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Abstract

Fingerprint similarity is a common method for comparing chemical structures. Similarity is an appealing approach
because, with many fingerprint types, it provides intuitive results: a chemist looking at two molecules can understand
why they have been determined to be similar. This transparency is partially lost with the fuzzier similarity methods
that are often used for scaffold hopping and tends to vanish completely when molecular fingerprints are used as
inputs to machine-learning (ML) models. Here we present similarity maps, a straightforward and general strategy to
visualize the atomic contributions to the similarity between two molecules or the predicted probability of a ML
model. We show the application of similarity maps to a set of dopamine D3 receptor ligands using atom-pair and
circular fingerprints as well as two popular ML methods: random forests and naïve Bayes. An open-source
implementation of the method is provided.
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Background
Chemical structures are often represented by molecular
fingerprints where structural features are converted to
either bits in a bit vector or counts in a count vector.
This abstract representation allows the computationally
efficient handling and comparison of chemical struc-
tures. Using such fingerprints, the similarity between two
molecules can be calculated in a straightforward man-
ner with simple similarity metrics such as Tanimoto [1],
Dice [2], and so on. However, depending on the descrip-
tors used to generate the fingerprints, the interpretation
of the resulting similarity may not be trivial. This prob-
lem worsens when machine-learning (ML) models are
trained to predict the activity (or other properties) of
new compounds: ML models often appear as complete
“black boxes” that just output numeric predictions to their
users. Though these predictions can be quite accurate, it
has been shown that supplementing numeric predictions
with additional information from the model can improve
the ability of both expert and non-expert users to work
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with the results [3]. This provides substantial motivation
for the development of strategies to visualize the parts
of a molecule contributing to a similarity value or model
prediction.
Few visualization approaches for such models are

described in the literature. An early example is the visu-
alization of a modal fingerprint [4,5], which contains all
bits which are present in 50 - 100% of the molecules of
a training set. The atoms are colored based on the simi-
larity to the modal fingerprint, i.e. how many of the bits
set by the atom are present in the modal fingerprint.
Franke et al. [6] visualized the importance of three-point
pharmacophores (3PP) obtained from a trained support
vector machine (SVM) model by placing differently sized
spheres at the centre of the substructure leading to a 3PP.
The importance of each 3PP was calculated based on the
difference of SVM prediction for a molecule when this
3PP is removed. The interpretation of linear SVM mod-
els was also the goal of the heat map coloring scheme
developed by Rosenbaum et al. [7]. The SVM model was
trained using ECFP fingerprints and the authors focussed
solely on the coloring of bonds. The coloring was based
on the weights obtained from the SVM model, where
the final weight of a bond is the normalized sum of
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the weights of the fingerprints features containing this
bond. The color scheme was chosen such that red cor-
responds to the negative class and green to the positive
class with orange as zero. Another approach is the Glow-
ing Molecule visualization which has been used to show
the regions of a molecule which may have the most influ-
ence on ADME and physicochemical properties [8,9]. A
red glow indicates that this region has a positive influ-
ence on the property (i.e. the property value increases)
while a blue glow indicates a negative influence with green
representing no significant overall effect. Unfortunately, a
detailed description of the algorithm used for the Glowing
Molecule method were not provided and, since it is imple-
mented as part of a commercial product, the method is
not generally available.
Here, we present similarity maps, a general approach for

the visualization of both fingerprint similarities between
two molecules and machine-learning (ML) model predic-
tions. In our scheme, the “weight” of an atom is the sim-
ilarity or predicted-probability difference obtained when
the bits in the fingerprint corresponding to the atom are
removed, similar to the approach of Franke et al. [6].
The normalized weights are then used to color the atoms
in a topography-like map with green indicating a posi-
tive difference (i.e. the similarity or probability decreases
when the bits are removed) and pink indicating a negative
difference, gray represents no change. The visualization
is demonstrated for atom pairs and several types of cir-
cular fingerprints and subsequently used to explain the
factors leading to the predicted probability of a random
forest and a naïve Bayes model. All source code and data
required to reproduce the examples is provided in the
Additional file 1.

Implementation
A “weight” is determined for each atom of the test
molecule by removing the bits which are set by the atom
in the fingerprint of the test molecule, recalculating the
similarity between the modified fingerprint and the fin-
gerprint of the reference compound smod, and calculating
the difference to the original similarity �s = sorig - smod.
The fingerprints are calculated using the open-source
cheminformatics toolkit RDKit [10]. Dice [2] similarity is
used in the current implementation but any other simi-
larity metric could be employed. For AP (a count vector),
the bits of an atom i are straightforward to determine, the
count for each pair involving atom i is decreased by one.
In circular fingerprints, on the other hand, bits are set
for different atomic environments, starting at radius 0 up
to the maximum radius. In RDKit, the environment (i.e.
centre atom and radius) associated with each bit in a fin-
gerprint can be obtained when generating the fingerprint.
This information is used to determine all the bits where
the atom is part of the environment.

The procedure to calculate “atomic weights” for the sim-
ilarity between two molecules ref_mol and this_mol is
shown in pseudocode below,

Similarity maps can also be used to visualize the
atomic contributions to the predicted probability of a
ML model. The generation of the bitmap is the same as
before, depending on the kind of basic fingerprint used
to train the ML model. However, the “atomic weights” are
no longer similarity differences but predicted-probability
differences,

In the case of NB, the difference between the log-
arithmic probabilities is used. The ML methods were
calculated using the open-source toolkit scikit-learn [11].
To construct a similarity map, the atom weights are

normalized by dividing by the maximum absolute weight
value and then used to calculate bivariate Gaussian dis-
tributions centered at the corresponding atom positions.
The atom weights influence only the peak and not the
variance of the Gaussian distribution. The RDKit func-
tion for this makes use of the Python library mat-
plotlib [12]. The similarity map is then generated by
superimposing the atom coordinates with the Gaussian
distributions and the contours using a matplotlib
figure.

Results and discussion
The use of similarity maps is demonstrated using lig-
ands of the dopamine D3 receptor. The D3 receptor
is one of five subtypes that belong to the G protein-
coupled receptor (GPCR) superfamily. D3 receptor lig-
ands contain a positively charged group, usually a pro-
tonatable tertiary amine, which forms a structurally
and pharmacologically critical salt bridge to the car-
boxylate of Asp1103.32 as found by site-directed muta-
genesis [13] and confirmed by the crystal structure
[14]. Asp1103.32 is highly conserved in all aminergic
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Figure 1 Three dopamine D3 receptor ligands. Reference compound 1 and test molecules 2 and 3.

receptors. Three active molecules (activity smaller than
10 μM) of the D3 receptor (ChEMBL [15,16] target
ID 130) from three different scientific papers [17-19]
were extracted from the ChEMBL database (Figure 1).
Molecule 1 was selected as reference compound and the
other two as test molecules.

Standard fingerprints
The similarity between the reference compound 1 and the
test molecules was calculated using four different 2D fin-
gerprints: atom pairs (AP) [20], circular fingerprint [21]
with radius 2 as bit vector (Morgan2) and as count vector
(CountMorgan2), and feature-based circular fingerprint
[21] with radius 2 as bit vector (FeatMorgan2). The fin-
gerprints are described in detail in [22]. Morgan2 is the
RDKit implementation of the familiar ECFP4, CountMor-
gan2 corresponds to ECFC4 and FeatMorgan2 to FCFP4
[23]. The features used by the RDKit for FeatMorgan2
are adapted from [24] and consist of donors, acceptors,
aromatic atoms, halogens, basic and acidic atoms. The
numerical similarity and maximum differences obtained
for the four fingerprints are given in Table 1.
The similarity maps of molecules 2 and 3 using the AP

fingerprint are shown in Figure 2. An atom in the AP
fingerprint sees all other atoms (if the path is maximum
30 bonds). Atoms with green weights have a majority of
paths which are also in the reference compound; delet-
ing them from the fingerprint reduces the similarity to
the reference compound. The similarity maps in Figure 2
are consistent with our expectations. For molecule 2,
atoms in the phenyl rings, the piperazine moiety and the
alkyl linker were found important for similarity, whereas

removing the bits of the nitrogens in the quinoxaline moi-
ety, the oxygen in the benzofuran moiety, or the amide
increased the similarity. Also for molecule 3, atoms in the
alkyl linker and partly in the piperazinemoiety were found
to be most important for similarity.
The similarity maps of the circular fingerprints,

Morgan2, CountMorgan2 and FeatMorgan2, are shown in
Figure 3. In circular fingerprints, an atom sees only a local
environment. Again, the piperazine moiety together with
the alkyl linker as well as part of the 7-methoxybenzofuran
are highlighted green in molecule 2 for all three vari-
ants of the circular fingerprint. Interestingly, the pyrazine
part of quinoxaline and the amide appear more pink for
CountMorgan2 than for Morgan2. In the first case, one
can observe the difference between using a count vec-
tor and a bit vector. Using CountMorgan2, the count
of the radius-0 bit of the unsubstituted carbons of the
pyrazine moiety is 11 for the reference compound and
nine for molecule 2, the count of the radius-1 bit is zero
and two. Using Morgan2, the radius-0 bit is set to one
in both molecules, whereas the radius-1 bit is zero in
the reference compound and one in molecule 2. Remov-
ing the radius-1 bit or decreasing its count will increase
the similarity. Removing the radius-0 bit will decrease the
similarity, whereas decreasing its count from nine to eight
will only have a very small effect on similarity. Thus, the
overall “atomic weight” of these carbons is negative (pink)
for CountMorgan2, but neutral for Morgan2. The rea-
son for the different appearance of the amide bond, on
the other hand, is a hash collision (Figure 4) in the Mor-
gan2 fingerprint: an environment of the amide moiety is
hashed to the same bit as a part of the alkyl linker. The

Table 1 Dice similarities andmaximumweights

FP sDice Max. Weight Method PP Max. Weight

2 3 2 3 2 3 2 3

AP 0.604 0.531 0.028 0.033 RF(Morgan2) 0.950 0.600 0.660 0.370

Morgan2 0.561 0.381 0.123 0.110 NB(Morgan2) 1.000 0.999 12.5 20.92

CountMorgan2 0.599 0.529 0.091 0.049

FeatMorgan2 0.554 0.469 0.176 0.171

Dice similarity sDice and maximumweight between reference compound 1 and molecules 2 and 3 using the basic fingerprints (FP) atom pairs (AP), Morgan fingerprint
as bit vector with radius 2 (Morgan2), Morgan fingerprint as count vector with radius 2 (CountMorgan2) and Feature Morgan fingerprint with radius 2 (FeatMorgan2).
Predicted probability to be active (PP) and maximumweight for random forest (RF) and naïve Bayes (NB) for molecules 2 and 3with basic fingerprint Morgan2. The bit
vectors of the circular fingerprints had the size 1024 bits. The default maximum path length of 30 was used for AP.
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Figure 2 Similarity maps for atom-pairs (AP) fingerprint. Similarity map of molecule 2 (middle) and molecule 3 (right) using AP. The reference
compound is molecule 1 (left). Color scheme: removing bits decreases similarity (i.e. positive difference) (green), no change in similarity (gray),
removing bits increases similarity (i.e. negative difference) (pink). The default maximum path length of 30 was used for AP.

same effect can be observed for molecule 3. This collision
appears only in Morgan2, which is hashed to a size of 210
bits whereas CountMorgan2 uses 232 bits. It is generally
important to use a sufficiently large hash space as colli-
sions can impact the performance of a fingerprint [25].
However, the occurrence of collisions is also dependent
on the hashing algorithm used. For Morgan2, increasing
the bit-vector size from 210 bits to 214 bits had no influ-
ence on the performance [22], and also in the current case

doubling the hash space (i.e. 211 bits) did not remove the
observed collision (data not shown).
The features in the reference compound are aro-

matic rings, two acceptors and two basic acceptors.
These features are marked green in the right panels
in Figure 3 for both molecules. Removing the aro-
matic acceptors or the donor in the molecules, on the
other hand, increased the similarity to the reference
compound. Interestingly, one carbon of the piperazine

Figure 3 Similarity maps for circular fingerprints. Similarity map of molecule 2 (middle) and molecule 3 (bottom) using Morgan2 (left),
CountMorgan2 (middle) and FeatMorgan2 (right). The reference compound is molecule 1 (left panel in Figure 2). Color scheme: removing bits
decreases similarity (i.e. positive difference) (green), no change in similarity (gray), removing bits increases similarity (i.e. negative difference) (pink).
The bit vectors of the circular fingerprints had the size 1024 bits.
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Figure 4 Bit collision in Morgan2/CountMorgan2. Bit Collision in the Morgan2 and CountMorgan2 fingerprint observed for molecule 2 (and
analoguously in molecule 3). The environments highlighted red and blue are hashed to the same bit. The centre atom of an environment is marked
with a star.

moiety in molecule 3 is highlighted pink using CountMor-
gan2 (and to a lesser extent using Morgan2) whereas it is
green using FeatMorgan2. For (Count)Morgan2, the atom
type of this carbon is different than the atom types of the
other carbons as the number of heavy-atom neighbours

and the number of hydrogens is different. Using features
(donor, acceptor, aromatic, basic, acidic, no-feature), how-
ever, the number of neighbours and hydrogens are not
considered, thus the feature type (i.e. no-feature) is the
same for all carbons in the piperazine.

Figure 5 Similarity maps for machine-learning methods. Similarity map of molecule 2 (top) and molecule 3 (bottom) using RF(Morgan2) (left)
and NB(Morgan2) (right). Color scheme: removing bits decreases similarity (i.e. positive difference) (green), no change in similarity (gray), removing
bits increases similarity (i.e. negative difference) (pink). The bit-vector size of Morgan2 was 1024 bits.
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Machine-learning methods
Two kinds of machine-learning (ML) methods, random
forest (RF) and naïve Bayes (NB), were trained and used
to predict the probability to be active of new molecules.
The reference compound and the other active molecules
(activity smaller than 10 μM) from Ref. [17] (Figure S1
in Additional file 2) were used together with randomly
selected 10% of the 10000 ChEMBL decoys used in a
recent benchmarking study [22] to train the ML mod-
els. Morgan2 was used as the standard fingerprint. The
following optimal parameters of random forests have
been determined through a grid search: number of trees
(NT ) = 100, maximum depth = 2, minimum samples to
split = 2 and minimum samples per leaf = 1. To avoid
the problems caused by imbalance in the training set (i.e.
many more inactives than actives) for RFs, the balanced
random forest algorithm [26] was applied: for each deci-
sion tree the majority class is down-sampled to yield an
equal number of instances as the minority class. The naïve
Bayes classifier was trained using an additive Laplace
smoothing parameter of 1.0 and learned class prior
probabilities.
The similarity maps (or predicted probability maps,

respectively) for the RF model trained with Morgan2 are
shown in the left panels of Figure 5. For both molecules,
the RF picked up the piperazine moiety with the attached
alkyl chain and part of the aromatic fragment. Look-
ing at the active molecules of Ref. [17] (Figure S1 in
Additional file 2) confirms that the aromatic ring - piper-
azine - alkyl chain motif appears in the vast majority of
active compounds. Thus, the RFmodel was able to extract
the important structural feature for activity: the nitrogen
in the piperazine moiety is protonated at physiological pH
and forms the critical salt bridge with Asp1103.32 of the
receptor [13,14].
Similar findings were obtained for the NB model (right

panels in Figure 5). Again, the piperazine moiety was
found to be most important.

Conclusions
Similarity maps are an easy and general strategy for
the visualization of the atomic origins of fingerprint
similarity between molecules. The “atomic weights” are
generated by removing the bits belonging to the cor-
responding atom and comparing the resulting similar-
ity with the similarity of the unmodified fingerprint.
Similarity maps can be generated for every fingerprint
that allows a backtracking of the bits to a correspond-
ing atom or substructure. The methodology can be
extended to machine-learning (ML) models to visualize
the atomic contributions to the predicted probability of
the ML model. This is especially useful as ML mod-
els often appear as black boxes. In future work, we will
investigate the application of the visualization strategy

to descriptor-based models for physicochemical-property
prediction.

Availability and requirements
The source code is provided in Additional file 1. The
implementation used the open-source Python toolkits
RDKit [10] version 2013.03, scikit-learn [11] version 0.13,
and matplotlib [12] version 1.1.0.

Additional files

Additional file 1: Source Code. The file python_scripts.zip contains the
source code of the visualization method and the SMILES of the
compounds used to generate the figures in the publication.

Additional file 2: Supplementary Figures and Tables. The file
supplementary.pdf contains the additional figure mentioned in the text.
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