
Svobodová Vařeková et al. Journal of Cheminformatics 2013, 5:18
http://www.jcheminf.com/content/5/18

RESEARCH ARTICLE Open Access

Predicting pKa values from EEM atomic
charges
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Abstract

The acid dissociation constant pKa is a very important molecular property, and there is a strong interest in the
development of reliable and fast methods for pKa prediction. We have evaluated the pKa prediction capabilities of
QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM).
Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation
schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we
generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then
calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge
calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the
non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both
dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality
criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved
as a good approach for the prediction of pKa (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As
expected, QM QSPR models provided more accurate pKa predictions than the EEM QSPR models but the differences
were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic
charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR
models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models.
The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM
QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM
QSPR models constitute a fast and accurate pKa prediction approach that can be used in virtual screening.
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Background
The acid dissociation constant pKa is an important molec-
ular property, and its values are of interest in pharma-
ceutical, chemical, biological and environmental research.
The pKa values have found application in many areas,
such as the evaluation and optimization of candidate
drug molecules [1-3], ADME profiling [4,5], pharmacoki-
netics [6], understanding of protein-ligand interactions
[7,8], etc.. Moreover, the key physicochemical properties
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like lipophilicity, solubility, and permeability are all pKa
dependent. For these reasons, pKa values are important
for virtual screening. Therefore, both the research com-
munity and pharmaceutical companies are interested in
the development of reliable and above all fast methods for
pKa prediction.
Several approaches for pKa prediction have been devel-

oped [8-11], namely LFER (Linear Free Energy Relation-
ships) methods [12,13], database methods, decision tree
methods [14], ab initio quantum mechanical calculations
[15,16], ANN (artificial neural networks) methods [17] or
QSPR (quantitative structure-property relationship) mod-
elling [18-20]. However, pKa values remain one of the
most challenging physicochemical properties to predict.
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A promising approach for pKa prediction is to use QSPR
models which employ partial atomic charges as descrip-
tors [21-24].
The partial atomic charges cannot be determined exper-

imentally and they are also not quantum mechanical
observables. For this reason, the rules for determining
partial atomic charges depend on their application (e.g.
molecularmechanics energy, pKa etc.), andmany different
methods have been developed for their calculation. The
charge calculation methods can be divided into two main
groups, namely quantum mechanical (QM) approaches
and empirical approaches.
The quantum mechanical approaches first calculate a

molecular wave function by a combination of some theory
level (e.g., HF, B3LYP, MP2) and basis set (e.g., STO-3G,
6–31G*), and then partition this wave function among the
atoms (i.e., the assignment of a specific part of themolecu-
lar electron density to each atom). This partitioning can be
done using an orbital-based population analysis, such as
MPA (Mulliken population analysis) [25,26], Löwdin pop-
ulation analysis [27] or NPA (natural population analysis)
[28]. Other partitioning approaches are based on a wave-
function-dependent physical observable. Such approaches
are, for example, AIM (atoms inmolecules) [29], Hirshfeld
population analysis [30] and electrostatic potential fitting
methods like CHELPG [31] orMK (Merz-Singh-Kollman)
[32]. Another partitioning method is the mapping of QM
atomic charges to reproduce charge-dependent observ-
ables (e.g., CM1, CM2, CM3 and CM4) [33].
Empirical approaches determine partial atomic charges

without calculating a quantum mechanical wave func-
tion for the given molecule. Therefore they are markedly
faster than QM approaches. One of the first empirical
approaches developed, CHARGE [34], performs a break-
down of the charge transmission by polar atoms into
one-bond, two-bond, and three-bond additive contribu-
tions. Most of the other empirical approaches have been
derived on the basis of the electronegativity equalization
principle. One group of these empirical approaches invoke
the Laplacian matrix formalism, and result in a redistri-
bution of electronegativity. Such methods are PEOE (par-
tial equalization of orbital electronegativity) [35], GDAC
(geometry-dependent atomic charge) [36], KCM (Kirch-
hoff charge model) [37], DENR (dynamic electronega-
tivity relaxation) [38] or TSEF (topologically symmetric
energy function) [38]. The second group of approaches
use full equalization of orbital electronegativity, and
such approaches are, for example, EEM (electronegativ-
ity equalization method) [39], QEq (charge equilibration)
[40] or SQE (split charge equilibration) [41]. The empirical
atomic charge calculation approaches can also be divided
into ’topological’ and ’geometrical’. Topological charges
are calculated using the 2D structure of the molecule, and
they are conformationally independent (i.e., CHARGE,

PEOE, KCM, DENR, and TSEF). Geometrical charges are
computed from the 3D structure of the molecule and they
consider the influence of conformation (i.e., GDAC, EEM,
Qeq, and SQE).
The prediction of pKa using QSPR models which

employ QM atomic charges was described in several
studies [21-24], which have analyzed the precision of
this approach and compared the quality of QSPR mod-
els based on different QM charge calculation schemes.
All these studies show that QM charges are successful
descriptors for pKa prediction, as the QSPR models based
on QM atomic charges are able to calculate pKa with high
accuracy. The weak point of QM charges is that their
calculation is very slow, as the computational complexity
is at least θ(E4), where E is the number of electrons in
the molecule. Therefore, pKa prediction by QSPR models
based on QM charges cannot be applied in virtual screen-
ing, as it is not feasible to compute QM atomic charges
for hundreds of thousands of compounds in a reasonable
time. This issue can be avoided if empirical charges are
used instead of QM charges. A few studies were published,
which give QSPR models for predicting pKa using topo-
logical empirical charges as descriptors (specifically PEOE
charges) [22,42,43]. But these models provided relatively
weak predictions.
The geometrical charges seem to be more promissing

descriptors, because they are able to take into consid-
eration the influence of the molecule’s conformation on
the atomic charges. The conformation of the atoms sur-
rounding the dissociating hydrogens strongly influences
the dissociation process, and also the atomic charges.
The EEM method is a geometrical empirical charge

calculation approach which can be useful for pKa predic-
tion by QSPR. This approach calculates charges using the
following equation system:
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where qi is the charge of atom i; Ri,j is the distance between
atoms i and j; Q is the total charge of the molecule; N is
the number of atoms in the molecule; χ is the molecular
electronegativity, and Ai, Bi and κ are empirical parame-
ters. These parameters are obtained by a parameterization
process, which uses QM atomic charges to calculate a
set of parameters for which EEM best reproduces these
QM charges. EEM is very popular, and despite the fact
that it was developed more than twenty years ago, new
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parameterizations [39,44-50] andmodifications [47,51,52]
of EEM are still under development. Its accuracy is com-
parable to the QM charge calculation approach for which
it was parameterized. Additionally, EEM is very fast, as
its computational complexity is θ(N3), where N is the
number of atoms in the molecule.
Therefore, in the present study, we focus on pKa pre-

diction using QSPR models which employ EEM charges.
Specifically, we created and evaluated QSPRmodels based
on EEM charges computed using 18 EEM parameter sets.
We also compared these QSPR models with correspond-
ing QSPR models which employ QM charges computed
by the same charge calculation schemes used for EEM
parameterization.

Methods
EEM parameter sets
In our study, we used all EEM parameters published till
now. Specifically, we found 18 different EEM parame-
ters sets, published in 8 different articles [39,44-50]. The
parameters cover two QM theory levels (HF and B3LYP),
two basis sets (STO-3G and 6–31G*) and six population
analyses (MPA, NPA, Hirshfeld, MK, CHELPG, AIM).
Unfortunately, only some combinations of QM theory lev-
els, basis sets and population analyses are available. On
the other hand, more parameter sets were published for
some combinations (i.e., 6 parameter sets for HF/STO-
3G/MPA). All the parameter sets include parameters for
C, O, N and H. Some sets include also parameters for S,
P, halogens and metals. Most of the sets do not include
parameters for C and N bonded by triple bond. Sum-
mary information about all these parameter sets is given
in Table 1.

EEM charge calculation
The EEM charges were calculated by the program EEM
SOLVER [53] using each of the 18 EEM parameter sets.

QM charge calculation
We calculated QM atomic charges for all the combina-
tions of QM theory level, basis set and population anal-
ysis for which we have EEM parameters (see Table 1).
Specifically, atomic charges were calculated for these eight
QM approaches: HF/STO-3G/MPA, HF/6–31G*/MK,
and B3LYP/6–31G* with MPA, NPA, Hirshfeld, MK,
CHELPG and AIM). The QM charge calculations were
carried out using Gaussian09 [54]. In the case of AIM pop-
ulation analysis, the output from Gaussian09 was further
processed by the software package AIMAll [55].

Data set for phenols
There are two main ways to create a QSPR model for a
feature to be predicted. The first is to create as general

a model as possible, with the risk that the accuracy of
such a model may not be high. The second approach
is to develop more models, each of them being dedi-
cated to a certain class of compounds. Here we took the
second approach, following a similar methodology as in
previous studies [21-24]. Specifically, we focus on substi-
tuted phenols, because they are the most common test set
molecules employed in the evaluation of novel pKa predic-
tion approaches [21-24,56-58]. Our data set contains the
3D structures of 74 distinct phenol molecules. This data
set is of high structural diversity and it covers molecules
with pKa values from 0.38 to 11.1. The molecules were
obtained from the NCI Open Database Compounds [59]
and their 3D structures were generated by CORINA 2.6
[60], without any further geometry optimization. Our data
set is a subset of the phenol data set used in our pre-
vious work related to pKa prediction from QM atomic
charges [24]. The subset is made up of phenols which
contain only C, O, N and H, and none of the molecules
contain triple bonds. This limitation is necessary, because
the EEM parameters of all 18 studied EEM parameter sets
are available only for such molecules (see Table 1). For
each phenol molecule from our data set, we also prepared
the structure of the dissociated form, where the hydrogen
is missing from the phenolic OH group. This dissociated
molecule was created by removing the hydrogen from
the original structure without subsequent geometry opti-
mization. The list of the molecules, including their names,
NCS numbers, CAS numbers and experimental pKa val-
ues, can be found in the (Additional file 1: Table S1a).
The SDF files with the 3D structures of molecules and
their dissociated forms are also in the (Additional file 2:
Molecules).

Data set for carboxylic acids
An aspect which is very important for the applicability of
the pKa prediction approach is its transferability to other
chemical classes. In this work, we provide a case study
showing the performance of the approach on carboxylic
acids, which are also very common testing molecules for
pKa prediction approaches [19-21,43]. The data set con-
tains 71 distinct molecules of carboxylic acids and their
dissociated forms. The 3D structures of these molecules
were obtained in the same way as for the phenols. The list
of the molecules, including their names, NCS numbers,
CAS numbers and experimental pKa values can be found
in the (Additional file 3: Table S1b). The SDF files with the
3D structures of themolecules and their dissociated forms
are also included in the (Additional file 2: Molecules).

pKa values
The experimental pKa values were taken from the
Physprop database [61].
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Table 1 Summary information about the EEM parameter sets used in the present study

QM theory level PA EEM parameter Published by Year of Elements included

+ basis set set name publication

HF/STO-3G MPA Svob2007 cbeg2 Svobodova et al. [44] 2007 C, O, N, H, S

Svob2007 cmet2 Svobodova et al. [44] 2007 C, O, N, H, S, Fe, Zn

Svob2007 chal2 Svobodova et al. [44] 2007 C, O, N, H, S, Br, Cl, F, I

Svob2007 hm2 Svobodova et al. [44] 2007 C, O, N, H, S, F, Cl, Br, I, Fe, Zn

Baek1991 Baekelandt et al. [45] 1991 C, O, N, H, P, Al, Si

Mort1986 Mortier et al. [39] 1986 C, O, N, H

HF/6–31G* MK Jir2008 hf Jirouskova et al. [46] 2008 C, O, N, H, S, F, Cl, Br, I, Zn

B3LYP/6–31G* MPA Chaves2006 Chaves et al. [47] 2006 C, O, N, H, F

Bult2002 mul Bultinck et al. [48] 2002 C, O, N, H, F

NPA Ouy2009 Ouyang et al. [49] 2009 C, O, N, H, F

Ouy2009 elem Ouyang et al. [49] 2009 C, O, N, H, F

Ouy2009 elemF Ouyang et al. [49] 2009 C, O, N, H, F

Bult2002 npa Bultinck et al. [48] 2002 C, O, N, H, F

Hir. Bult2002 hir Bultinck et al. [48] 2002 C, O, N, H, F

MK Jir2008 mk Jirouskova et al. [46] 2008 C, O, N, H, S, F, Cl, Br, I, Zn

Bult2002 mk Bultinck et al. [48] 2002 C, O, N, H, F

CHELPG Bult2002 che Bultinck et al. [48] 2002 C, O, N, H, F

AIM Bult2004 aim Bultinck et al. [50] 2004 C, O, N, H, F

Descriptors and QSPRmodels for phenols
Our descriptors were atomic charges. We analyzed two
types of QSPR models, namely QSPR models with three
descriptors (3d QSPRmodels) and QSPRmodels with five
descriptors (5d QSPR models).
The 3d QSPR models used those descriptors which

proved to be the most relevant for pKa prediction in our
previous study [24]. Therefore these descriptors were the
atomic charge of the hydrogen atom from the pheno-
lic OH group (qH ), the charge on the oxygen atom from
the phenolic OH group (qO), and the charge on the car-
bon atom binding the phenolic OH group (qC1). These
descriptors were used to establish the QSPRmodels by the
general equation:

pKa = pH · qH + pO · qO + pC1 · qC1 + p (2)

where pH , pO, pC1 and p are parameters of the QSPR
model (i.e., constants derived by multiple linear regres-
sion). The 5d QSPR models employ the above men-
tioned descriptors qH , qO and qC1 and additionally also
the charge on the phenoxide O− from the dissociated
molecule (qOD), and the charge on the carbon atom bind-
ing this oxygen (qC1D). Using the charges from the disso-
ciated molecules for pKa prediction was inspired by the
work of Dixon et al. [19]. The equation of the 5d QSPR
models is therefore:

pKa=p′
H ·qH+p′

O·qO+p′
C1·qC1+p′

OD·qOD+p′
C1D·qC1D+p′

(3)

where p′
H , p′

O, p
′
C1, p

′
OD, p

′
C1D and p′ are parameters of the

QSPR model.

Descriptors and QSPRmodels for carboxylic acids
The descriptors were again atomic charges and, similarly
as for phenols, two types of QSPR models were devel-
oped and evaluated. Specifically, QSPR models with four
descriptors (4d QSPR models) and QSPR models with
seven descriptors (7d QSPR models). The 4d QSPR mod-
els used similar descriptors as the 3d models for phenols -
the atomic charge of the hydrogen atom from the COOH
group (qH ), the charge on the hydrogen bound oxygen
atom from the COOH group (qO), and the charge on the
carbon atom binding the COOH group (qC1). Addition-
ally, also the charge of the second carboxyl oxygen (qO2) is
included. These 4d QSPR models are represented by the
equation:

pKa = pH · qH + pO · qO + pO2 · qO2 + pC1 · qC1 + p (4)

where pH , pO, pO2, pC1 and p are parameters of the QSPR
model. The 7d QSPR models employ also charges from
the dissociated forms, namely the charge on the carboxyl
oxygens (qOD, qO2D) and the charge on the carboxylic car-
bon atom (qC1D). The equation of the 7d QSPR models is
therefore:

pKa = p′
H · qH + p′

O · qO + p′
O2 · qO2 + p′

C1 · qC1
+ p′

OD · qOD + p′
O2D · qO2D + p′

C1D · qC1D + p′

(5)
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where p′
H , p′

O, p′
O2, p′

C1, p′
OD, p′

O2D, p′
C1D and p′ are

parameters of the QSPR model.

QSPRmodel parameterization
The parameterization of the QSPR models was done by
multiple linear regression (MLR) using the software tool
QSPR Designer [62].

Results and discussion
QM and EEM QSPRmodels for phenols
Weprepared one 3dQSPRmodel and one 5dQSPRmodel
using atomic charges calculated by each of the abovemen-
tioned 18 EEM parameter sets. These models are denoted
3d or 5d EEM QSPR models. Additionally, we created
one 3d and one 5d QSPR model using atomic charges
calculated by each of the corresponding 8 QM charge
calculation approaches (denoted as 3d or 5d QM QSPR
models). The data set of 74 phenol molecules was used
for the parameterization of the QSPR models, and the
obtained models were validated for all molecules in the
data set.
The parameterization of the 3d EEM QSPR models

showed that several molecules in the data set perform
as outliers. For this reason, we created also EEM QSPR
models without outliers (i.e., EEM QSPR models for
which parameterization was done using a data set that
excluded the previously observed outliers). These mod-
els are denoted 3d EEM QSPR WO models. We classified
as outliers 10% of the molecules from our data set, which
had the highest Cook’s square distance. Therefore the 3d
EEM QSPR WO models were parameterized using 67
molecules, and their validation was also done on the data
set excluding outliers.
The quality of the QSPR models, i.e. the correlation

between experimental pKa and the pKa calculated by each
model, was evaluated using the squared Pearson correla-
tion coefficient (R2), root mean square error (RMSE), and
average absolute pKa error (�), while the statistical crite-
ria were the standard deviation of the estimation (s) and
Fisher’s statistics of the regression (F).
Table 2 contains the quality criteria (R2, RMSE, �) and

statistical criteria (s and F) for all the QSPR models ana-
lyzed. All these models are statistically significant at p =
0.01. Since our data sets contained 74 and 67 molecules,
respectively, the appropriate F value to consider was that
for 60 samples. Thus, the 3d QSPR models are statisti-
cally significant (at p = 0.01) when F > 4.126 and the 5d
QSPR models when F > 3.339. Figure 1 summarizes the
R2 of all QSPR models for ease of visual comparison, and
Tables 3 and 4 provide a comparison of the models from
specific points of view. The parameters of the QSPR mod-
els are summarized in the (Additional file 4: Table S2) and
all charge descriptors and pKa values are contained in the
(Additional file 5: Table S6). The most relevant graphs of

correlation between experimental and calculated pKa are
visualized in Figure 2.

Prediction of pKa using EEM charges
The key question we wanted to answer in this paper
is whether EEM QSPR models are applicable for pKa
prediction. For this purpose we selected a set of phe-
nol molecules and generated QSPR models which used
EEM atomic charges as descriptors. We then evaluated
the accuracy of these models by comparing the predicted
pKa values with the experimental ones. The results (see
Tables 2 and 3, Figure 1) clearly show that QSPR mod-
els based on EEM charges are indeed able to predict the
pKa of phenols with very good accuracy. Namely, 63% of
the EEM QSPR models evaluated in this study were able
to predict pKa with R2 > 0.9. The average R2 for all 54
EEM QSPR models considered was 0.9, while the best
EEM QSPR model reached R2 = 0.924. Our findings thus
suggest that EEM atomic charges may prove as efficient
QSPR descriptors for pKa prediction. The only drawback
of EEM is that EEM parameters are currently not available
for some types of atoms. Nevertheless, EEM parameteri-
zation is still a topic of research, therefore more general
parameter sets are being developed.

Improvement of EEM QSPRmodels by removing outliers
The quality of 3d EEM QSPR models can be markedly
increased by removing the outliers. In this case, the mod-
els have average R2 = 0.911 and 83% of them have R2 >

0.9. The disadvantage of these models is that they are not
able to cover the complete data set (i.e., 10% of molecules
must be excluded as outliers).
On the other hand, the outliers are similar for all EEM

QSPR models. For example, while 16 molecules from our
data set are outliers for at least one parameter set, 10 out of
these 16 molecules are outliers for five or more parameter
sets. From the chemical point of view, most of the outliers
contain one or more nitro groups. This may be related
to reported lower accuracy of EEM for these groups [48].
In general one limitation of the 3d EEM QSPR models is
that they are very sensitive to the quality of EEM charges.
Therefore, if the EEM charges are inaccurate for certain
compounds or class of compounds, the 3d QSPR models
based on these EEM charges will have lower performance
for these compounds or class of compounds. In addition, a
lower experimental accuracy of these pKa values may also
be a reason for low performance in some cases. A table
containing information about outlier molecules is given in
the (Additional file 6: Table S3).

Improvement of EEM QSPRmodels by adding descriptors
Our first EEM QSPR models contained three descriptors
(3d), namely atomic charges originating from the non-
dissociated molecule. Nonetheless, in our study we found
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Table 2 Quality criteria and statistical criteria for all the QSPRmodels analyzed in the present study and focused on
phenols

QM theory level PA EEM parameter QSPRmodel R2 RMSE � s F

+ basis set set name

HF/STO-3G MPA - 3d QM 0.9515 0.490 0.388 0.504 458

- 5d QM 0.9657 0.412 0.310 0.430 358

Svob2007 cbeg2 3d EEM 0.8671 0.812 0.571 0.835 152

3d EEM WO 0.9239 0.482 0.382 0.497 255

5d EEM 0.9179 0.638 0.481 0.666 152

Svob2007 cmet2 3d EEM 0.8663 0.814 0.577 0.837 151

3d EEM WO 0.9239 0.482 0.386 0.497 255

5d EEM 0.9189 0.634 0.476 0.661 154

Svob2007 chal2 3d EEM 0.8737 0.792 0.554 0.814 161

3d EEM WO 0.9127 0.483 0.387 0.498 220

5d EEM 0.9203 0.629 0.473 0.656 157

Svob2007 hm2 3d EEM 0.8671 0.812 0.578 0.835 152

3d EEM WO 0.9241 0.481 0.387 0.496 256

5d EEM 0.9179 0.638 0.478 0.666 152

Baek1991 3d EEM 0.9099 0.669 0.531 0.688 236

3d EEM WO 0.9166 0.531 0.423 0.548 231

5d EEM 0.9195 0.632 0.493 0.659 155

Mort1986 3d EEM 0.8860 0.752 0.577 0.773 181

3d EEM WO 0.9151 0.520 0.405 0.536 226

5d EEM 0.9142 0.652 0.524 0.680 145

HF/6–31G* MK - 3d QM 0.8405 0.890 0.727 0.915 123

- 5d QM 0.8865 0.750 0.641 0.782 106

Jir2008 hf 3d EEM 0.8612 0.830 0.582 0.853 145

3d EEM WO 0.9182 0.500 0.394 0.516 236

5d EEM 0.9154 0.648 0.488 0.676 147

B3LYP/6–31G* MPA - 3d QM 0.9671 0.404 0.317 0.415 686

- 5d QM 0.9724 0.370 0.274 0.386 479

Chaves2006 3d EEM 0.891 0.735 0.570 0.756 191

3d EEM WO 0.9198 0.505 0.398 0.521 241

5d EEM 0.9192 0.633 0.489 0.660 155

Bult2002 mul 3d EEM 0.8876 0.747 0.589 0.768 184

3d EEM WO 0.9151 0.520 0.416 0.536 226

5d EEM 0.9158 0.646 0.504 0.674 148

B3LYP/6–31G* NPA - 3d QM 0.9590 0.451 0.349 0.464 546

- 5d QM 0.9680 0.399 0.295 0.416 411

Ouy2009 3d EEM 0.8731 0.793 0.541 0.815 161

3d EEM WO 0.9043 0.505 0.379 0.521 198

5d EEM 0.9094 0.670 0.503 0.699 137

Ouy2009 elem 3d EEM 0.8727 0.795 0.546 0.817 160

3d EEM WO 0.9113 0.487 0.382 0.502 216

5d EEM 0.9132 0.656 0.495 0.684 143

Ouy2009 elemF 3d EEM 0.8848 0.756 0.519 0.777 179

3d EEM WO 0.9012 0.512 0.386 0.528 192

5d EEM 0.8866 0.750 0.520 0.782 106
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Table 2 Quality criteria and statistical criteria for all the QSPRmodels analyzed in the present study and focused on
phenols (continued)

Bult2002 npa 3d EEM 0.9044 0.689 0.532 0.708 221

3d EEM WO 0.9098 0.523 0.405 0.539 212

5d EEM 0.9180 0.638 0.488 0.666 152

Hir. - 3d QM 0.9042 0.689 0.503 0.708 220

- 5d QM 0.9477 0.509 0.356 0.531 246

Bult2002 hir 3d EEM 0.8415 0.887 0.636 0.912 124

3d EEM WO 0.8838 0.579 0.414 0.597 160

5d EEM 0.9050 0.687 0.522 0.717 130

MK - 3d QM 0.8447 0.878 0.705 0.903 127

- 5d QM 0.8960 0.718 0.594 0.749 117

Jir2008 dft 3d EEM 0.8696 0.804 0.555 0.827 156

3d EEM WO 0.9224 0.487 0.371 0.502 250

5d EEM 0.9148 0.650 0.489 0.678 146

Bult2002 mk 3d EEM 0.8639 0.822 0.610 0.845 148

3d EEM WO 0.9053 0.519 0.384 0.535 201

5d EEM 0.9131 0.657 0.508 0.685 143

Chel. - 3d QM 0.8528 0.854 0.712 0.878 135

- 5d QM 0.9087 0.673 0.552 0.702 135

Bult2002 che 3d EEM 0.8695 0.805 0.597 0.828 155

3d EEM WO 0.8863 0.588 0.436 0.606 164

5d EEM 0.9057 0.684 0.540 0.714 131

AIM - 3d QM 0.9609 0.440 0.332 0.452 573

- 5d QM 0.9677 0.400 0.285 0.417 407

Bult2004 aim 3d EEM 0.8646 0.819 0.619 0.842 149

3d EEM WO 0.8972 0.590 0.438 0.608 183

5d EEM 0.9017 0.698 0.571 0.728 125

that using two additional charge descriptors from the dis-
sociated molecule can markedly improve the predictive
power of the EEM QSPR models. Tables 2 and 3, Figure 1
show that these new 5d EEMQSPRmodels provide better
pKa prediction than their corresponding 3d EEM QSPR
models. Specifically, adding the descriptors derived from
the dissociated molecules increased the average R2 value
for the EEM QSPR models from 0.876 to 0.913.

Comparison of EEM QSPRmodels and QMQSPRmodels
Another important question is how accurate the EEM
QSPR models are in comparison with QM QSPR mod-
els. Table 2 and Figure 1 show that QM QSPR models
provide, in most cases, more precise predictions. This is
confirmed also by the average R2 values from Table 3. This
is not surprising, since EEM is an empirical method which
just mimics the QM approach for which it was parame-
terized. An interesting fact is that the differences in accu-
racy between QM QSPR models and EEM QSPR models
are not substantial. For example, 5d EEM QSPR mod-
els have average R2 = 0.913, while 5d QM QSPR models

have average R2 = 0.951. We also note that adding more
descriptors to a QM QSPR model brings less improve-
ment than adding more descriptors to an EEM QSPR
model.

Influence of theory level and basis set
EEM parameters are available only for a relatively small
number of theory levels (HF and B3LYP) and basis sets
(STO-3G and 6–31G*). Therefore we can not perform
such a deep analysis of theory level and basis set influence
on pKa prediction capability from EEM atomic charges,
as was done for QM QSPR models by Gross et al. [22]
or Svobodova et al. [24]. We can only compare the mod-
els employing HF/STO-3G and B3LYP/6–31G* charges,
as these are the only combinations for which EEM param-
eters are available for the same population analysis (MPA).
Therefore we can study only the influence of the combina-
tion of theory level / basis set, and not the isolated influ-
ence of the theory level or basis set. Our analysis revealed
that B3LYP/6–31G* charges provide slightly more accu-
rate QM QSPR models than HF/STO-3G charges (see
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QM theory level PA EEM parameter R2 of QSPR model
+ basis set set name 3d EEM 3d EEM WO 5d EEM 3d QM 5d QM

HF/STO-3G MPA Svob2007 cbeg2 0.8671 0.9239 0.9179 0.9515 0.9657
Svob2007 cmet2 0.8663 0.9239 0.9189
Svob2007 chal2 0.8737 0.9127 0.9203
Svob2007 hm2 0.8671 0.9241 0.9179

Baek1991 0.9099 0.9166 0.9195
Mort1986 0.8860 0.9151 0.9142

HF/6-31G* MK Jir2008 hf 0.8696 0.9182 0.9154 0.8405 0.8865

B3LYP/6-31G* MPA Chaves 2006 0.8910 0.9198 0.9192 0.9671 0.9724
Bult2002 mul 0.8876 0.9151 0.9158

NPA Ouy2009 0.8731 0.9043 0.9094 0.9590 0.9680
Ouy2009 elem 0.8727 0.9113 0.9132

Ouy2009 elemF 0.8848 0.9012 0.8866
Bult2002 npa 0.9044 0.9098 0.9180

Hir. Bult2002 hir 0.8415 0.8838 0.9050 0.9042 0.9477
MK Jir2008 mk 0.8696 0.9224 0.9148 0.8447 0.8960

Bult2002 mk 0.8639 0.9053 0.9131
Chel. Bult2002 che 0.8695 0.8863 0.9057 0.8528 0.9087
AI M Bult2004 aim 0.8646 0.8972 0.9017 0.9609 0.9677

Legend excellent very good good satisfactory acceptable weak
R2 0.95– 0.97 0.92– 0.95 0.91– 0.92 0.9 – 0.91 0.85– 0.9 0.8 – 0.85

Figure 1 R2 for the correlation between calculated and experimental pKa.

Table 3 Average R2 between experimental and predicted pKa for all QSPRmodels of a certain type and percentages of
QSPRmodels whose R2 values are in a certain interval

QSPRmodel 3d EEM 3d EEMWO 5d EEM 3d QM 5d QM

Average R2 0.876 0.911 0.913 0.929 0.951

Interval of R2 R2 > 0.9 11% 83% 94% 78% 83%

0.9 ≥ R2 > 0.85 83% 17% 6% 6% 17%

0.85 ≥ R2 > 0.8 6% 0% 0% 17% 0%

QSPRmodel EEM basedmodels QM basedmodels

Average R2 0.900 0.940

Interval of R2 R2 > 0.9 63% 81%

0.9 ≥ R2 > 0.85 35% 13%

0.85 ≥ R2 > 0.8 2% 6%

Table 4 Average R2 between experimental and predicted pKa for all QSPRmodels using atomic charges calculated by a
specific combination of theory level and basis set, or by a specific population analysis

QSPRmodel 3d EEM 3d EEMWO 5d EEM 3d QM 5d QM

Theory level HF/STO-3G 0.878 0.919 0.918 0.952 0.966

and basis set * B3LYP/6–31G* 0.889 0.917 0.918 0.967 0.972

Population MPA 0.889 0.917 0.918 0.967 0.972

analysis ** NPA 0.884 0.907 0.907 0.959 0.968

Hirshfeld 0.842 0.884 0.905 0.904 0.948

MK 0.867 0.914 0.914 0.845 0.896

CHELPG 0.870 0.886 0.906 0.853 0.909

AIM 0.865 0.897 0.902 0.961 0.968

*Only QSPR models employing MPA were included in this analysis.
**Only QSPR models using B3LYP/6–31G* were included in this analysis.
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Figure 2 Correlation graphs. Graphs showing the correlation between experimental and calculated pKa for selected QSPR models.

Table 4). This is in agreement with our previous find-
ings [24], and it can be explained by the fact that 6–31G*
is a more robust basis set than STO-3G. However, the
difference is not marked in the case of EEMQSPRmodels.

Influence of population analysis
Eleven EEM parameter sets were published for B3LYP/6–
31G* with six different population analyses (see Table 1).
Therefore it is straightforward to analyze the influence
of the population analysis on the predictive power of the
resulting QSPR models (see Table 4). We found that MPA

and NPA provide the best QM models, while MK and
CHELPG (PAs based on fitting the atomic charges to the
molecular electrostatic potential) provide weak QMmod-
els. Our results are in agreement with previous studies
[22,24]. QM QSPR models based on AIM predict pKa
with accuracy comparable to MPA and NPA. In the case
of EEM QSPR models, we did indeed find that MPA pro-
vided the best models, but most of the other population
analyses gave comparable results. This confirms previ-
ous observations that the EEM approach is not able to
faithfully mimic MK charges [63]. On the other hand,
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Table 5 Comparison between the performance of the QSPRmodels developed here, and previously developedmodels

Theory Number of

Method level PA Basis set Descriptors R2 s F molecules Source

QM B3LYP NPA 6–311G** qOH 0.789 1.300 48 15 Kreye and Seybold [23]a

B3LYP NPA 6–311G** qO 0.731 1.500 38 15 Kreye and Seybold [23]a

B3LYP NPA 6–31+G* qOH 0.880 0.970 95 15 Kreye and Seybold [23]b

B3LYP NPA 6–31+G* qO 0.865 1.000 38 15 Kreye and Seybold [23]b

B3LYP NPA 6–311G(d,p) qO− 0.911 0.252 173 19 Gross and Seybold [22]

B3LYP NPA 6–311G(d,p) qH 0.887 0.283 134 19 Gross and Seybold [22]

B3LYP NPA 6–31G* qH , qO , qC1 0.961 0.440 986 124 Svobodova and Geidl [24]

B3LYP NPA 6–311G qH , qO , qC1 0.962 0.435 1013 124 Svobodova and Geidl [24]

B3LYP NPA 6–31G* qH , qO , qC1 0.959 0.464 545 74 This work

B3LYP NPA 6–31G* qH , qO , qC1, 0.968 0.410 705 74 This work

qOD , qC1D

EEM B3LYP NPA 6–31G* qH , qO , qC1, 0.918 0.656 261 74 This workc

qOD , qC1D

QM B3LYP MPA 6–311G(d,p) qH 0.913 0.248 179 19 Gross and Seybold [22]

B3LYP MPA 6–311G(d,p) qO− 0.894 0.274 144 19 Gross and Seybold [22]

B3LYP MPA 6–311G qH , qO , qC1 0.938 0.556 605 124 Svobodova and Geidl [24]

B3LYP MPA 6–31G* qH , qO , qC1 0.959 0.450 936 124 Svobodova and Geidl [24]

B3LYP MPA 6–31G* qH , qO , qC1 0.967 0.415 685 74 This work

B3LYP MPA 6–31G* qH , qO , qC1, 0.972 0.380 822 74 This work

qOD , qC1D

EEM B3LYP MPA 6–31G* qH , qO , qC1, 0.919 0.651 265 74 This workd

qOD , qC1D

QM B3LYP MK 6–311G(d,p) qH 0.344 0.682 9 19 Gross and Seybold [22]

B3LYP MK 6–311G(d,p) qO− 0.692 0.467 38 19 Gross and Seybold [22]

B3LYP MK 6–311G qH , qO , qC1 0.822 0.941 185 124 Svobodova and Geidl [24]

B3LYP MK 6–31G* qH , qO , qC1 0.808 0.978 168 124 Svobodova and Geidl [24]

B3LYP MK 6–31G* qH , qO , qC1 0.845 0.902 126 74 This work

B3LYP MK 6–31G* qH , qO , qC1 0.896 0.739 201 74 This work

qOD , qC1D

EEM B3LYP MK 6–31G* qH , qO , qC1 0.915 0.669 250 74 This worke

qOD , qC1D
aWith solvent model SM5.4.
bWith solvent model SM8.
cEEM parameter set Bult2002 npa.
dEEM parameter set Chaves2006.
eEEM parameter set Jir2008 mk.

this drawback of EEM allowed the EEM QSPR models
employing MK charges to predict pKa more accurately
than the corresponding QMQSPR models.

Influence of the EEM parameter set
Two or more EEM parameter sets are available in litera-
ture for four combinations of theory level, basis set and
population analysis (see Table 1). We found that the qual-
ity of EEM QSPR models employing the same types of

charges slightly varies when using EEM parameters com-
ing from different studies (see Table 2 and Figure 1). Even
EEM parameters from the same study, but obtained by
different approaches, lead to QSPR models of slightly dif-
ferent quality. In any case, these differences are minimal.

Comparison with previous work
QM QSPR models for pKa prediction in phenols, similar
to those presented in this paper (i.e., employing similar
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Table 6 Comparison of the quality criteria and statistical criteria for the training set, test set and complete set for some
selected charge calculation approaches

5d EEMQSPRmodel employing Svob2007 chal2 EEM parameters:

Complete set:

R2 RMSE s F Number of molecules

0.920 0.629 0.647 269 74

Cross-validation:

Cross- Training set Test set

validation Number of Number of

step R2 RMSE s F molecules R2 RMSE s F molecules

1 0.9283 0.5211 0.5498 137 59 0.9202 1.0754 1.3884 21 15

2 0.9210 0.6538 0.6899 124 59 0.9029 0.5394 0.6963 17 15

3 0.9191 0.6442 0.6796 120 59 0.9275 0.5823 0.7517 23 15

4 0.9207 0.6244 0.6588 123 59 0.9271 0.6878 0.8880 23 15

5 0.9274 0.6302 0.6643 138 60 0.9008 0.6678 0.8834 15 14

5d EEMQSPRmodel employing Ouy2009 elemF EEM parameters:

Complete set:

R2 RMSE s F Number of molecules

0.8866 0.7501 0.7825 106 74

Cross-validation:

Cross- Training set Test set

validation Number of Number of

step R2 RMSE s F molecules R2 RMSE s F molecules

1 0.8936 0.6349 0.6698 89 59 0.8704 1.2857 1.6598 12 15

2 0.8953 0.7526 0.7940 91 59 0.8018 0.7802 1.0072 7 15

3 0.8908 0.7481 0.7893 86 59 0.8647 0.7983 1.0306 12 15

4 0.8821 0.7614 0.8033 79 59 0.9154 0.7481 0.9658 19 15

5 0.8956 0.7557 0.7966 93 60 0.8089 0.8396 1.1107 7 14

charges) were previously published by Gross and Seybold
[22], Kreye and Seybold [23] and Svobodova and Geidl
[24]. Table 5 shows a comparison between these mod-
els and the models developed in this study. Our work is
the first which presents QSPR models for pKa prediction
based on EEM charges. Therefore, we can not provide
a comparison between EEM QSPR models, but we can
compare against QSPRmodels based onQM charges only.
It is seen therein that our 3d QM QSPR models show
markedly higher R2 and F values than the models pub-
lished by Gross and Seybold and Kreye and Seybold (even
if some of these models employ higher basis sets) and
comparable R2 and F values as models published by Svo-
bodova and Geidl. Moreover, our 5d QM QSPR models
outperform the models from Svobodova and Geidl. Our
best EEM QSPR models (i.e., 5d EEM QSPR models) pro-
vide even better results than QM QSPR models from
Gross and Seybold and Kreye and Seybold. These EEM
QSPR models are not as accurate as the QM QSPR mod-
els published by Svobodova and Geidl or those developed

in this work, but the loss of accuracy is not too high (R2

values are still > 0.91).

Cross-validation
Our results show that 5d EEM QSPR models provide a
fast and accurate approach for pKa prediction. Nonethe-
less, the robustness of these models should be proved.
Therefore, all the 5d EEM QSPR models (i.e., 18 models)
were tested by cross-validation. For comparison, also the
cross-validation of all 5d QM QSPR models (i.e., 8 mod-
els) was done. The k-fold cross-validation procedure was
used [64,65], where k = 5. Specifically, the set of phe-
nol molecules was divided into five parts (each contained
20% of the molecules). The division was done randomly,
and included stratification by pKa value. Afterwards, five
cross validation steps were performed. In the first step,
the first part was selected as a test set, and the remain-
ing four parts were taken together as the training set.
The test and training sets for the other steps were pre-
pared in a similar manner, by subsequently considering
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QM theory level PA EEM parameter R2 of QSPR model
+ basis set set name 7d EEM 7d QM

HF/STO-3G MPA Svob2007 cbeg2 0.8831 0.9327
Svob2007 cmet2 0.8810
Svob2007 chal2 0.8822
Svob2007 hm2 0.8793

Baek1991 0.9211
Mort1986 0.9176

B3LYP/6-31G* MPA Chaves2006 0.9238 0.9059
Bult2002 mul 0.9248

NPA Ouy2009 0.8825 0.9169
Ouy2009 elem 0.8777

Ouy2009 elemF 0.8478
Bult2002 npa 0.9094

Legend very good good satisfactory acceptable weak
R2 0.92– 0.95 0.91– 0.92 0.9 – 0.91 0.85– 0.9 0.8 – 0.85

Figure 3 Correlation between calculated and experimental pKa for carboxylic acids.

one part as a test set, while the remaining parts served as
a training set. For each step, the QSPR model was param-
eterized on the training set. Afterwards, the pKa values
of the respective test molecules were calculated via this
model, and compared with experimental pKa values. The
results are summarized in the (Additional file 7: Table
S4), while the cross-validation results for the best and the
worst performing 5d EEM QSPR models are shown in
Table 6. The cross-validation showed that the models are
stable and the values of R2 and RMSE are similar for the
test set, the training set and the complete set. The robust-
ness of EEM QSPR models and QM QSPR models is
comparable.

Case study for carboxylic acids
We have shown that QSPR models based on EEM atomic
charges can be used for predicting pKa in phenols. In
order to evaluate the general applicability of this approach
for pKa prediction, we tested the performance of such
models for carboxylic acids. This case study is done for
the charge schemes found to provide the best QM and
EEM QSPR models in the case of phenols. Specifically,
QM charges calculated by HF/STO-3G/MPA, B3LYP/6–
31G*/MPA and B3LYP/6–31G*/NPA, and EEM charges
calculated using the corresponding EEM parameters.
Because 5d QSPR models provide the most accurate pre-
diction for phenols, the case study is focused on their ana-
logue for carboxylic acids, i.e., 7d QSPR models. Squared
Pearson correlation coefficients of the analysed QSPR
models are summarized in Figure 3, and all the quality
and statistical criteria can be found in (Additional file 8:

Table S5). The results show that 7d EEMQSPRmodels are
able to predict the pKa of carboxylic acids with very good
accuracy. Namely, 5 out of 12 analysed 7d EEM QSPR
models were able to predict pKa with R2 > 0.9, while the
best EEMQSPRmodel reached R2 = 0.925. Therefore, we
concluded that EEM QSPR models are indeed applicable
also for carboxylic acids. Again QM QSPR models per-
form better than EEM QSPR models, but the differences
are not substantial.

Conclusions
We found that the QSPR models employing EEM charges
can be a suitable approach for pKa prediction. From our
54 EEM QSPR models focused on phenols, 63% show a
correlation of R2 > 0.9 between the experimental and pre-
dicted pKa. The most successful type of these EEM QSPR
models employed 5 descriptors, namely the atomic charge
of the hydrogen atom from the phenolic OH group, the
charge on the oxygen atom from the phenolic OH group,
the charge on the carbon atom binding the phenolic OH
group, the charge on the oxygen from the phenoxide O−
from the dissociated molecule, and the charge on the car-
bon atom binding this oxygen. Specifically, 94% of these
models have R2 > 0.9, and the best one has R2 = 0.920.
In general, including charge descriptors from dissociated
molecules, which was introduced in our work, always
increases the quality of a QSPRmodel. The only drawback
of EEMQSPRmodels is that the EEM parameters are cur-
rently not available for all types of atoms. Therefore the
EEM parameter sets need to be expanded to larger sets of
molecules and further improved.
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As expected, the QM QSPR models provided more
accurate pKa predictions than the EEM QSPR mod-
els. Nevertheless, these differences are not substantial.
Furthermore, a big advantage of EEM QSPR models is
that one can calculate the EEM charges markedly faster
than the QM charges. Moreover, the EEM QSPR models
are not so strongly influenced by the charge calcula-
tion approach as the QM QSPR models are. Specifi-
cally, the QM QSPR models which use atomic charges
obtained from calculations with higher basis set per-
form better, while the EEM QSPR models do not show
such marked differences. Similarly, the quality of QM
QSPR models depends a lot on population analysis,
but EEM QSPR models are not influenced so much.
Namely, QM QSPR models which use atomic charges cal-
culated from MPA, NPA and Hirshfeld PA performed
very well, while MK provides only weak models. In the
case of EEM QSPR models, MPA performs also the
best, but all other PAs (including MK) provide accu-
rate results as well. The source of the EEM parameters
also did not affect the quality of the EEM QSPR models
significantly.
The robustness of EEM QSPR models was successfully

confirmed by cross-validation. Specifically, the accuracy
of pKa prediction for the test, training and complete
set were comparable. The applicability of EEM QSPR
models for other chemical classes was tested in a case
study focused on carboxylic acids. This case study
showed that EEM QSPR models are indeed applicable
for pKa prediction also for carboxylic acids. Namely,
5 from 12 of these models were able to predict pKa
with R2 > 0.9, while the best EEM QSPR model reached
R2 = 0.925.
Therefore, EEMQSPRmodels constitute a very promis-

ing approach for the prediction of pKa. Their main advan-
tages are that they are accurate, and can predict pKa values
very quickly, since the atomic charge descriptors used in
the QSPR model can be obtained much faster by EEM
than by QM. Additionally, the quality of EEMQSPRmod-
els is less dependent on the type of atomic charges used
(theory level, basis set, population analysis) than in the
case of QMQSPR models. Accordingly, EEMQSPR mod-
els constitute a pKa prediction approach which is very
suitable for virtual screening.
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Sehnal D, Bouchal T, Abagyan R, Huber HJ, Koča J: Predicting pKa values
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