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Abstract

Background: To study the chemical determinants of small molecule transport inside cells, it is crucial to visualize
relationships between the chemical structure of small molecules and their associated subcellular distribution
patterns. For this purpose, we experimented with cells incubated with a synthetic combinatorial library of
fluorescent, membrane-permeant small molecule chemical agents. With an automated high content screening
instrument, the intracellular distribution patterns of these chemical agents were microscopically captured in image
data sets, and analyzed off-line with machine vision and cheminformatics algorithms. Nevertheless, it remained
challenging to interpret correlations linking the structure and properties of chemical agents to their subcellular
localization patterns in large numbers of cells, captured across large number of images.

Results: To address this challenge, we constructed a Multidimensional Online Virtual Image Display (MOVID)
visualization platform using off-the-shelf hardware and software components. For analysis, the image data set
acquired from cells incubated with a combinatorial library of fluorescent molecular probes was sorted based on
quantitative relationships between the chemical structures, physicochemical properties or predicted subcellular
distribution patterns. MOVID enabled visual inspection of the sorted, multidimensional image arrays: Using a
multipanel desktop liquid crystal display (LCD) and an avatar as a graphical user interface, the resolution of the
images was automatically adjusted to the avatar’s distance, allowing the viewer to rapidly navigate through high
resolution image arrays, zooming in and out of the images to inspect and annotate individual cells exhibiting
interesting staining patterns. In this manner, MOVID facilitated visualization and interpretation of quantitative
structure-localization relationship studies. MOVID also facilitated direct, intuitive exploration of the relationship
between the chemical structures of the probes and their microscopic, subcellular staining patterns.

Conclusion: MOVID can provide a practical, graphical user interface and computer-assisted image data visualization
platform to facilitate bioimage data mining and cheminformatics analysis of high content, phenotypic screening
experiments.
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Background
Combinatorial libraries of prospective, organelle-targeted
small molecule fluorescent probes have served as treasure
troves of optical sensors of cell physiology [1-11]. Until
recently, development of live cell imaging probes relied
mostly on qualitative, manual microscopic observations of
stained cells. With the invention of high content scree-
ning systems [12-18], microscopic imaging experiments
can be automated, so that image data sets can be ac-
quired from cells incubated with hundreds or thousands
of candidate bioimaging probes, with the click of a but-
ton [5,14,16,17,19,20]. Nevertheless, the ability to iden-
tify trends in staining patterns across large numbers of
probes and to link these trends to specific variations in
the structure or physicochemical properties of the
chemical agents has remained a major challenge. For
bioimaging probe discovery and optimization efforts,
data acquisition has been greatly facilitated by advances
in combinatorial chemical synthesis and robotic screen-
ing technology as well as machine vision and chemin-
formatics analysis. Nevertheless, for bioimaging probe
development, the ability to interpret machine vision and
cheminformatics results based on visually recognizable,
cellular staining patterns assessed by human viewers is
essential.
Integrating advances in the cognate fields of chem-

informatics and bioimage informatics [15,21-23], our re-
search group has been developing computational tools to
address the data mining challenges inherent to complex
phenotypic screening experiments, such as bioimaging
probe discovery and development efforts [6,24-27]. In
2003, we began cell-based screening experiments invol-
ving a combinatorial libraries of cell permeant, organelle-
targeted fluorescent compounds [25]. For data mining, we
began integrating machine vision [13,27-30] and chem-
informatics approaches [13,24,27-31]. We demonstrated
the ability to link the different chemical building blocks of
small molecule bioimaging probes to the resulting staining
patterns by applying multivariate regression approaches
[24,28,29]. Independently, we developed predictive mo-
dels linking the physicochemical properties of small
molecule chemical agents to their subcellular distribu-
tion [30,32-34] to facilitate discovery and development
of in vivo, site-directed bioimaging probes [35,36].
In spite of all these advances, the human observer still

plays an important role in the discovery of new classes
of bioimaging probes [27,29] because ultimately, staining
patterns have to be recognizable, interpretable and me-
chanistically meaningful to the human eye. Furthermore,
without visual validation, unsupervised image analysis
can be affected by many potential imaging artifacts
including focus drift, motion blur or the presence of in-
soluble precipitates or aggregates, which affects the in-
terpretation of cell-associated staining patterns. On their
own, machine vision algorithms may lead to misleading
or erroneous interpretations because of inaccurate object
segmentation, image registration, and other sources of
error. Therefore, to facilitate visual inspection of large
image data sets of probe screening experiments, we de-
cided to construct MOVID: a practical, cheminformatics
and machine vision-assisted, virtual reality-based image
visualization platform, built from off-the-shelf hardware
and software components. Here, we demonstrate how
MOVID can be used to interpret the staining patterns of
a combinatorial library of small molecule fluorescent
probes of cellular transport, relating these patterns to
the chemical structure, physicochemical properties and
the predicted subcellular localization patterns of the
probes.

Experimental
Acquisition of image data sets
Image data was obtained from HeLa cells incubated in the
presence of 1,344 fluorescent styryl compounds synthe-
sized by conjugating one of eight pyridinium or quino-
linium groups (A-H) to one of 168 aldehyde groups
(1-168) [27,28]. All 8 × 168 combinations were screened
using a Kineticscan™ instrument (Cellomics, Inc., Pitts-
burgh, PA) to acquire images using the 20X objective of
the instrument [27,28]. The cell permeant DNA stain
Hoechst™ 33342 (“Hoechst”) was included in the media, as
an orthogonal reference marker which labeled the cell
nuclei to allow segmenting the individual cells in the im-
ages [27,28]. From each probe, twelve images were
obtained. Six images were acquired after one hour incuba-
tion with the probe, and another six images where
acquired after the probe was removed from the extracellu-
lar medium. The images were 512 × 512 pixels, with pixel
intensities ranging from 0 to 4,095, corresponding to
Hoechst, TRITC, FITC, and Cy5 channels (TRITC and
FITC channels images were acquired with two camera
exposure settings). For visualization, only the Hoechst™
and the 1 second exposure FITC, TRITC and Cy5 images
were displayed. This image dataset was deposited in an
open, public repository (http://deepblue.lib.umich.edu/;
Query “HeLa cells incubated with styryl compound”).

Calculation of quantitative image features associated with
cellular staining patterns
Machine vision was used to analyze the cellular staining
patterns of the styryl probes [27,28]. Briefly, the Hoechst
channel images were used to identify the nuclear region
of each cell. The resulting nuclear regions were then
dilated by 10 pixels to create a cell mask. For analyzing
styryl compound fluorescence, the images acquired with
the FITC, TRITC and Cy5 channels were summed to
create a total cellular intensity multichannel image corre-
sponding to the signal of the styryl molecule fluorescence
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over the multiple acquisition channels [28]. Using the
complement of the dilated cell region mask, the back-
ground pixel intensity of the multichannel image was
measured. The median intensity value of the background
pixels of each image was subtracted from the intensity
value of every pixel in that image, and these adjusted in-
tensity values were then truncated at zero. Images lacking
styryl-specific fluorescence signal (e.g. with cellular fluo-
rescence signal at or below the extracellular background
fluorescence, or showing extensive saturation of pixel
intensities) were excluded from further analysis. With im-
ages exhibiting above background cell-associated fluores-
cence, three key cell-associated image features capturing
the optical signal intensity and staining patterns of the
probes were measured [27,29]: 1) the ratio of cell asso-
ciated pixel intensity/background pixel intensity; 2) the
cytoplasmic-to-nucleus ratio of cell-associated pixel inten-
sities; and, 3) the coefficient of variation of cell-associated
pixel intensities.

Cheminformatics analysis of structural, topological, and
physicochemical property features
Physicochemical properties of styryl compounds and their
building blocks were calculated with MOE (Molecular
Operating Environment, Chemical Computing Group
Inc., Montreal, Canada). Diversity with respect to quanti-
tative properties was assessed by comparing histograms
for each property between the styryl compounds and a
reference dataset of hundreds of chemical agents with
published subcellular localization features, compiled from
a literature-based review surveying the organelle-targeting
properties of small, drug-like molecules [30-32]. Diversity
of chemical structures for the styryl molecules and for
their chemical building blocks was assessed using Cactvs
bit strings which represent chemical structures as 881-
dimensional binary sequences. Each bit in a Cactvs
sequence indicates the presence of a specific chemical
substructure in the overall structure. The Tanimoto coeffi-
cient (Tc) was used to quantify the similarity between each
pair of structures, by dividing the number of features in
the Cactvs string that are common to both structures by
the total number of features present in either structure.
Mathematically, Tc =C/(N1 +N2 −C) where N1 and N2

correspond to the number of features present in the
fingerprints of each molecule in the pair, and C is the
number of features present in the fingerprints of both
molecules.

Predicting subcellular distribution patterns
The theoretical distribution of styryl molecules inside
cells was calculated using a published mathematical
model [30,33,37], based on the predicted passive diffu-
sion properties of the compounds in the presence of a
constant extracellular concentration of the compound.
This mathematical model incorporates Fick’s law of dif-
fusion, Henderson-Hasselbalch equation and the Nernst-
Planck equation, to model the diffusion of small mo-
lecule chemical agents across the membranes bounding
cellular / subcellular compartments, as determined by
the concentration gradients, pH gradients, and electrical
potentials across the bounding membranes. Computa-
tionally, the models allowed calculating the mass of
compound that accumulates in various subcellular com-
partments, over time [30,33,34,38]. For simulating the
transport behavior of the styryl molecules, all styryl mol-
ecules possess a single, fixed positive charge plus 0 or
more additional ionizable groups. For this study, simula-
tions were done only for molecules with 0 or 1 ad-
ditional ionizable groups corresponding to 1256 out of
1344 molecules in the library (93.4%). Baseline input
parameters of the model were based on an “average”
mammalian cell using the established, generic physio-
logical parameters of cells (such as membrane surface
area, cellular and organelle volumes, pH values in each
compartment, membrane potentials, and lipid fractions
in each compartment) [33,39]. Input physicochemical
properties of styryl molecules (such as logP and pKa)
were calculated with Chemaxon (www.chemaxon.com).
After the concentration at steady state was calculated for
each compartment, the mass of styryl molecules in each
compartment was calculated by multiplying the concentra-
tion in that compartment by the compartment’s volume.
The total mass of compound in cell was then calculated as
the sum of the masses in the different compartments:
cytoplasmic (or plasma) membranes, lysosomes and mito-
chondria. The fractional mass of compound in cytoplasmic
(or plasma) membranes, lysosomes and mitochondria was
calculated based on the mass of compound in each com-
partment divided by the total mass of compound in these
three compartments, at steady state.

Developing machine vision- and cheminformatics-assisted
MOVID platform
Three dimensional virtual image displays were constructed
in a multiuser, publicly accessible, online virtual reality
software platform (Second Life, Linden Labs, Inc.) [40-43],
Image arrays were manually constructed, or plotted with a
PrimPlotter script (http://1cellpk.blogspot.com/). To fa-
cilitate visual inspection of image data sets at high reso-
lution we used a desktop computer workstation (Dell, Inc)
(Figure 1A). To simultaneously visualize images in mul-
tiple channels, four virtual image display data walls (front,
back, left, right) were constructed perpendicularly to each
other (Figure 1B). By placing an avatar in the middle of
the four image display data walls, the entire image array
could be readily visualized by moving the avatar away
from the data wall, or a specific image could be visualized
at higher resolution by moving the avatar towards the data
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Figure 1 MOVID integrates off-the-shelf hardware and software components to combine machine vision, cheminformatics and data
visualization capabilities. A) Multiscreen workstation set up allowed switching between different applications with the click of a mouse.
B) Four-sided virtual image display constructed in Second Life. C) Frontal view of one of the four sides of the virtual image display. The
background lighting has been dimmed and images are displayed in grey scale mode. Yellow panels contain image labels and chemical structure
information. Blue bars at the bottom of the page are control buttons of the virtual reality browser. D) Picture of the multiscreen workstation,
showing one of the image displays. The avatar is floating in the middle of the bottom two panels, between the screens, with the avatar’s head
immediately below the intersection of the four screens.

Rosania et al. Journal of Cheminformatics 2013, 5:44 Page 4 of 15
http://www.jcheminf.com/content/5/1/44
wall (Figure 1C, D). Different acquisition channels or add-
itional image arrays could be viewed simply by rotating
the avatar, or by moving the avatar from one array to a
neighboring array, or by changing the images displayed on
the array. The display was designed so that it could simul-
taneously display the images of a 96 well screening plate,
corresponding to 8 pyridinium or quinolinium building
blocks conjugated to 10 aldehyde building blocks, as well
as images from the outer two columns of control wells,
labels for each image and chemical structure of the probes
(Figure 1C). With this hardware and software set up, a
5 × 10 array of images could be simultaneously displayed
at 120 pixels/inch resolution, with each image displayed at
a size of 10 cm × 10 cm (Figure 1D).

Results
Analyzing the chemical diversity of the organelle-
targeting styryl library
All styryl compounds in the particular library analyzed
in this study shared the same molecular scaffold and
therefore possessed many features in common (Figure 2).
Compared to a reference set of molecules with known
subcellular localization features [31,32], cheminformatics
analysis revealed that the styryl compounds were less di-
verse: they possessed a narrower range of molecular
weights (Figure 2A); radius of gyration (Figure 2B); logP
(Figure 2C); fraction of rotatable bonds (Figure 2D) and
number of hydrogen bond acceptors (Figure 2E). More
specifically, styryl compounds were < 500 Daltons in
molecular weight; their radius of gyration ranged from 4
to 6 Armstrongs; their logP was generally between 2 and
6; their fraction of rotatable bonds tended to be < 0.2;
and their number of hydrogen bond acceptors generally
was <2. Among the 1344 styryl molecules, 872 com-
pounds had one fixed positive charge and lacked ad-
ditional ionizable groups. The rest of the compounds had
a fixed positive charge plus one or two additional ionizable
groups. By covering a smaller fraction of chemical space
with many molecules of similar size, shape and chemical
features, this focused combinatorial library of compounds
allowed us to explore how small variations in topological
features and chemical structures influenced cellular stai-
ning patterns [27].

Characterizing the diversity of staining patterns in
relation to the diversity of predicted localization patterns
Based on hypothetical relationships between lipophilicity,
ionization and staining patterns, the distribution of the
styryl compounds in different subcellular compartments
was predicted using an established mathematical modeling
approach [33,39]. For visualization purposes, the calcu-
lated localization patterns of each compound were plotted
in three dimensions, with each axis corresponding to the
percent mass localized in mitochondria, lysosomes, and
other cytoplasmic (and plasma) membranes (Figure 3). In
these 3D plots, each data point represented the predicted,



Figure 2 Histogram plots comparing the calculated physicochemical properties of a reference dataset of compounds with known
subcellular localization features (top row) in relation to the library of 1,344 styryl molecules analyzed in this study (bottom row).
A) Molecular weight; B) Radius of gyration; C) Logarithm of the octanol:water partition coefficients (logP); D) Fraction of rotatable bonds;
E) Number of hydrogen bond acceptors.
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percent mass accumulation of each molecule in these
three compartments. Within each data point, the images
associated with each molecule were displayed together
with their 2D molecular structures, calculated physico-
chemical properties, and calculated subcellular concen-
trations (Additional file 1: Figures S1 to S12). Based on
the simulation results, all styryl molecules were pre-
dicted to possess low lysosomal mass accumulation (less
than 1% of the total mass of the molecule), with most
compounds distributing between mitochondria and
cytoplasmic (or plasma) membranes, reflecting their
cationic, lipophilic character [33,39].
However, after visually inspecting the image data set

obtained with the styryl compounds, we established that
many compounds with similar physicochemical pro-
perties and predicted subcellular distribution often
exhibited different staining patterns (Figures 3, 4). For
example, styryl molecule E69 (Figure 3, Compound 9)
showed the typical organelle-associated staining pat-
terns, characterized by a dark nucleus and bright cyto-
plasm with punctate foci (Figure 4A). The compound’s
fluorescence signal was mostly associated with the
TRITC channel (Figure 4B). The compound had a calcu-
lated logP of 2.32 and its predicted distribution was
mostly in cytoplasmic (or plasma membranes (63%) and
mitochondria (36%) (Figure 4C). In contrast, styryl mo-
lecule D101 (Figure 3, Compound 11) exhibited a pro-
nounced membrane staining pattern (Figure 4D) which
appeared brightest in the images acquired with the
TRITC channel (Figure 4E). Nevertheless, its calculated
logP and predicted distribution pattern was similar to
that of styryl molecule E69 (Figure 4F). Another related
styryl molecule, D123 (Figure 3, Compound 10), ex-
hibited mostly nuclear staining (Figure 4G), with diffuse
staining in the cytoplasm, and the fluorescence of signal
of the compound being mostly detectable in the TRITC
channel (Figure 4H). However, its logP and predicted
subcellular localizations were similar to that of styryl
molecules E69 and D101 (Figure 4I). Potentially, these
differences in staining pattern may be reflecting the spe-
cific interactions between styryl molecules and cellular
macromolecules, such as DNA or RNA, that are loca-
lized in specific subcellular compartments [6,24-27].
To quantitatively confirm these results, the predicted

localization pattern of a subset of probes showing charac-
teristic staining pattern was independently scored by an
expert observer that was blind to the chemical structure
and the predicted localization of the probes (Figure 5). For
visual scoring, two pairs of binary localization categories
were employed: (1) mitochondrial or lysosomal vs. non
(mitochondrial or lysosomal); and, (2) cytoplasmic (or
plasma) membrane vs. non (cytoplasmic (or plasma)
membrane). From the observed staining patterns, we de-
termined that when fractional mitochondrial or lysosomal
mass accumulation was ≥40% there was an almost equal
probability that the images were scored as being loca-
lized to (or not localized to) mitochondria or lysosomes,
irrespective of the predicted percent accumulation
(Figure 5A, B). Interestingly, when the predicted mito-
chondrial or lysosomal mass accumulation < 40%, all the



Figure 3 Two dimensional projection of a three dimensional subcellular localization plot showing the predicted relative distribution of
the styryl probes in lysosomes, mitochondria and cytosol. In three dimensions, the origin of the graph would extend into the back of the
page. Each axis projects towards the viewer (indicated by arrows). Each point in the plot represents an individual styryl molecule, according to its
predicted, % mitochondrial, % lysosomal and % cytoplasmic (or plasma) membrane mass distribution. Each data point links to the chemical
structure of each molecule and the images associated with each molecule including Hoechst, FITC, TRITC and Cy5 channels, the predicted
localization and annotated staining patterns. Predicted localizations based on different input parameter values were visually compared to the
staining patterns apparent in the images. Images and localization calls from 12 selected data points (numbered 1 – 12) are shown, in a range
from predicted 100% mitochondrial localization to 100% cytoplasmic membrane localization, for a subset of compounds without significant
lysosomal mass accumulation. Miner 3D (Miner 3D, Inc) was used to generate the figure. Additional images, chemical structures, and calculated
properties for these twelve compounds are included in the (Additional file 1: Figure S1-S12).
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compounds were scored as lacking a mitochondrial or
lysosomal staining pattern (Figure 5A, B). Calculating
the accuracy of the predicted localization to mitochon-
dria or lysosomes revealed that the predictive accuracy
for both mitochondrial or lysosomal and non (mito-
chondrial or lysosomal) was balanced (0.65) when the
threshold, predicted mass distribution in mitochondria
or lysosomes was 61% (Figure 5B). However, for the pre-
dicted cytoplasmic (or plasma) membrane localization,
the number of molecules that were scored as cytoplasmic
(or plasma) membrane staining were similar to those that
were scored as staining either mitochondria, lysosomes,
nuclei or nucleoli, irrespective of the predicted percent
localization (Figure 5C, D). Again, the accuracy of the pre-
dicted localization to cytoplasmic (or plasma) membranes
and to mitochondria, lysosomes, nuclei or nucleoli was
balanced (0.47) when the threshold, predicted mass dis-
tribution in cytoplasmic membranes relative to other
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localizations was 59% (Figure 5D). Nevertheless, only those
molecules that were predicted to show the least percent
mass distribution in mitochondria or lysosomes showed
Figure 4 (See legend on next page.)
direct correspondence to compounds that visually exhibited
a non (mitochondrial or lysosomal) staining patterns.
Accordingly, visual localization calls to mitochondrial or



(See figure on previous page.)
Figure 4 Visual inspection revealed three distinct cell-associated staining patterns exhibited by the styryl probes. A) Zoom in image of
a single cell showing typical staining pattern of organelles. Note the nucleus in the middle is dark, and the surrounding cytoplasm is bright with
local hot spots indicative of organelle staining. B) Hoechst (top left), FITC (top right), TRITC (bottom left) and Cy5 (bottom right) images
corresponding to organelle staining probe. C) Chemical structure, logP and predicted cellular distribution data of the probe visualized in A and B.
D) Zoom in image of a single cell showing typical staining pattern associated with cellular membranes. Note the probe distribution in the
cytoplasm appears diffuse, with the brightest signal generally present at the cell periphery. E) Hoechst (top left), FITC (top right), TRITC (bottom
left) and Cy5 (bottom right) images corresponding to membrane staining probe. F) Chemical structure, logP and predicted cellular distribution
data of the probe visualized in D and E. G) Zoom in image of a single cell showing typical staining pattern of nuclear staining probe. Note the
probe’s optical signal is brightest in the cell nucleus, with nucleolar labeling. H) Hoechst (top left), FITC (top right), TRITC (bottom left) and Cy5
(bottom right) images corresponding to nuclear staining probe. I) Chemical structure, logP and predicted cellular distribution data of the probe
visualized in G and H.
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lysosomal or cytoplasmic (or plasma) membrane staining
patterns generally did not show a strict correspondence to
the calculated percent mass distribution of the styryl com-
pounds in mitochondria or lysosomes vs. other cytoplasmic
(or plasma) membranes.

Visualizing relationship between chemical similarities and
staining pattern similarities
A chemical fingerprinting approach was used to relate the
structure of different pairs of probes based on shared simi-
larities in the specific atoms and sub-fragments captured
by the 2-dimensional connectivity of the chemical struc-
ture of the molecules. Intuitively, we expected that similar
molecules would share similar staining patterns. Many
styryl isomers in the library shared the same molecular
formula and only varied in the ortho-, meta- and para-
positions of attached functional groups. Therefore, we
proceeded to visualize how staining patterns of styryl
molecules were related to the staining patterns of specific
reference compounds. For this purpose, two dimensional
image arrays were constructed. With the reference probe
in the upper-left corner of the array, aldehyde and
pyridinium or quinolinium building blocks were sorted
based on their Tanimoto coefficient with respect to the
building blocks of the reference probe (Figures 6 and 7).
Images were scored based on the most clearly dis-
cernible staining patterns: mitochondrial or lysosomal
(o; Figure 4A); cytoplasmic (or plasma) membrane
(m; Figure 4D); or, nuclear or nucleolar (n; Figure 4G).
To demonstrate this analysis, we focused our attention

on a styryl probe that was previously found to accumulate
in mitochondria [44-46] and is one of the best charac-
terized probes in the styryl library (Figures 6 and 7, upper
left). To demonstrate how chemical structure variation
relates to variation in staining patterns, we identified two
subsets of compounds in the styryl library – one
consisting of compounds that have similar structures rela-
tive to reference probe (Figure 6), and one consisting of
compounds that have dissimilar structures relative to
reference probe (Figure 7). The subset of compounds that
are structurally similar to the reference probe consisted
of those compounds in the library having both the
pyridinium or quinolinium building block and the alde-
hyde building block with a Tanimoto coefficient >0.4
relative to the reference probe. By visual inspection, the
staining patterns of these probes appeared similar to the
organelle-associated staining pattern of the reference
probe, although there was substantial variation in the
overall intensity (Figure 6). The subset of compounds
deemed least similar to the reference probe consisted
of compounds whose aldehyde building block had a
Tanimoto coefficient <0.25 relative to the aldehyde build-
ing block of the reference probe. For these compounds,
the staining patterns appeared to be different from the
staining patterns of the reference probe (Figure 7). By
visual inspection, the staining patterns of the probes
revealed roughly similar numbers of membrane- and
organelle- staining probes, and a smaller fraction of
nuclear-staining probes. Based on the Tanimoto coef-
ficients, the transition between visually similar vs. different
staining patterns in relation to the Tanimoto coefficients
appeared to be abrupt and nonlinear, with most com-
pounds possessing an aldehyde group with a Tanimoto
coefficient >0.4 exhibiting similar staining patterns as the
reference probe (Figure 6). This observation may be an
explanation for why previous, unsupervised machine
vision and cheminformatics analyses did not reveal any
significant correlation between Tanimoto coefficients and
quantitative image features associated with the staining
patterns [27].

Visualizing relationship between staining patterns and
regressed contributions of building blocks to staining
patterns
Previously, we used a quantitative multivariate regression
approach to analyze relationships between chemical struc-
tures and image features [24,28]. Using a cross-validation
approach, multivariate regressions results revealed that
the aldehyde and pyridinium or quinolinium building
blocks contributed to the cell-associated staining patterns
in a predictive, additive manner [24,28]. To visually con-
firm these results, we proceeded to assemble image arrays
based on sorted contributions of aldehyde and pyridinium
or quinolinium building blocks (Figure 8). Based on



Figure 5 The observed staining patterns in relation to the predicted, cellular staining patterns of styryl probes. A) Plot shows the
calculated, predicted percent accumulation of probes in mitochondria or lysosomes, relative to the observed staining patterns (YES means the
compounds were visually scored as staining mitochondria or lysosomes; NO means the compounds were visually scored as staining cytoplasmic
(or plasma) membranes, nuclei or nucleoli). B) The Accuracy of the predicted, subcellular distributions of probes to mitochondria or lysosomes
relative to the observed mitochondrial or lysosomal (or nonmitochondrial and nonlysosomal) staining patterns, as shown in A), plotted as a
function of the threshold % predicted mass accumulation in mitochondria or lysosomes. Each threshold % mass accumulation is used to
distinguish between those probes that are predicted to localize to mitochondria or lysosomes vs. those that are not. C) Plot shows the calculated,
predicted percent accumulation in cytoplasmic membranes, relative to the observed staining patterns (YES means the compounds were visually
scored as staining cytoplasmic or plasma membrane; NO means the compounds were visually scored as staining mitochondria, lysosomes nuclei
or nucleoli). D) The Accuracy of the predicted, subcellular localization categories of the probes in cytoplasmic (or plasma) membranes relative to
the observed cytoplasmic (or plasma) membrane staining pattern vs. other observed staining patterns as shown in B), plotted as a function the
threshold % predicted mass accumulation in mitochondria or lysosomes.
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diffuse vs. punctate staining patterns (captured by the
coefficient of variation of cell associated pixel intensity)
visual inspection of the aldehyde building block contribu-
tions to the staining patterns revealed a clear relationship
between negative coefficients and diffuse, cytoplasmic
(or plasma) membrane associated staining patterns
(Figure 8 rows 1-4) and positive coefficients and punctate
(mitochondrial or lysosomal) organelle-associated staining
patterns (Figure 8, rows 5-8). Similarly, visual inspection
of the pyridinium or quinolinium building block contri-
butions to staining patterns confirmed the relationship
between neutral or negative coefficients and diffuse, cyto-
plasmic (or plasma) membrane associated staining pat-
terns (Figure 8, columns 1-6), and positive coefficients and
positive (mitochondrial or lysosomal) organelle-associated
staining patterns (Figure 8, columns 8 and 9).

Discussion
In this study, we integrated the results of machine vision
and cheminformatics analysis, with an image data visua-
lization approach (MOVID), to facilitate visual interpre-
tation of quantitative relationships between the chemical
structure of a combinatorial library of small molecule
fluorescent probes of cellular transport and their asso-
ciated, cellular staining patterns captured in a large image
data set. With MOVID, the ability to visualize multidi-
mensional relationships was enhanced by allowing human
viewers to literally navigate through sorted, high resolution



Figure 6 Visualizing the relationship between the staining pattern of a reference probe (located at the upper left corner of the array;
probe structure indicated by arrow) and the staining patterns of related compounds. Different aldehyde building blocks are plotted in
rows (left) and pyridinium or quinolinium building blocks are plotted in columns (top), in order of their calculated similarity to the building block
of the reference compound on the top left. Numbers correspond to the Tanimoto coefficients between the different building blocks and the
building blocks of the reference compound at the upper-left most corner of the array. To assemble figures, individual cells representing the
staining patterns observed in each image were manually cropped from the images, and labeled based on their apparent organelle (o),
membrane (m) or nuclear (n) staining patterns. Cells from images lacking significant signal or ambiguous in localization patterns were
not labeled.
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image data sets, with the aid of an avatar. While at the
level of the entire image, the ability to resolve local subcel-
lular staining patterns is lost (Figure 4B, E, H), zooming
into the individual images revealed details of the fluores-
cence signal in nucleus and cytoplasm of the individual
cells (Figure 4A, D, G) that could be interpreted in the
context of the chemical structure, physicochemical pro-
perties, and predicted localizations of the molecules. In
this manner, MOVID facilitated interpretation of complex
relationships between the phenotypic staining patterns of
the cells and the chemical properties of the probes.
Using MOVID, we related the predicted, percent mass

distribution of styryl molecules in different subcellular
compartments to their observed staining patterns. When
viewed across a large number of probes ranked based on
their percent mass distribution in lysosomes, mitochon-
dria and cytoplasmic (or plasma) membranes, a strict cor-
respondence between predicted and visual localization
patterns was not readily apparent (Figure 3). To further
explore this relationship between the predicted loca-
lization patterns and observed staining patterns, the im-
ages obtained with the styryl compounds were visually
classified by an expert observer (Figure 4). These observed
staining patterns were used to calculate the accuracy of
the predictions (Figure 5). Results of this analysis con-
firmed the original, qualitative visual impression (Figure 3),
in that the predicted mass distribution of the probe in dif-
ferent compartments generally did not correspond with
specific staining patterns. Only those compounds pre-
dicted to have a mitochondrial or lysosomal mass distri-
bution of 40% or less showed a consistent association with
the expected, nonmitochondrial and nonlysosomal stai-
ning pattern.
In addition, MOVID allowed us to confirm previous

results obtained through machine vision and chem-
informatics analyses [27,28]. For example, by visual in-
spection, similarities in the calculated physicochemical
properties and subcellular distributions of the probes did



Figure 7 Visualizing the relationship between the staining patterns of a reference probe (located at the upper left corner of the array;
probe structure indicated by arrow) and the staining patterns of compounds with different chemical structures. Different aldehyde
building blocks were plotted in rows (left) and pyridinium or quinolinium building blocks were plotted in columns (top). Numbers correspond to
the Tanimoto coefficients between the different building blocks and the building blocks of the reference compound at the upper-left most
corner of the array. As in Figure 6, individual cells representing the staining patterns observed in each image were manually cut from the images,
and labeled based on their apparent organelle (o), membrane (m) or nuclear (n) staining patterns. Cells from images lacking significant signal or
ambiguous in localization patterns were not labeled.
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not correspond to similarities in their subcellular loca-
lization patterns captured in the images (Figures 6, 7).
Only compounds with Tc < 0.25 in the aldehyde building
block (Figure 6) yielded clear visual differences in staining
patterns as compared to the reference probe, explaining
the absence of quantitative correlation between variations
in Tc and variations in image features [27]. Furthermore,
in the regression analysis, visual inspection of cellular
staining patterns (Figure 8) also confirmed previous ma-
chine vision results [28] in terms of the ability of aldehyde
and pyridinium or quinolinium building blocks to exert a
predictive, additive contribution to diffuse vs. organelle-
associated staining patterns, apparent across large num-
bers of images.
In light of previous machine vision and chemin-

formatics analyses [24,28], we also noted that the range
in chemical diversity encoded by the variations in
pyridinium or quinolinium building blocks was less than
the range of chemical diversity encoded by variations in
aldehyde building blocks (Figure 2). This corresponded
to a more limited range in of regressed contributions to
the staining patterns. Visual inspection of image arrays
with MOVID were consistent with previous quantitative
image analysis studies [28], indicating that chemical va-
riations in aldehyde building blocks exerted a similar
effect on the staining patterns as compared to chemical
variations in the pyridinium or quinolinium building
blocks. Previously, quantitative image analysis indicated
that a charge push-pull mechanism affecting the electron
distribution between the imminium group of the pyri-
dinium or quinolinium and an amine group present in
the opposite side of the molecule could exert a strong
effect on quantitative image features [28]. Observed
trends spanning large numbers of images were consis-
tent with electron migration across the central methine
bridge of the styryl molecule being associated with the
diversity of staining patterns exhibited by styryl mole-
cules. Interestingly, logP calculations generally do not



Figure 8 Visualizing the relationship between cellular staining patterns and the calculated additive regression coefficients associated
with each of the building blocks. Different aldehyde building blocks were plotted in rows (left) and pyridinium or quinolinium building blocks
were plotted in columns (top). The numbers indicate the magnitude and sign of the regression coefficient, based on the measured coefficient of
variation of cell associated pixel intensities. To assemble figures, individual cells representing the staining patterns observed in each image were
manually cut from the images, and labeled based on their apparent organelle (o), membrane (m) or nuclear (n) staining patterns. Cells from
images lacking significant signal or ambiguous in localization patterns were not labeled. Images that were excluded from regression analysis
based on saturation or lack of cell-associated signals were included for visualization and tagged with an asterisk (*). The arrow points to the
structure diagram of the styryl compound corresponding to the image in the upper left hand corner of the array.
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take the effects of charge migration into account, which
could partly explain the discrepancies between the pre-
dicted distribution of the probes and the observed stain-
ing patterns, with the exception of nonmitochondrial
and nonlysosomal localizing compounds (Figures 3, 4
and 5).
In terms of the integration of off-the-shelf hardware and

software components, the virtual, graphical user interface
of MOVID offered distinct advantages over larger mul-
tipanel LCD arrays for high resolution image data display,
also known as “command and control centers” or “data
walls” (e.g. http://www.bioimage.ucsb.edu/iWall). MOVID
was a practical, user-friendly and ergonomic alternative to
display large amounts of visual information at high reso-
lution, over a large field of view, to an individual user sit-
ting at a desk. With the aid of an avatar, a viewer was able
to rapidly scan through large numbers of images at very
high resolution from a very close (virtual) distance, or at
lower resolution from a farther (virtual) distance away
(Figure 1). While sitting at a desktop computer work-
station, a user can switch between MOVID to chemin-
formatics or modeling software with the click of the
mouse (Figure 1A). In the past, many health care simula-
tion, crowd-sourcing, open science, scientific conferencing

http://www.bioimage.ucsb.edu/iWall
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and educational applications have been facilitated by the
multiuser capabilities of online, open source virtual reality
browsers [40-43]. Similarly, the open virtual reality gra-
phics and multiuser interface capabilities of MOVID could
also facilitate simultaneous, multiuser visualization cap-
abilities at minimum cost.

Conclusions
To conclude, the integration of cheminformatics and
machine vision with a high resolution, multidimensional
virtual reality image display and graphical user interface
helped us overcome a major bottleneck we encountered
while attempting to analyze the results of a phenotypic
cell based assay. The associated data visualization and
interpretation challenges are exemplified by the analysis
of chemical determinants of the subcellular distribution
properties of fluorescent small molecules probes of cel-
lular transport, as elaborated in this study. In particular,
despite their limited chemical diversity, our data was
consistent with styryl molecules displaying a broad range
of localization features, including probes that selectively
labeled nuclei [26], nucleoli [6], plasma membrane [47]
as well as other components [48,49]. Because bioimaging
data is ultimately interpreted by human observers, vi-
sualization remains an essential component of bio-
imaging probe discovery and development, Nevertheless,
beyond bioimaging probes, MOVIDs should be broadly
applicable to many other phenotypic screening experi-
ments [5,8,10,20,50,51] and subcellular drug targeting
and delivery studies [2,18,33,39].

Methods
Visual scoring of subcellular localization patterns
To study how the predicted subcellular distribution pat-
terns of the styryl molecules were related to their observed
staining patterns, a total of 199 distinct images possessing a
visible fluorescence signal were visually scored by an expert
human observer, based on three distinct categories: (1)
mitochondrial or lysosomal staining pattern; (2) cytoplas-
mic (or plasma) membranes staining pattern; (3) nuclear or
nucleolar staining pattern. Only images of compounds that
could be unambiguously classified in terms of one of these
three distinct categories were considered. In some images,
rounded (detached, mitotic or dying) were also present, and
the localization of the probe in those cells was ignored.
Images containing only rounded cells were not included in
this analysis. This resulted in a subset of 123 images that
could be used to compare how the predicted localizations
related to the visual staining patterns.

Relating the predicted, mitochondria- or lysosome-targeting
styryl molecules to their visual staining patterns
To determine the accuracy of the mitochondrial or lyso-
somal localization predictions, we focused on probes
that exhibited a perinuclear, punctate, “organelle” asso-
ciated staining pattern characteristic of the mitochondria
or lysosome-targeting compounds. First, we established
whether the calculated, percent mass distribution in ly-
sosomes or mitochondria of each probe that was visually
observed as having a mitochondrial or lysosomal stai-
ning pattern was (i) equal to or greater than a threshold,
calculated percent mass distribution in lysosomes or
mitochondria (true positives); (ii) lower than the thre-
shold, calculated percent mass distribution in lysosomes
or mitochondria (false positives). In parallel, we estab-
lished whether the calculated, percent mass distribution
in mitochondria or lysosomes for each probe classified
as nuclear, nucleolar, cytoplasmic (or plasma) membrane
staining was (iii) equal to or greater than the threshold,
calculated percent mass distribution in mitochondria or
lysosomes (false negatives); or (iv) less than the threshold
calculated percent mass distribution in mitochondria or
lysosomes (true negatives). Relative to any given pre-
dicted, percent distribution threshold in the range of 0
to 100%, those compounds that were either true positives
or true negatives were labeled either as correctly classi-
fied compounds. Conversely, those compounds whose
predicted classifications were not true positives or true
negatives were labeled as incorrectly classified com-
pounds. Accordingly, the Accuracy of mitochondrial or
lysosomal percent mass distribution predictions was cal-
culated relative to the observed staining patterns, based
on the following equation:

Accuracy ¼ #correctly classifiedð Þ
= #correctly classified þ#incorrectly classifiedð Þ

ð1Þ

For the mitochondrial or lysosomal localization predic-
tions, the Accuracy of the predictions was plotted as a
function of continuous thresholds of predicted percent
mass distribution of the compounds in mitochondria or
lysosomes, in the range of 0 to 100%. Independently, for
the cytoplasmic (or plasma) membrane predictions, the
Accuracy of the predictions was plotted as a function of
continuous thresholds of, predicted percent mass distri-
bution of compounds in mitochondria or lysosomes in
the range of 0 to 100%.

Relating the predicted, cytoplasmic (or plasma)
membrane-targeting styryl molecules to their visually-
scored staining patterns
Independently, we also calculated the accuracy of cyto-
plasmic (or plasma) membrane localization predictions in
relation to the observed, visual staining patterns. For im-
ages of probes that were visually scored as possessing a
cytoplasmic (or plasma) membrane localization pattern,
we first established whether the calculated, percent mass



Rosania et al. Journal of Cheminformatics 2013, 5:44 Page 14 of 15
http://www.jcheminf.com/content/5/1/44
distribution of the probe in cytoplasmic (or plasma) mem-
branes was (i) equal to or greater than a threshold calcu-
lated percent mass distribution of probe in the cytoplasmic
(or plasma membrane) compartment (true positives); or ii)
lower than a threshold calculated percent mass distribu-
tion of probe in cytoplasmic (or plasma) membrane com-
partment (false positives). In parallel, we established
whether the calculated, percent mass distribution in cyto-
plasmic (or plasma) membranes for each probe observed
as nuclear, nucleolar, mitochondrial or lysosomal staining
was (iii) equal to or greater than the threshold calculated
percent mass distribution in cytoplasmic (or plasma)
membrane (false negatives); or (iv) less than the threshold
calculated percent mass distribution in cytoplasmic (or
plasma) membranes (true negatives). In turn, the Accuracy
of the cytoplasmic (or plasma) membrane distribution
predictions was assessed in relation to their observed
visual staining patterns based on the number of correctly
classified and incorrectly classified compounds, in an
analogous manner as was done for the mitochondrial or
lysosomal distribution predictions (using Eq. 1), and plot-
ted as a function of continuous thresholds of predicted,
percent mass distribution in mitochondria or lysosomes in
the range of 0 to 100%.

Visualizing relationships between building blocks and
staining patterns
To visualize relationship between similarities in the che-
mical structure of the building blocks and the associated
images acquired from styryl molecules synthesized from
those building blocks, image data sets were sorted in
2-dimensional arrays, based on the ranked, pair-wise
Tanimoto coefficients between aldehyde and pyridinium
or quinolinium building blocks, relative to the building
blocks of a single, reference compound. The building
blocks were sorted, in ranked order of decreasing pair-
wise Tanimoto coefficients, relative to the building blocks
of the reference probe. With MOVID, the image asso-
ciated with the reference probe was displayed in the upper
left corner of the image arrays. The individual images
acquired from the styryl probes (made from pair-wise
combinations of aldehyde and pyridinium or quinolinium
building blocks) were displayed in the row and column
position corresponding to the rank-ordered Tanimoto co-
efficient of the respective building blocks, relative to the
reference probe.

Visualizing the contribution of the different building
blocks to the resulting staining patterns
The extent to which the two building blocks of the styryl
molecules were associated with the various measured
image features was calculated using a multivariate regres-
sion approach [29]. Briefly, in the styryl library, each mo-
lecule is comprised of an aldehyde building block that is
chemically conjugated with a pyridinium or quinolinium
building block. Thus, quantitative image features char-
acterizing the cell-associated intensity and spatial signal
of bioimaging probes can be related to each building
block, assuming a simple additive contribution of each
building block to any measurable image feature. For
example, for any given image feature Y (Y = total cellular
intensity, or N/C ratio, or nuclear CV), the linear model
f(Y) = A(i) + P(j) can fit, where f is a suitable transfor-
mation such as the logarithm or identity function, i is
the index of the aldehyde building blocks (A), and j is
the index of the pyridinium or quinolinium building
blocks (P). For visualization, aldehyde and pyridinium/
quinolinium building blocks were sorted based on their
contribution to the fitted numerical image features.
Images were displayed with MOVID, with the sorted
aldehyde building blocks corresponding to the rows in
the grid, and the sorted pyridinium/quinolinium buil-
ding blocks corresponding to the columns.
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