
SOFTWARE Open Access

LICSS - a chemical spreadsheet in microsoft excel
Kevin R Lawson1* and Jonty Lawson2

Abstract

Background: Representations of chemical datasets in spreadsheet format are important for ready data assimilation
and manipulation. In addition to the normal spreadsheet facilities, chemical spreadsheets need to have visualisable
chemical structures and data searchable by chemical as well as textual queries. Many such chemical spreadsheet
tools are available, some operating in the familiar Microsoft Excel environment. However, within this group, the
performance of Excel is often compromised, particularly in terms of the number of compounds which can usefully
be stored on a sheet.

Summary: LICSS is a lightweight chemical spreadsheet within Microsoft Excel for Windows. LICSS stores structures
solely as Smiles strings. Chemical operations are carried out by calling Java code modules which use the CDK,
JChemPaint and OPSIN libraries to provide cheminformatics functionality. Compounds in sheets or charts may be
visualised (individually or en masse), and sheets may be searched by substructure or similarity. All the molecular
descriptors available in CDK may be calculated for compounds (in batch or on-the-fly), and various cheminformatic
operations such as fingerprint calculation, Sammon mapping, clustering and R group table creation may be carried
out.
We detail here the features of LICSS and how they are implemented. We also explain the design criteria,
particularly in terms of potential corporate use, which led to this particular implementation.

Conclusions: LICSS is an Excel-based chemical spreadsheet with a difference:

• It can usefully be used on sheets containing hundreds of thousands of compounds; it doesn’t compromise the
normal performance of Microsoft Excel
• It is designed to be installed and run in environments in which users do not have admin privileges; installation
involves merely file copying, and sharing of LICSS sheets invokes automatic installation
• It is free and extensible
LICSS is open source software and we hope sufficient detail is provided here to enable developers to add their
own features and share with the community.

Introduction
The familiar Chemical Spreadsheet paradigm is an
extremely useful way of presenting structural informa-
tion together with calculated or measured structural
properties. Indeed, most software which handles or
stores chemical data will make available a tabular view
implementing at least some of the more common
spreadsheet functionality such as sorting by columns.
Many excellent chemical spreadsheet tools are

commercially available and there are also notable free-
ware/open source examples [1]. Most such software is
self-contained which, of course, gives the developers
maximum freedom of implementation. This approach
has certain potential disadvantages however, particularly
considered in the context of a corporate environment:

• An interested user needs to buy/download and
install the software. This of course is trivial in the
case of a ‘home’ or independent user but may pose
almost insurmountable challenges in a ‘locked-down’
corporate environment

* Correspondence: kevin.lawson@syngenta.com
1Syngenta Ltd. Jealotts Hill Research Centre, Bracknell, Berkshire, RG42 6EY,
UK
Full list of author information is available at the end of the article

Lawson and Lawson Journal of Cheminformatics 2012, 4:3
http://www.jcheminf.com/content/4/1/3

© 2012 Lawson and Lawson; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:kevin.lawson@syngenta.com
http://creativecommons.org/licenses/by/2.0

• The user must get to grips with an entirely new
piece of software overcoming a potentially steep
learning curve
• It is extremely difficult to provide spreadsheet fea-
tures (powerful calculated columns, visualisation,
macro language, etc) which begin to rival those of
the industry standard, Microsoft Excel - a program
already very familiar to target users.

The last point suggests a different approach in which
the chemistry engine is build on top of Excel. This tactic
appears extremely attractive partly because the potential
developer can concentrate on implementing chemical
functionality but also because of the ubiquity and power
of Excel. Two well-known realisations of this approach
are Isis for Excel [2] and Accord for Excel [3].
Solutions of this type are typically implemented as

Excel AddIns, using Visual Basic for Applications (VBA)
to interface with chemistry engines. Structures are
usually stored on the spreadsheets as some kind of
object (including structure-layout or image data) which
may be interpreted by the chemistry engine for visuali-
sation and calculation purposes. To ensure that struc-
ture objects display and sort properly, it is usually
necessary to intercept several of Excel’s fundamental
calls (such as the main calculation routine). This neces-
sity, together with the size of the stored objects, can
lead to rapid degradation of performance for spread-
sheets containing large numbers of structures.
Bearing the foregoing in mind, LICSS was designed to

appeal particularly to corporate users of Excel for Win-
dows. Because of one of the authors’ experience of cor-
porate locked-down environments and because LICSS
was to be a ‘hobby’ project, initially with just one spare-
time developer, some rather specific design criteria were
developed:

• LICSS should require no installation beyond file
copying. Users should be able to share spreadsheets
with fully automatic installation (if necessary)
• LICSS would implement chemistry functionality by
interfacing with the excellent CDK Java library [4,5]
(and the corresponding rendering package, JChem-
Paint [6])
• Structures should be stored purely as Smiles
strings in cells; structure rendering would be on-the-
fly
• LICSS spreadsheets would not intercept Excel’s
calculation calls
• An Excel add-in would not be used (they normally
need user installation and can require admin privi-
leges). Any necessary VBA would exist on each che-
mically-enabled spreadsheet.

User Implementation and Features
From a user’s point of view, LICSS is implemented as a
single Excel for Windows workbook with just one rou-
tine which allows chemical enabling of any suitable
spreadsheets (containing Smiles strings) and associated
charts (Figure 1). Once enabled, the spreadsheets are
entirely standalone, requiring no add-ins or any custo-
misation of Excel [7]. If shared with other users, or
moved to a workstation without LICSS installation, the
enabled sheets install LICSS seamlessly (if available in
some shared area) or, if necessary, prompt the user to
allow automatic file install from the LICSS project site
on Google projects [8].
LICSS-enabled sheets use JChemPaint to render

Smiles strings in a pop-up window (Figure 2). This is
activated by clicking directly on the Smiles string,
choosing a shortcut key to show the first structure on a
row, or by mouse hover over scatter chart data points. If
desired, users can also choose to display structures for
all visible cells (Figure 3). The routine which achieves
this calculates only which cells are currently visible to
the user and renders the structures for them on-the-fly.
This method ensures that even very large sheets (>
100,000 compounds) may be visualised without running
out of memory.
Clicking on the ‘LICSS Programs’ worksheet tab gives

access to a single menu making all other LICSS func-
tionality available (Figure 4).
Routines are currently available for substructure and

similarity searching, fingerprint generation (for faster
substructure searching), R Group table generation, Jar-
vis-Patrick clustering, Sammon map coordinate genera-
tion (see Figure 5 for a scatter plot created from LICSS-
generated Sammon map coordinates), diverse compound
picking, molecular descriptor calculation and conversion
of IUPAC names to Smiles (using the OPSIN Java
library [9]). New Excel formulas are also available - for
calculating molecular descriptors, molecular weight or
molecular formula and for determining whether one
Smiles string is a substructure of, or is similar to,
another Smiles string (within a defined threshold). Table
1 gives some indicative data for the performance a user
can expect from LICSS functionality.

Technical Implementation
The main enabling program is contained in an Excel for
Windows workbook (Excel 97-2003 format), EnableChe-
micalSpreadsheetV2.1.xls. It is written in VBA using the
VBA Extensibility library which allows the program to
copy code to and create code in the workbook being
enabled. Most code is simply copied from EnableChemi-
calspreadsheetV2.1.xls but some event handling routines
are created specifically for the workbook being enabled;

Lawson and Lawson Journal of Cheminformatics 2012, 4:3
http://www.jcheminf.com/content/4/1/3

Page 2 of 7

Figure 1 EnableChemicalSpreadsheetV2.1.xls. Choosing the “Select Workbook for Structure Display and Substructure Searching” button will
present user with a dropdown listing currently open workbooks together with their associated worksheets and charts which may be chemically-
enabled.

Figure 2 LICSS display of single compounds upon selecting cells from the Smiles column.

Lawson and Lawson Journal of Cheminformatics 2012, 4:3
http://www.jcheminf.com/content/4/1/3

Page 3 of 7

this makes possible features such as structure pop-up
upon mouse hover over chart data points for example.
The CDK and OPSIN Java libraries are accessed in

one of two ways. For batch processes (such as Substruc-
ture and Similarity searching) the relevant compounds
are first written to file in Smiles (SMI) file format (after
an in-sheet fingerprint search if necessary). Then an
executable JAR file, CDKSSWin.jar is synchronously
executed. This contains a number of routines

corresponding to each of the available LICSS programs
and taking appropriate input/output file and other con-
trol parameters. Each of these routines creates an output
file and terminates, whereupon the calling VBA pro-
cesses the output file appropriately. The synchronous
Jar file execution is done without a command line win-
dow through Javaw.exe and CDKSSWin.jar starts by
creating a pop-up Swing progress window. In this way,
the routines appear to run as part of Excel.

Figure 3 Display of multiple compounds in LICSS sheets.

Lawson and Lawson Journal of Cheminformatics 2012, 4:3
http://www.jcheminf.com/content/4/1/3

Page 4 of 7

Figure 4 LICSS main programs menu.

Figure 5 Sammon Projection of part of the Welcome Anti-Malarials data set calculated by LICSS. Single compound display on hovering
over chart data points is also shown.

Lawson and Lawson Journal of Cheminformatics 2012, 4:3
http://www.jcheminf.com/content/4/1/3

Page 5 of 7

CDK classes are widely used within CDKSSWin.jar to
provide cheminformatics methods (fingerprint generation,
substructure searching etc). Where available, existing open
source code was adapted to use the CDK minimising the
need to rewrite algorithms (eg for Jarvis Patrick clustering
and Sammon projection; see acknowledgments). Algo-
rithms for R-Group table generation, similarity searching
and diverse compound picking were written in-house.
Calls to JChemPaint, to display structure editing or

structure display windows, are handled quite differently.
Originally (version 1 x), the JChemPaint applet was used
inside a WebBrowser control within VBA. However, this
approach was not suitable for the rapid display of sev-
eral structures (eg for displaying all worksheet struc-
tures). From version 2.0 onwards, a JVM is run within
the Excel process space so calls to Java can be made
directly, without per action initialisation or context
switching overheads. Calls to Java of this type are made
possible by creating C++ proxies for each Java method
(contained within a single CDecl dll file, CDKInterfa-
ceDll.dll) using JNI via the open-source Jace project
technology [10]. The C++ proxy functions may then be
declared and called directly from VBA.
In practice, after one-off Java initialisation, this

approach enables extremely rapid access to Java routines
directly from VBA in Excel. Thus, for example, a user
can render a screen’s worth of structures from Smiles in
< 1 second. The same method has been used for all the

new Excel formulas - for example, on a 2.13 MHz lap-
top with 4 GB of memory running Vista, a formula
entry such as: ‘ = GetCDKDescriptor(C2,"XLogP”,1)’ will
calculate the XLogP descriptor for > 100 compounds
per second when copied down for a column of Smiles
strings (see also Table 1).

Conclusions
LICSS is an open source chemical spreadsheet imple-
mented in Microsoft Excel for Windows. It uses the
CDK, JChemPaint and OPSIN open source libraries to
provide cheminformatics functionality. LICSS-enabled
worksheets and charts are self-installing, requiring no
Add-Ins or anything that requires admin privileges.
Enabled sheets contain only Smiles strings (with
optional compact fingerprints) to represent chemistry
and do not slow down Excel’s calculation routines.
Structures are visualised by clicking on cells containing
Smiles strings or by hovering over enabled chart sheet
data points. Structures for all currently visible com-
pounds on a sheet may be simultaneously visualised ‘on-
the-fly’. These features mean that LICSS is suitable for
worksheets containing very large (100s of 1000s) of
compounds. In addition to basic visualisation and sub-
structure/similarity searching functionality, routines for
some more advanced analysis such as Sammon projec-
tion, R-Group table creation and Jarvis Patrick cluster-
ing are provided.

Table 1 Timings for common cheminformatics tasks using LICSS.

Dataset Operation Timing (m:s) Hits

[1] SSS (Sub Structure Search) with n1cnccc1 (Smarts matching) 0:13 76

[1] SSS with pyrimidine (sketcher) 0:05 76

[1] SSS with n1cnccc1 (Smarts matching/fingerprint pre-search) 0:04 76

[1] SSS with pyrimidine (sketcher/fingerprint pre-search) 0:03 76

[1] Fingerprint generation 0:13

[1] RGroupTable generation with Pyrimidine as core (sketcher) 0:06 (batch)
0:05 (formula)

[1] Jarvis Patrick clustering (generating 737 clusters) 0:19

[1] Sammon Map coordinate calculation 0:28

[1] Descriptor calculation (XLogP) 0:08

[2] SSS with Cc1cncnc1 (Smarts matching) 5:32 349

[2] SSS with 5-MePyrimidine (sketcher) 1:55 486 (includes cc1cncnc1
as well as Cc1cncnc1)

[2] SSS with Cc1cncnc1 (Smarts matching/fingerprint pre-search) 0:21 349

[2] SSS with 5-MePyrimidine (sketcher/fingerprint pre-search) 0:13 486

[2] Fingerprint generation 5:01

[2] RGroupTable generation (on Pyrimidine subset with Pyrimidine as core; sketcher) 0:28

[2] Descriptor calculation (XLogP) 4:37 (batch)
4:22 (formula)

Times refer to a 2.13 GHz laptop with 4 GB of memory running Vista/Microsoft Excel 2007.

Two datasets were used: [1]: a set containing ~1.6 k pesticidal compounds, [2]: a set containing ~27 k anti-malarial compounds.

Lawson and Lawson Journal of Cheminformatics 2012, 4:3
http://www.jcheminf.com/content/4/1/3

Page 6 of 7

Availability and Requirements
Project name: excel-cdk
Project home page: http://code.google.com/p/excel-

cdk/
Operating system: Windows (XP, Vista or Windows

7); Microsoft Excel for Windows (97 - 2010)
Programming languages: VBA, Java, C++
Other requirements (if compiling): Jace tools
License: GNU GPL v2
Any restrictions to use by non-academics: none

Acknowledgements
The authors would like to acknowledge the authors/developers of the
excellent Java libraries which LICSS makes extensive use of. In particular, the
CDK [4,5], JChemPaint [6] and OPSIN [9]. The latest version of LICSS also uses
rendering/copying code originally written by Rajarshi Guha. The new
rendering engine uses C++ proxying of Java classes and, for this, the JACE
engine is used [10]. Sammon mapping code was adapted from Java classes
originally written by Jarkko Miettinen (for MZMine) [11]. Clustering code was
adapted from Java classes provided by NIH [12]. R-Group Generation code
was written together with Tom Sheldon (ex Syngenta). The VBA Code
Module ‘Chart Series’ was written by John Walkenbach [13].

Author details
1Syngenta Ltd. Jealotts Hill Research Centre, Bracknell, Berkshire, RG42 6EY,
UK. 2DataLook Ltd. Highfield, Preston, PR25 5SD, UK.

Authors’ contributions
KRL is owner of the excel-cdk project and is the lead developer of LICSS. JL
wrote the Java/C++/VBA interface code (CDKInterfaceDll). Both authors have
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 14 December 2011 Accepted: 2 February 2012
Published: 2 February 2012

References
1. Rich Apodaca: Your Favorite Chemical Spreadsheet. [http://depth-first.

com/articles/2008/09/12/your-favorite-chemical-spreadsheet/].
2. Links to Chemistry Spreadsheets. [http://cds.dl.ac.uk/cds/

other_info_and_links/info6.html].
3. Desktop Cheminformatics Software. [http://accelrys.com/products/

informatics/desktop-software.html].
4. The Chemistry Development Kit. [http://sourceforge.net/projects/cdk].
5. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E: The

Chemistry Development Kit (CDK): an open-source Java library for
chemo-and bioinformatics. J Chem Inf Comput Sci 2003, 43:493-500.

6. JChemPaint. [http://sourceforge.net/apps/mediawiki/cdk/index.php?
title=JChemPaint].

7. LICSS system video. [http://www.screencast.com/t/Oy1cwtO0ht].
8. excel-cdk. [http://code.google.com/p/excel-cdk/].
9. OPSIN: Open Parser for Systematic IUPAC nomenclature. [http://OPSIN.ch.

cam.ac.uk/].
10. Jace. [http://code.google.com/p/jace/].
11. Katajamaa M, Miettinen J, Oresic M: MZmine: toolbox for processing and

visualization of mass spectrometry based molecular profile data.
Bioinformatics 2006, 22:634-636.

12. Informatic Tools. [http://nctt.nih.gov/page.cfm?pageID=27543665].
13. Walkenbach J: A Class Module to Manipulate a Chart Series. [http://

spreadsheetpage.com/index.php/tip/
a_class_module_to_manipulate_a_chart_series/].

doi:10.1186/1758-2946-4-3
Cite this article as: Lawson and Lawson: LICSS - a chemical spreadsheet
in microsoft excel. Journal of Cheminformatics 2012 4:3.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Lawson and Lawson Journal of Cheminformatics 2012, 4:3
http://www.jcheminf.com/content/4/1/3

Page 7 of 7

http://code.google.com/p/excel-cdk/
http://code.google.com/p/excel-cdk/
http://depth-first.com/articles/2008/09/12/your-favorite-chemical-spreadsheet/
http://depth-first.com/articles/2008/09/12/your-favorite-chemical-spreadsheet/
http://cds.dl.ac.uk/cds/other_info_and_links/info6.html
http://cds.dl.ac.uk/cds/other_info_and_links/info6.html
http://accelrys.com/products/informatics/desktop-software.html
http://accelrys.com/products/informatics/desktop-software.html
http://sourceforge.net/projects/cdk
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://sourceforge.net/apps/mediawiki/cdk/index.php?title=JChemPaint
http://sourceforge.net/apps/mediawiki/cdk/index.php?title=JChemPaint
http://www.screencast.com/t/Oy1cwtO0ht
http://code.google.com/p/excel-cdk/
http://OPSIN.ch.cam.ac.uk/
http://OPSIN.ch.cam.ac.uk/
http://code.google.com/p/jace/
http://www.ncbi.nlm.nih.gov/pubmed/16403790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16403790?dopt=Abstract
http://nctt.nih.gov/page.cfm?pageID=27543665
http://spreadsheetpage.com/index.php/tip/a_class_module_to_manipulate_a_chart_series/
http://spreadsheetpage.com/index.php/tip/a_class_module_to_manipulate_a_chart_series/
http://spreadsheetpage.com/index.php/tip/a_class_module_to_manipulate_a_chart_series/

	Abstract
	Background
	Summary
	Conclusions

	Introduction
	User Implementation and Features
	Technical Implementation

	Conclusions
	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

