database.
As can be observed from the two most extreme cases

shown in Table 2, the VF2 algorithm shows run time
decreases of up to 13.37 times for the optimized substruc-
ture formulations. In accordance, the run time increases
up to 15.64 times for the anti-optimized formulation.
Surprisingly, the Ullmann algorithm shows no significant
change in run time, neither for the optimized nor for the
anti-optimized version in all test cases.

Ullman faster than VF2
In almost all test-cases, we see a superior matching per-
formance of VF2 compared to Ullmann’s algorithm. In
order to exclude the possibility of errors in our time mea-
surements, we re-calculate the benchmarks for all cases in
whichUllmann’s algorithm shows a smaller matching time
than the VF2. The number of repetitions for each search
call is increased to 100.000 to increase the time mea-
surement accuracy. Table 3 shows the re-measurement
for 10 examples. Clearly, the first measurements were

sufficiently accurate and in all these cases the Ullmann
outperformed the VF2. To investigated if the subgraph
formulation might be unfortunate for the VF2 algorithm,
the test is repeated with optimized substructure formu-
lations. The matching times given in Table 3 show that
the VF2 is faster in all cases when given an optimized
substructure formulation.

Conclusions
We presented, to our knowledge, the first comparison
between Ullmann and VF2 subgraph isomorphism algo-
rithm on molecular data and the first data set to per-
form such a benchmark. Using SMARTS as molecular
substructure language, we explored the influence of sub-
structure andmolecular size as well as the usage of explicit
hydrogen nodes and recursive environment specification
on the matching time. Both algorithms where addition-
ally tested for the use in complete database scans and their
ability for data-based parallelization. Additionally, we pre-
sented an optimization strategy to reduce matching times
by substructure pattern reformulation.
In conclusion, the VF2 algorithm outperforms the

Ullman in all test cases when supplied with a favorable

Table 2 Optimization run time examples

Ull. time [s] Ull. speedup VF2 time [s] VF2 speedup matches

PAINS 4

original 157139.71 1.00 170.42 1.00 11699

optimized 157027.63 1.00 168.56 1.01 11699

anti-opt. 154195.33 1.02 2664.49 -15.64 11699

PAINS 12 original 3119.04 1.00 1698.42 1.00 9056

optimized 2142.41 1.46 142.28 11.94 9056

anti-opt. 3077.34 1.01 1675.40 1.01 9056

Two examples of searching the PAINS Substructure Set against the complete ZINC lead-like database. Ullmann and VF2 times in seconds and speed ups are shown.
Results for all 16 PAINS are given in the Additional file 2: Table S28 – S29 and the re-formulated PAINS in Additional file 2: Table S30.

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 14 of 17
http://www.jcheminf.com/content/4/1/13

Table 3 Ullmann faster than VF2without optimization examples

SMARTS Ullmann time VF2 time

[ms] [ms]

[#6]C(=[O,SX2])[CX4]C(=[O,SX2])[#6] 0.868 0.948

[O,SX2]=C([#6])[CX4]C(=[O,SX2])[#6] 0.654 0.271

[#6]C(=[O,SX2])C(=[O,SX2])[#6] 0.938 1.046

[O,SX2]=C([#6])C(=[O,SX2])[#6] 0.668 0.203

[a]˜*˜*-[CH3] 0.479 0.601

[CH3]-*˜*˜[a] 0.209 0.074

[C](=O)([C,c,O,S])[C,c,O,S] 0.400 0.558

O=[C]([C,c,O,S])[C,c,O,S] 0.403 0.144

[CD3H0,R](=[SD1H0])([ND2H1,R])([ND2H1,R]) 0.251 0.510

[SD1H0]=[CD3H0,R]([ND2H1,R])([ND2H1,R]) 0.242 0.076

[nD3H0,R](˜[OD1H0])(a)a 0.290 0.435

[OD1H0]˜[nD3H0,R](a)a 0.290 0.091

[R](-*(-*))˜*˜*˜*˜[a] 2.082 2.774

[a]˜*˜*˜*˜[R](-*(-*)) 1.764 0.906

c([OH])c([OH])c([OH]) 0.581 0.708

[OH]cc([OH])c([OH]) 0.581 0.274

c1([OH])c(O[CH3])cccc1 0.805 0.947

[OH]c1c(O[CH3])cccc1 0.797 0.169

c1([OH])ccc(O[CH3])cc1 0.74 0.922

[OH]c1ccc(O[CH3])cc1. 0.734 0.193

Examples for SMARTS without explicit hydrogens and recursive environments for which the Ullmann algorithm shows a superior run time compared to the VF2. Time
measurements are averages over 100.000 search repetitions in milliseconds. Times are shown for the original SMARTS formulation (top) and an optimized version
(bottom) according to our guidelines.

substructure formulation and seems to be more robust
in terms of run time outliers. Even though the VF2
is generally faster, both algorithms perform most sin-
gle substructure-molecule searches in times below one
millisecond, which seems acceptable for most cheminfor-
matics applications. Nevertheless, we recommend using
theVF2 algorithm formolecular substructure searching in
cheminformatics software because it shows a general run
time superiority of about one order of magnitude.
The syntactic formulation of a substructure in terms

of arrangement might be a critical point for the under-
lying subgraph isomorphism algorithm. Our experiments
show that the VF2 algorithm is sensitive to the substruc-
ture’s formulation while the Ullmann algorithm is not.
Therefore, other subgraph isomorphism algorithmsmight
show the same sensitivity and need to be experimentally
tested.
Fortunately, the subgraph reformulation rules as shown

here have not to be done by hand. The VF2 algorithm
is based on a precalculated node order which can be
manipulated following the reformulation rules. Due to the
sensitivity of the VF2 algorithm for node rearrangements,
the algorithm has further room for optimization.

Additional files

Additional file 1: Additional data (Additional file 1).
/datasets/smarts/literature Hs noRec.smarts. SMARTS substructures
with hydrogens and no recursion.
SMARTS substructure patterns with hydrogens and no recursive atom
environments.
/datasets/smarts/literature Hs rec.smarts. SMARTS substructures
with hydrogens and recursion.
SMARTS substructure patterns with hydrogens and with recursive atom
environments.
/datasets/smarts/literature noHs noRec.smarts. SMARTS
substructures without hydrogens and no recursion.
SMARTS substructure patterns without hydrogens and no recursive atom
environments.
/datasets/smarts/literature noHs rec.smarts. SMARTS substructures
without hydrogens and with recursion.
SMARTS substructure patterns without hydrogens and with recursive atom
environments.
/datasets/smarts/pains p m150 antioptimized.txt. PAINS
substructures anti-optimized. PAINS substructures as SMARTS in
anti-optimized formulation.
/datasets/smarts/pains p m150 antioptimized.txt. PAINS
substructures anti-optimized.
PAINS substructures as SMARTS in anti-optimized formulation.
/datasets/smarts/pains p m150 original.txt. PAINS substructures
original.
PAINS substructures as SMARTS in original formulation as obtained from
the literature.

http://www.biomedcentral.com/content/supplementary/1758-2946-4-13-S1.zip

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 15 of 17
http://www.jcheminf.com/content/4/1/13

/datasets/substructure search set/literature Hs noRec.smarts.
everything.benchmarkset. Substructure Search Set, explicit
hydrogens and no recursion, ZINC everything
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens but no recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature Hs rec.smarts.everything.
benchmarkset. Substructure Search Set, explicit hydrogens and with
recursion, ZINC everything.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens and recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs noRec.smarts.
everything.benchmarkset. Substructure Search Set, no explicit
hydrogens and no recursion, ZINC everything.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens or recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs rec.smarts.
everything.benchmarkset. Substructure Search Set, no explicit
hydrogens and with recursion, ZINC everything.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens but recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature Hs noRec.smarts.lead-
like.benchmarkset. Substructure Search Set, explicit hydrogens and
no recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens but no recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature Hs rec.smarts.lead-
like.benchmarkset. Substructure Search Set, explicit hydrogens and
with recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens and recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs noRec.smarts.lead-
like.benchmarkset. Substructure Search Set, no explicit hydrogens
and no recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens or recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs rec.smarts.lead-
like.benchmarkset. Substructure Search Set, no explicit hydrogens
and with recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens but recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs rec.smarts.lead-
like.benchmarkset. Substructure Search Set, no explicit hydrogens
and with recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens but recursive atom
environments. For each substructure pattern 100 molecules that contain

the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/molecule search set/literature noHs noRec.smarts.
everything.80.benchmarkset. Molecule Search Set ZINC everything.
Search set to test the run time influence of the substructure size.
Substructures are in SMARTS and do not include explicit hydrogen nodes
or recursive atom environments. For each molecule 80 substructures that
are contained in the molecule were selected at random from ZINC
everything. Molecules and substructures are given as space separated
SMILES and SMARTS.
/datasets/worst case.benchmarkset. Worst Case Set.
A worst-case substructure search scenario of searching for a phenyl-ring in
a highly symmetrical fullerene. Substructure and molecule are in SMARTS
and SMILES. /datasets/zinc lead-like 2011-02-12 first100k.smi. First
100k Molecules of ZINC lead-like.
The first 100.000 molecules of the ZINC lead-like database. Molecules are in
SMILES.
/results/molecule/allPlots.lead-like.all.eps. Molecule Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the substructure size. Plots are
box plots showing subgraph size vs. run time for Ullmann and VF2. Both
algorithms are set to find all occurrences of a substructure. Molecules were
chosen at random from ZINC lead-like.
/results/molecule/allPlots.lead-like.first.eps. Molecule Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the substructure size. Plots are
box plots showing subgraph size vs. run time for Ullmann and VF2. Both
algorithms are set to find first occurrences of a substructure. Molecules
were chosen at random from ZINC lead-like.
/results/subgraph/allPlots.lead-like.all.eps. Subgraph Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the molecule size. Plots are
box plots showing molecule size vs. run time for Ullmann and VF2. Both
algorithms are set to find all occurrences of a substructure. Molecules were
chosen at random from ZINC lead-like.
/results/subgraph/allPlots.lead-like.first.eps. Subgraph Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the molecule size. Plots are
box plots showing molecule size vs. run time for Ullmann and VF2. Both
algorithms are set to find first occurrences of a substructure. Molecules
were chosen at random from ZINC lead-like.

Additional file 2: Supplementary Information (Additional file 2).
Table S1. Profile over the number of property occurrences of all 1235
SMARTS sub-structures.
Table S2. Profile over the number of property occurrences of 738 SMARTS
substructures without explicit hydrogens.
Table S3. Profile over the number of property occurrences of 497 SMARTS
substructures with explicit hydrogens.
Table S4. Profile over the number of property occurrences of 936 SMARTS
substructures without recursive atom environments.
Table S5. Profile over the number of property occurrences of 299 SMARTS
substructures with recursive atom environments.
Table S6. Profile over the number of property occurrences of 504 SMARTS
substructures without hydrogen atoms and without recursion.
Table S7. Profile over the number of property occurrences of 234 SMARTS
substructures without hydrogen atoms and with recursion.
Table S8. Profile over the number of property occurrences of 432 SMARTS
substructures with hydrogen atoms and without recursion.
Table S9. Profile over the number of property occurrences of 65 SMARTS
substructures with hydrogen atom and with recursion.
Table S10. Profile over the number of property occurrences of 469
SMARTS substructures used in ZINC lead-like benchmark set.
Table S11. Profile over the number of property occurrences of 347
SMARTS substructures with no hydrogen atoms and no recursion in ZINC
lead-like benchmark set.
Table S12. Profile over the number of property occurrences of 48 SMARTS
substructures with no hydrogen atoms and recursion in ZINC lead-like
benchmark set.
Table S13. Profile over the number of property occurrences of 56 SMARTS

http://www.biomedcentral.com/content/supplementary/1758-2946-4-13-S2.pdf

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 16 of 17
http://www.jcheminf.com/content/4/1/13

substructures with hydrogen atoms and no recursion in ZINC lead-like
benchmark set.
Table S14. Profile over the number of property occurrences of 18 SMARTS
substructures with hydrogen atoms and recursion in ZINC lead-like
benchmark set.
Table S15. Profile over the number of property occurrences of 588
SMARTS substructures used in ZINC everything benchmark set.
Table S16. Profile over the number of property occurrences of 400
SMARTS substructures with no hydrogen atoms and no recursion in ZINC
everything benchmark set.
Table S17. Profile over the number of property occurrences of 106
SMARTS substructures with no hydrogen atoms and recursion in ZINC
everything benchmark set.
Table S18. Profile over the number of property occurrences of 43 SMARTS
substructures with hydrogen atoms and no recursion in ZINC everything
benchmark set.
Table S19. Profile over the number of property occurrences of 39 SMARTS
substructures with hydrogen atoms and recursion in ZINC everything
benchmark set.
Table S20. Profile over the number of property occurrences of 16 PAINS
patterns.
Table S21. Profile for all 2516375 from ZINC lead-like.
Table S22. Profile for all 14059666 form ZINC everything.
Table S23. Profile 61500 molecules selected from ZINC lead-like for the
substructure search set.
Table S24. Profile 76800 molecules selected from ZINC everything for
substructure search set.
Table S25. Profile first 100000 molecules selected from ZINC lead-like.
Table S26. Ullmann search times in seconds for PAINS substructures as
SMARTS in optimized formulation against the complete ZINC lead-like.
Scaling factors (SFs) represent the speed up in comparison to the
sequential time.
Table S27. VF2 search times in seconds for PAINS substructures as SMARTS
in optimized formulation against the complete ZINC lead-like. Scaling
factors (SFs) represent the speed up in comparison to the sequential time.
Table S28. Ullmann match times in seconds of the PAINS Substructure Set
against the complete ZINC lead-like database. All 16 PAINS are given in the
original, an optimized, and an anti-optimized substructure formulation in
the SI.
Table S29. VF2 match times in seconds of the PAINS Substructure Set
against the complete ZINC lead-like database. All 16 PAINS are given in the
original, an optimized, and an anti-optimized substructure formulation in
Table 30.
Table S30. SMARTS expressions used in optimization experiment given as
taken from literature (original), optimized by the given rule set (optimized)
and anti-optimized applying the rule set in reverse (anti-optimized).

Additional file 3: Supplementary Information (Additional file 3).
Figure S1. Depiction of SMARTS pattern with no explicit hydrogens and
no recursion (top-left), explicit hydrogens and no recursion (top-right), no
explicit hydrogens and recursion (bottom-left), and with explicit hydrogens
and recursive atom environments (bottom-right). Depictions are created
by SMARTSViewer [42].
Figure S2. Visual dipiction of PAINS patterns 1-4 created with
SMARTSViewer [42].
Figure S3. Visual dipiction of PAINS patterns 5-8 created with
SMARTSViewer [42].
Figure S4. Visual dipiction of PAINS patterns 9-12 created with
SMARTSViewer [42].
Figure S5. Visual dipiction of PAINS patterns 13-16 created with
SMARTSViewer [42].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
H-CE implemented the presented software components, collected the data
and performed the comparison studies. MR supervised the project. Both
authors read and approved the final manuscript.

Acknowledgements
Many thanks to Angela M. Henzler for revising the manuscript, Karen
Schomburg for the help on collecting the SMARTS expressions and Sascha
Urbaczek, J. Robert Fischer, Adrian Kolodzik, Tobias Lippert, and Matthias
Hilbig for their work on the molecule software components.

Received: 17 February 2012 Accepted: 27 April 2012
Published: 31 July 2012

References
1. Irwin J, Shoichet B: ZINC–a free database of commercially available

compounds for virtual screening. J Chem Inf Model 2005, 45:177–182.
2. Bolton EE, Wang Y, Thiessen PA, Bryant SH: Chapter 12 PubChem:

Integrated Platform of Small Molecules and Biological Activities. In
Annual Reports in Computational Chemistry Volume 4, Volume 4 of, Annual
Reports in Computational Chemistry. Edited by Wheeler RA, Spellmeyer DC:
Elsevier; 2008:217–241. [http://www.sciencedirect.com/science/article/
pii/S1574140008000121]

3. Sussenguth EH: A graph-theoretic algorithm for matching chemical
Structures. J ChemDocumentation 1965, 5:36–43. [http://pubs.acs.org/
doi/abs/10.1021/c160016a007]

4. Figueras J: Substructure search by set reduction. J Chem
Documentation 1972, 12(4):237–244. [http://pubs.acs.org/doi/abs/10.
1021/c160047a010]

5. Read RC, Corneil DG: The graph isomorphism disease. J Graph Theory
1977, 1(4):339–363. [http://dx.doi.org/10.1002/jgt.3190010410]

6. Gati G: Further annotated bibliography on the isomorphism disease.
J Graph Theory 1979, 3(2):95–109. [http://dx.doi.org/10.1002/jgt.
3190030202]

7. Ullmann JR: An algorithm for subgraph isomorphism. J Assoc Comput
Mach 1976, 23:31–42.

8. Attias R: DARC substructure search system: a new approach to
chemical information. J Chem Inf Comput Sci 1983, 23(3):102–108.
[http://pubs.acs.org/doi/abs/10.1021/ci00039a003]

9. Heyman J, Karasinskia E, Giles P: CAS information services for
medicinal chemists. Drug Inf J 1982, 16(4):185–190.

10. Willett P, Barnard JM, Downs GM: Chemical similarity searching. J Chem
Inf Model 1998, 38(6):983–996. [http://dx.doi.org/10.1021/ci9800211]

11. Cordella L, Foggia P, Sansone C, Vento M: Performance evaluation of
the VF graphmatching algorithm. In Image Analysis and Processing,
1999. Proceedings. International Conference on; 1999:1172–1177.

12. Cordella LP, Foggia P, Sansone C, Vento M: A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Trans Pattern Anal Machine
Intelligence 2004, 26(10):1367–1372.

13. Yan X, Yu PS, Han J: Proceedings of the 2005 ACM SIGMOD
international conference on, Management of data, SIGMOD ’05.
New York, NY, USA: ACM; 2005:766–777. [http://doi.acm.org/10.1145/
1066157.1066244]

14. Golovin A, Henrick K: Chemical substructure search in SQL. J Chem Inf
Model 2009, 49:22–27.

15. Willett P, Wilson T, Reddaway SF: Atom-by-atom searching using
massive parallelism. Implementation of the Ullmann subgraph
isomorphism algorithm on the distributed array processor. J Chem
Inf Comput Sci 1991, 31(2):225–233. [http://pubs.acs.org/doi/abs/10.1021/
ci00002a008]

16. Messmer BT: Efficient GraphMatching Algorithms 1995.
17. Foggia P, Sansone C, Vento M: A performance comparison of five

algorithms for graph isomorphism. Proc of the 3rd IAPR TC-15Workshop
on Graph-based Representations in Pattern Recognition 2001:188–199.

18. Brint AT, Willett P: Algorithms For the Identification of 3-dimensional
Maximal Common Substructures. J Chem Inf Comput Sci 1987,
27(4):152–158.

19. Downs GM, Lynch MF, Willett P, Manson GA, Wilson GA: Transputer
implementations of chemical substructure searching algorithms.
Tetrahedron ComputMethodology 1988, 1(3):207–217. [http://dx.doi.org/
10.1016/0898-5529(88)90026-7]

20. Barnard JM: Substructure searching methods: old and new. J Chem Inf
Comput Sci 1993, 33(4):532–538. [http://pubs.acs.org/doi/abs/10.1021/
ci00014a001]

21. Oprea TI: Chemoinformatics in drug discovery. Weinheim: Wiley-VCH; 2005:
76–79. chap. 4.4.2.1.

http://www.biomedcentral.com/content/supplementary/1758-2946-4-13-S3.zip
http://www.sciencedirect.com/science/article/pii/S1574140008 000121
http://www.sciencedirect.com/science/article/pii/S1574140008 000121
http://pubs.acs.org/doi/abs/10.1021/c160016a007
http://pubs.acs.org/doi/abs/10.1021/c160016a007
http://pubs.acs.org/doi/abs/10.1021/c160047a010
http://pubs.acs.org/doi/abs/10.1021/c160047a010
http://dx.doi.org/10.1002/jgt.3190010410
http://dx.doi.org/10.1002/jgt.3190030202
http://dx.doi.org/10.1002/jgt.3190030202
http://pubs.acs.org/doi/abs/10.1021/ci00039a003
http://dx.doi.org/10.1021/ci9800211
http://doi.acm.org/10.1145/1066157.1066244
http://doi.acm.org/10.1145/1066157.1066244
http://pubs.acs.org/doi/abs/10.1021/ci00002a008
http://pubs.acs.org/doi/abs/10.1021/ci00002a008
http://dx.doi.org/10.1016/0898-5529(88)90026-7
http://dx.doi.org/10.1016/0898-5529(88)90026-7
http://pubs.acs.org/doi/abs/10.1021/ci00014a001
http://pubs.acs.org/doi/abs/10.1021/ci00014a001

Ehrlich and Rarey Journal of Cheminformatics 2012, 4:13 Page 17 of 17
http://www.jcheminf.com/content/4/1/13

22. Agrafiotis DK, Lobanov VS, Shemanarev M, Rassokhin DN, Izrailev S, Jaeger
EP, Alex S, Farnum M: Efficient Substructure Searching of Large
Chemical Libraries: The ABCD Chemical Cartridge. J Chem Inf Model
2011, 51:3113-3130. [http://pubs.acs.org/doi/abs/10.1021/ci200413e]

23. Falkenhainer B, Forbus KD, Gentner D: The structure-mapping engine:
algorithm and examples. Artif Intelligence 1989, 41:1–63.

24. Tarjan RE: Graph Algorithms in Chemical Computation: American Chemical
Society; 1977: 1–20. chap. 2. [http://pubs.acs.org/doi/abs/10.1021/bk-
1977-0046.ch001]

25. Daylight Theory Manual, Daylight Chemical Information Systems Inc. 2011.
26. Ash S, Cline MA, Homer RW, Hurst T, Smith GB: SYBYL line notation

(SLN): A versatile language for chemical structure representation. J
Chem Inf Comput Sci 1997, 37:71–79.

27. Koniver DA, Wiswesser WJ, Usdin E:Wiswesser line notation: simplified
techniques for converting chemical structures to WLN. Science 1972,
176(4042):1437–1439. [http://dx.doi.org/10.1126/science.176.4042.1437]

28. Hann M, Hudson B, Lewell X, Lifely R, Miller L, Ramsden N: Strategic
pooling of compounds for high-throughput screening. J Chem Inf
Comput Sci 1999, 39(5):897–902. [http://pubs.acs.org/doi/abs/10.1021/
ci990423o]

29. Walters W, Murcko MA: Prediction of ‘drug-likeness’. Adv Drug Delivery
Rev 2002, 54(3):255–271. [http://www.sciencedirect.com/science/article/
pii/S0169409X02000030]. [Computational Methods for the Prediction of
ADME and Toxicity]

30. Abolmaali SFB, Wegner JK, Zell A: The compressed feature matrix - a
fast method for feature based substructure search. J Mol Model 2003,
9:235–241. [http://dx.doi.org/10.1007/s00894-003-0126-0].
[10.1007/s00894-003-0126-0]

31. Olah M, Bologa C, Oprea TI: An automated PLS search for biologically
relevant QSAR descriptors. J Comput Aided Mol Des 2004, 18:437–449.
[http://dx.doi.org/10.1007/s10822-004-4060-8].
[10.1007/s10822-004-4060-8]

32. Maass P, Schulz-Gasch T, Stahl M, Rarey M: Recore: a fast and versatile
method for scaffold hopping based on small molecule crystal
structure conformations. J Chem Inf Model 2007, 47(2):390–399. [http://
pubs.acs.org/doi/abs/10.1021/ci060094h]. [PMID: 17305328]

33. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M: On the art of
compiling and using ’drug-like’ chemical fragment spaces. Chem
Med Chem 2008, 3:1503-1507.

34. Ahmed HEA, Vogt M, Bajorath J: Design and evaluation of bonded
atom pair descriptors. J Chem Inf Model 2010, 50:487-499.

35. Daylight SMARTS examples; Daylight Chemical Information
Systems, Inc. Laguna Niguel, CA; http://www.daylight.com/
dayhtml tutorials/languages/smarts/smarts examples.html. Accessed
May 25, 2010.

36. Agrafiotis DK, Gibbs AC, Zhu F, Izrailev S, Martin E: Conformational
sampling of bioactive molecules: a comparative study. J Chem Inf
Model 2007, 47(3):1067–1086. [http://pubs.acs.org/doi/abs/10.1021/
ci6005454]. [PMID: 17411028]

37. Enoch SJ, Madden JC, Cronin MTD: Identification of mechanisms of
toxic action for skin sensitisation using a SMARTS pattern based
approach. SAR QSAR Environ Res 2008, 19(5-6):555–578. [http://dx.doi.
org/10.1080/10629360802348985]

38. Baell JB, Holloway GA: New substructure filters for removal of Pan
Assay Interference Compounds (PAINS) from screening libraries and
for their exclusion in Bioassays. J Med Chem 2010, 53(7):2719–2740.
[http://pubs.acs.org/doi/abs/10.1021/jm901137j]. [PMID: 20131845]

39. Ihlenfeldt WD, Takahashi Y, Abe H, ichi Sasaki S: Computation and
management of chemical properties in CACTVS: An extensible
networked approach toward modularity and compatibility. J Chem
Inf Comput Sci 1994, 34:109–116.

40. Xu J: GMA: a generic match algorithm for structural homomorphism,
isomorphism, andmaximal common substructurematch and its
applications. J Chem Inf Comput Sci 1996, 36:25–34. [http://pubs.acs.org/
doi/abs/10.1021/ci950061u]

41. Gasteiger J, Engel, T (Eds): Chemoinformatics: A Textbook. 1 edition.
Wiley-VCH; 2003. [http://www.worldcat.org/isbn/3527306811]

42. Schomburg K, Ehrlich HC, Stierand K, Rarey M: From structure diagrams
to visual chemical patterns. J Chem Inf Model 2010, 50(9):1529–1535.
[http://dx.doi.org/10.1021/ci100209a]

43. Ozawa K, Yasuda T, Fujita S: Substructure search with tree-structured
data. J Chem Inf Comput Sci 1997, 37(4):688–695. [http://pubs.acs.org/
doi/abs/10.1021/ci960378%2B]

44. Rughooputh SDDV, Rughooputh HCS: Neural network based chemical
structure indexing. J Chem Inf Comput Sci 2001, 41(3):713–717. [http://
pubs.acs.org/doi/abs/10.1021/ci000394d]

45. Miller MA: Chemical database techniques in drug discovery.
Nat Rev Drug Discov 2002, 1(3):220–227. [http://dx.doi.org/10.1038/
nrd745]

46. Jeliazkova N, Kochev N: AMBIT-SMARTS: efficient searching of
chemical structures and fragments. Mol Informatics 2011,
30(8):707–720. [http://dx.doi.org/10.1002/minf.201100028]

doi:10.1186/1758-2946-4-13
Cite this article as: Ehrlich and Rarey: Systematic benchmark of sub-
structure search in molecular graphs - From Ullmann to VF2. Journal of
Cheminformatics 2012 4:13.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://pubs.acs.org/doi/abs/10.1021/ci200413e
http://pubs.acs.org/doi/abs/10.1021/bk-1977-0046.ch001
http://pubs.acs.org/doi/abs/10.1021/bk-1977-0046.ch001
http://dx.doi.org/10.1126/science.176.4042.1437
http://pubs.acs.org/doi/abs/10.1021/ci990423o
http://pubs.acs.org/doi/abs/10.1021/ci990423o
http://www.sciencedirect.com/science/article/pii/S0169409X02 000030
http://www.sciencedirect.com/science/article/pii/S0169409X02 000030
http://dx.doi.org/10.1007/s00894-003-0126-0
http://dx.doi.org/10.1007/s10822-004-4060-8
http://pubs.acs.org/doi/abs/10.1021/ci060094h
http://pubs.acs.org/doi/abs/10.1021/ci060094h
http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
http://pubs.acs.org/doi/abs/10.1021/ci6005454
http://pubs.acs.org/doi/abs/10.1021/ci6005454
http://dx.doi.org/10.1080/10629360802348985
http://dx.doi.org/10.1080/10629360802348985
http://pubs.acs.org/doi/abs/10.1021/jm901137j
http://pubs.acs.org/doi/abs/10.1021/ci950061u
http://pubs.acs.org/doi/abs/10.1021/ci950061u
http://www.worldcat.org/isbn/3527306811
http://dx.doi.org/10.1021/ci100209a
http://pubs.acs.org/doi/abs/10.1021/ci960378%2B
http://pubs.acs.org/doi/abs/10.1021/ci960378%2B
http://pubs.acs.org/doi/abs/10.1021/ci000394d
http://pubs.acs.org/doi/abs/10.1021/ci000394d
http://dx.doi.org/10.1038/nrd745
http://dx.doi.org/10.1038/nrd745
http://dx.doi.org/10.1002/minf.201100028

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Preliminaries
	Graph theoretical background
	Subgraph isomorphism
	Molecular graphs
	Substructure graphs

	Substructure pattern languages
	Methods
	Ullmann algorithm
	VF2 Algorithm
	1
	2
	Substructure pattern formulation for efficient computation

	Data sets
	Substructure search set
	3
	Molecule search set
	PAINS substructure set
	Worst-case test

	Database subset
	Results and discussion
	Overall search speed
	Explicit vs. implicit hydrogens
	Recursion vs. no recursion
	Molecule size
	Subgraph size
	Worse-case test
	Complete database search
	Parallelization scaling
	SMARTS pattern case studies
	Ullman faster than VF2

	Conclusions
	Additional files
	Additional file 1

	*-22pt
	*-22pt
	Additional file 2

	*-22pt
	Additional file 3

	Competing interests
	Authors' contributions
	Acknowledgements
	References

