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Abstract

Multiple validation techniques (Y-scrambling, complete training/test set randomization, determination of the
dependence of R2test on the number of randomization cycles, etc.) aimed to improve the reliability of the modeling
process were utilized and their effect on the statistical parameters of the models was evaluated. A consensus partial
least squares (PLS)-similarity based k-nearest neighbors (KNN) model utilizing 3D-SDAR (three dimensional spectral
data-activity relationship) fingerprint descriptors for prediction of the log(1/EC50) values of a dataset of 94 aryl
hydrocarbon receptor binders was developed. This consensus model was constructed from a PLS model utilizing
10 ppm x 10 ppm x 0.5 Å bins and 7 latent variables (R2test of 0.617), and a KNN model using 2 ppm x 2 ppm x 0.5 Å
bins and 6 neighbors (R2test of 0.622). Compared to individual models, improvement in predictive performance of
approximately 10.5% (R2test of 0.685) was observed. Further experiments indicated that this improvement is likely an
outcome of the complementarity of the information contained in 3D-SDAR matrices of different granularity. For
similarly sized data sets of Aryl hydrocarbon (AhR) binders the consensus KNN and PLS models compare favorably
to earlier reports. The ability of 3D-QSDAR (three dimensional quantitative spectral data-activity relationship) to
provide structural interpretation was illustrated by a projection of the most frequently occurring bins on the
standard coordinate space, thus allowing identification of structural features related to toxicity.

Keywords: QSAR, Molecular descriptors, Quantitative spectral data-activity relationship (3D-QSDAR),
Estrogen receptor binding, Molecular modeling
Background
During the past decade, the application of consensus
modeling to various QSAR related problems has been
explored [1-3]. Early QSARs often relied on single
models, which under certain circumstances were prone
to arbitrary overestimation of the contribution of given
structural features at the expense of others that were
suppressed or ignored. To mitigate such risks consensus
models based on a multitude of individual models can
be advantageously used. Reports of improved perform-
ance of consensus models [4-6] or its lack thereof [7]
have been published.
Recently, our group introduced the concept of a robust

3D-QSDAR approach [8]. 3D-QSDAR utilizes unique
fingerprints constructed from pairs of 13C chemical shifts
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reproduction in any medium, provided the or
augmented with their corresponding inter-atomic dis-
tances. The proposed 3D-QSDAR methodology was de-
signed in accordance with the Organization for Economic
Cooperation and Development (OECD) principles [9]: it
provided several levels of validation, thus assuring models
would be both reliable and interpretable. In our earlier
work [8] an automated partial least squares (PLS) algo-
rithm was used to process data from regularly tessel-
lated 3D-SDAR fingerprints and to derive averaged
(composite model) predictions from 100 randomized
training/hold-out test set pairs. A technique [10] based
on the standard deviation of the experimental data was
employed to determine a “realistic” upper bound for
coefficient of determination. A Y-scrambling procedure
[11,12] assessed the probability of generating seemingly
“good” models by chance.
However, the above described modeling procedure

employed a single data processing algorithm, namely
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PLS. As a step forward, experiments designed to explore
the likelihood of building improved consensus models
combining predictions generated by conceptually unre-
lated algorithms operating on 3D-SDAR matrices of dif-
ferent granularity were conceived. A KNN algorithm
intended to supplement PLS by capturing complemen-
tary aspects of the structure-activity relationship was de-
vised. It was hypothesized that the improvement of
performance in consensus modeling should depend on
the degree of orthogonality of the predictions produced
by the individual models. Beyond the accuracy of bio-
logical data the inherent information content of a given
descriptor pool was thought of as a factor limiting the
improvement of R2

test in consensus modeling. In other
words, regardless of data processing algorithm the max-
imum achievable R2 for a hold-out test set would be lim-
ited by the descriptors’ ability to depict specific aspects
of the molecular structure directly related to the ob-
served effect.
In this work, the effect of data processing algorithms on

the quality of prediction and the ability of 3D-QSDAR to
provide a meaningful structural interpretation was tested
on a dataset of 94 PCBs, PHDDs and PCDFs binding the
aryl hydrocarbon receptor (AhR). Similar datasets were
extensively modeled (Table 1 summarizes these results)
and the structural features affecting binding are well
known. This allowed quantitative and qualitative compari-
son of these earlier reports with the results carried out
using the 3D-QSDAR methodology.
Table 1 Summary of QSARs published since year 2000

Chemical class Endpoint Dataset size Data processing algorith

PCBs, PCDDs and
PCDFs

logEC50 52 MLR

PCBs, PCDDs and
PCDFs

logEC50 52 MLR

PCDFs log(1/EC50) 33 MLR

PCDFs log(1/EC50) 34 MLR

PCDDs and PCDFs log(1/EC50) 90 PLS

PCDFs log(1/EC50) 34 MLR

PCDDs log(1/EC50) 47 MLR

PHDDs log(1/EC50) 25 MLR

PHDDs log(1/EC50) 25 MLR

PCDDs and PCDFs log(1/EC50) 60 MLR

*MLR - Multiple Linear Regression; PLS - Partial Least Squares.
Dataset
A dataset compiled by Mekenyan et al. [22] containing the
experimental log(1/EC50) values of 94 persistent organic
pollutants inhibiting AhR was used for the purpose of this
work. Here, EC50 is defined as the concentration of the
test chemical necessary to reduce the specific binding of a
radiolabeled 2,3,7,8-tetrachlorodibenzo-p-dioxin to 50% of
its maximum value in the absence of competitor. This
dataset consists of three distinct chemical classes: i) poly-
chlorinated biphenyls (PCBs); ii) polyhalogenated dibenzo-
p-dioxins (PHDDs) and iii) polychlorinated dibenzofurans
(PCDFs), shown in Table 2. Since we were unable to locate
sources reporting the experimental errors of the EC50 data
for the current dataset, a work by Long et al. [23] listing
the absolute errors of 7 PCDF congeners was used to
evaluate the quality of data. Under the assumption that for
similar compounds and experimental settings the average
relative experimental error would vary insignificantly,
based on the above report at least ~17% error in the EC50

data should be expected. However, since Mekenyan et al.
[22] compiled their dataset from various sources, a nega-
tive impact on the accuracy of data which would further
lower the “realistic” R2 [10] should be anticipated.

Methods
Conventions
Several layers of complexity related to the utilized mod-
eling procedures were introduced in this manuscript and
these require clarification. To avoid ambiguity, models
m* Descriptor type Statistical parameters Reference
13C-NMR R2 = 0.85; q2 = 0.71 [13]

13C-NMR, atom-to-atom
distances

R2 = 0.85; q2 = 0.52 [14]

Quantum mechanical; logP R2 = 0.720; s = 0.723 [15]

Quantum mechanical R2 = 0.747; R2adj = 0.669;
q2 = 0.572

[16]

CoMFA - 10 latent variables R2 = 0.838; q2 = 0.624;
SEP = 0.903

[17]

Quantum mechanical R2 = 0.863; R2adj = 0.839;
q2 = 0.807; SE = 0.558 ;
F = 35.389

[18]

Quantum mechanical R2 = 0.729; R2adj = 0.703;
SE = 0.797; F = 28.269

[19]

Quantum mechanical R2 = 0.768; R2adj = 0.721;
q2 = 0.635; S.E. = 0.762;
F = 16.529

[20]

WHIM R2 = 0.915; R2adj = 0.902;
q2 = 0.880; S.E. = 0.451;
F = 75.032

[20]

Quantum mechanical R2 = 0.687; R2adj = 0.686;
q2 = 0.603; S.E. = 0.870

[21]



Table 2 AhR binders and their experimental and predicted log(1/EC50)

Chemical name Experimental
log(1/EC50)

Predicted log(1/EC50)

2 ppm × 2 ppm × 0.5Å 10 ppm × 10 ppm × 0.5Å PLS-KNN
consensus from II and IIIIPLS IIKNN IIIPLS IVKNN

3,3',4,4'-Tetrachlorobiphenyl 6.15 6.02 5.50 6.49 5.75 6.00

2,3,4,4'-Tetrachlorobiphenyl 4.55 5.27 5.35 5.15 5.28 5.25

3,3',4,4',5-Pentachlorobiphenyl 6.89 5.06 5.11 5.96 5.63 5.54

2',3,4,4',5-Pentachlorobiphenyl 4.85 4.77 5.26 4.23 5.11 4.75

2,3,3',4,4'-Pentachlorobiphenyl 5.37 5.59 5.64 5.07 5.38 5.36

2,3',4,4',5-Pentachlorobiphenyl 5.04 5.47 5.47 4.74 5.29 5.11

2,3,4,4',5-Pentachlorobiphenyl 5.39 4.81 4.78 5.53 5.14 5.16

2,3,3',4,4',5-Hexachlorobiphenyl 5.15 5.33 5.22 5.61 5.19 5.42

2,3',4,4',5,5'-Hexachlorobiphenyl 4.80 5.16 5.41 4.80 5.36 5.11

2,3,3'4,4',5'-Hexachlorobiphenyl 5.33 5.23 5.12 5.07 5.37 5.10

2,2',4,4'-Tetrachlorobiphenyl 3.89 5.22 4.83 4.49 4.94 4.66

2,2',4,4'5,5'-Hexachlorobiphenyl 4.10 4.41 5.05 3.50 4.85 4.28

2,3,4,5-Tetrachlorobiphenyl 3.85 5.55 5.20 5.35 5.29 5.28

2,3',4,4',5',6-Hexachlorobiphenyl 4.00 5.44 5.23 4.37 4.90 4.80

4'-Hydroxy-2,3,4,5-tetrachlorobiphenyl 4.05 5.88 5.05 5.07 4.86 5.07

4'-Methyl-2,3,4,5-tetrachlorobiphenyl 4.51 5.21 5.27 5.13 4.86 5.20

4'-Fluoro-2,3,4,5-tetrachlorobiphenyl 4.60 5.13 4.92 4.37 4.67 4.65

4'-Methoxy-2,3,4,5-tetrachlorobiphenyl 4.80 5.35 5.15 4.32 4.74 4.74

4'-Acetyl-2,3,4,5-tetrachlorobiphenyl 5.17 5.00 4.87 4.14 4.98 4.51

4'-Cyano-2,3,4,5-tetrachlorobiphenyl 5.27 5.48 5.05 4.29 4.78 4.67

4'-Ethyl-2,3,4,5-tetrachlorobiphenyl 5.46 5.13 5.06 4.50 4.82 4.78

4'-Bromo-2,3,4,5-tetrachlorobiphenyl 5.60 5.42 5.34 5.27 5.51 5.31

4'-Iodo-2,3,4,5-tetrachlorobiphenyl 5.82 5.53 5.16 5.88 5.84 5.52

4'-isopropyl-2,3,4,5-tetrachlorobiphenyl 5.89 5.77 5.45 5.07 4.75 5.26

4'-Trifluromethyl-2,3,4,5-tetrachlorobiphenyl 6.43 5.42 5.25 4.46 4.80 4.86

3'-Nitro-2,3,4,5-tetrachlorobiphenyl 4.85 5.51 5.27 5.07 4.75 5.17

4'-N-Acetylamino-2,3,4,5-tetrachlorobiphenyl 5.09 5.26 4.87 5.09 4.96 4.98

4'-Phenyl-2,3,4,5-tetrachlorobiphenyl 5.18 4.74 5.03 4.69 5.01 4.86

4'-t-Butyl-2,3,4,5-tetrachlorobiphenyl 5.17 5.12 5.34 4.71 4.89 5.03

4'-n-Butyl-2,3,4,5-tetrachlorobiphenyl 5.13 5.12 5.13 5.44 4.93 5.29

2,3,7,8-Tetrachlorodibenzo-p-dioxin 8.00 8.27 7.66 7.10 7.28 7.38

1,2,3,7,8-Pentachlorodibenzo-p-dioxin 7.10 6.10 6.73 6.43 5.99 6.58

2,3,6,7-Tetrachlorodibenzo-p-dioxin 6.80 6.56 6.76 5.92 5.96 6.34

2,3,6-Trichlorodibenzo-p-dioxin 6.66 6.31 6.67 5.85 5.90 6.26

1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 6.55 5.83 6.10 5.84 5.69 5.97

1,3,7,8-Tetrachlorodibenzo-p-dioxin 6.10 6.22 6.68 6.03 6.12 6.36

1,2,4,7,8-Pentachlorodibenzo-p-dioxin 5.96 5.99 6.46 5.41 5.86 5.94

1,2,3,4-Tetrachlorodibenzo-p-dioxin 5.89 4.39 5.44 5.96 5.87 5.70

2,3,7-Trichlorodibenzo-p-dioxin 7.15 6.72 6.84 6.69 7.37 6.77

2,8-Dichlorodibenzo-p-dioxin 5.50 5.73 6.04 7.83 7.94 6.94

1,2,3,4,7-Pentachlorodibenzo-p-dioxin 5.19 5.68 6.02 5.69 5.95 5.86

1,2,4-Trichlorodibenzo-p-dioxin 4.89 5.46 5.90 6.12 5.99 6.01
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Table 2 AhR binders and their experimental and predicted log(1/EC50) (Continued)

1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin 5.00 6.78 7.76 4.77 5.74 6.27

1-Chlorodibenzo-p-dioxin 4.00 5.97 6.09 6.44 6.54 6.28

2,3,7,8-Tetra bromodibenzo-p-dioxin 8.82 9.29 8.61 9.86 8.43 9.24

2,3-Dibromo-7,8-dichlorodibenzo-p-dioxin 8.83 8.56 8.43 8.55 8.15 8.49

2,8-Dibromo-3,7-dichlorodibenzo-p-dioxin 9.35 7.54 7.86 6.87 7.06 7.37

2-Bromo-3,7,8-trichlorodibenzo-p-dioxin 7.94 8.31 8.05 7.26 7.40 7.66

1,3,7,8,9-Pentabromodibenzo-p-dioxin 7.03 7.25 7.99 7.53 8.29 7.76

1,3,7,8,-Tetrabromodibenzo-p-dioxin 8.70 7.38 8.51 8.22 8.48 8.37

1,2,4,7,8-Pentabromodibenzo-p-dioxin 7.77 7.31 8.06 9.20 8.24 8.63

1,2,3,7,8-Pentabromodibenzo-p-dioxin 8.18 8.31 8.65 8.40 8.57 8.53

2,3,7-Tribromodibenzo-p-dioxin 8.93 8.10 8.40 8.23 8.42 8.32

2,7-Dibromodibenzo-p-dioxin 7.81 7.48 7.36 7.07 8.06 7.22

2-Bromodibenzo-p-dioxin 6.53 6.67 7.03 8.22 7.73 7.63

2-Chlorodibenzofuran 3.55 3.94 4.48 3.76 3.78 4.12

3-Chlorodibenzofuran 4.38 5.13 5.01 5.75 5.89 5.38

4-Chlorodibenzofuran 3.00 5.20 4.54 4.80 5.37 4.67

2,3-Dichlorodibenzofuran 5.33 5.29 4.77 5.68 5.71 5.23

2,6-Dichlorodibenzofuran 3.61 5.03 4.85 3.50 4.14 4.18

2,8-Dichlorodibenzofuran 3.59 4.21 4.77 3.76 3.88 4.27

1,3,6-Trichlorodibenzofuran 5.36 6.28 6.21 5.70 5.57 5.96

1,3,8-Trichlorodibenzofuran 4.07 5.80 5.82 5.28 5.40 5.55

2,3,4-Trichlorodibenzofuran 4.72 6.78 5.80 5.73 5.83 5.77

2,3,8-Trichlorodibenzofuran 6.00 5.58 5.07 5.63 5.59 5.35

2,6,7 -Trichlorodibenzofuran 6.35 5.64 5.29 5.38 4.98 5.34

2,3,4,6-Tetrachlorodibenzofuran 6.46 5.95 5.86 6.68 5.56 6.27

2,3,4,8-Tetrachlorodibenzofuran 6.70 6.19 5.84 5.55 5.38 5.70

1,3,6,8-Tetrachlorodibenzofuran 6.66 5.63 5.52 6.36 5.92 5.94

2,3,7,8-Tetrachlorodibenzofuran 7.39 6.96 6.54 7.18 6.84 6.86

1,2,4,8-Tetrachlorodibenzofuran 5.00 5.16 5.32 4.19 4.90 4.76

1,2,4,6,7-Pentachlorodibenzofuran 7.17 5.65 5.50 5.82 5.54 5.66

1,2,4,7,9-Pentachlorodibenzofuran 4.70 6.82 6.34 5.22 5.40 5.78

1,2,3,4,8-Pentachlorodibenzofuran 6.92 6.42 5.74 5.49 5.21 5.62

1,2,3,7,8-Pentachlorodibenzofuran 7.13 7.03 6.56 6.96 7.19 6.76

1,2,4,7,8-Pentachlorodibenzofuran 5.89 5.94 5.57 6.32 5.94 5.95

2,3,4,7,8-Pentachlorodibenzofuran 7.82 6.42 6.42 7.08 6.80 6.75

1,2,3,4,7,8-Hexachlorodibenzofuran 6.64 6.61 6.06 7.22 6.95 6.64

1,2,3,6,7,8-Hexachlorodibenzofuran 6.57 7.22 6.78 6.67 6.47 6.73

1,2,4,6,7,8-Hexachlorodibenzofuran 5.08 6.58 5.83 6.53 5.70 6.18

2,3,4,6,7,8-Hexachlorodibenzofuran 7.33 7.93 6.85 7.73 6.60 7.29

2,3,6,8-Tetrachlorodibenzofuran 6.66 5.39 5.23 5.58 5.42 5.41

1,2,3,6-Tetrachlorodibenzofuran 6.46 4.93 5.36 6.17 5.85 5.77

1,2,3,7-Tetrachlorodibenzofuran 6.96 6.93 6.57 7.00 7.22 6.79

1,3,4,7,8-Pentachlorodibenzofuran 6.70 6.82 6.59 6.60 6.53 6.60

2,3,4,7,9-Pentachlorodibenzofuran 6.70 6.54 6.34 7.29 6.99 6.82

1,2,3,7,9-Pentachlorodibenzofuran 6.40 6.32 6.40 6.69 6.94 6.55
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Table 2 AhR binders and their experimental and predicted log(1/EC50) (Continued)

H 3.00 3.53 4.46 3.98 3.95 4.22

2,3,4,7-Tetrachlorodibenzofuran 7.60 6.08 6.44 6.37 6.29 6.41

1,2,3,7-Tetrachlorodibenzofuran 6.96 6.97 6.59 7.00 7.17 6.80

1,3,4,7,8-Pentachlorodibenzofuran 6.70 6.84 6.58 6.62 6.52 6.60

2,3,4,7,9-Pentachlorodibenzofuran 6.70 6.52 6.36 7.23 6.96 6.80

1,2,3,7,9-Pentachlorodibenzofuran 6.40 6.38 6.41 6.68 6.94 6.55

1,2,4,6,8-Pentachlorodibenzofuran 5.51 5.81 5.61 3.30 4.80 4.46
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utilizing the same algorithm (either PLS or KNN) operating
on an individual 3D-SDAR data matrix by generating mul-
tiple randomized training/test subset pairs later combined
to form a single model will be referred to as “composite
models”. Models averaging the predictions from two (or
eventually more) composite models will be referred to as
“consensus models”. The term “individual models” is used
interchangeably to denote either the individual PLS or KNN
models forming the “consensus model” or the individual
randomized training/test subset models resulting in a “com-
posite model”. However, its specific meaning would be de-
termined through its contextual use. The term “matching
training/test subset pairs” indicates complementary training
and test subset pairs processed by different algorithms, but
composed of the same subsets of compounds.

Molecular conformation
In its current implementation, 3D-QSDAR does not
employ docking or alignment algorithms, nor does it use
X-ray structures to achieve more consistent geometries of
the molecules constituting the dataset. This choice widens
its applicability to datasets of compounds with unknown,
multiple, or no specific targets and in the absence of
knowledge about the binding site and its conformational
requirements. For the purpose of reproducibility, however,
the conformation at the global minimum of the potential
energy surface was used. It has to be acknowledged that,
while this conformation is the most energetically stable,
it may not be the one assumed during solvent inter-
action or upon binding with a macromolecule [24].
To find the lowest energy conformers of all PCBs (the

PHDDs and PCDFs have no rotatable bonds) a conform-
ational search analysis was performed in HyperChem 8.0
[25]. An AMBER force field [26] and a random walks search
method with an acceptance energy criterion of 6 kcal/mol
were used. At the final stage of optimization all PCBs,
PHDDs and PCDFs were optimized by employing a semi-
empirical Austin Model 1 (AM1) Hamiltonian with a root-
mean-square gradient of 0.01 kcal/Å ×mol.

3D-QSDAR descriptor calculations
The final refined geometries of all 94 AhR binders to-
gether with their respective 13C chemical shifts simulated
by ACD/NMR Predictor version 12.0 [27] were used to
generate unique 3D-fingerprints representing each com-
pound in the abstract 3D-SDAR space [8]. This space is
defined by three orthogonal coordinates, with the chem-
ical shifts of atoms Ci and Cj on axes X and Y, respectively,
and the distance between them on the Z axis. This con-
cept is illustrated in Figure 1, which shows the structure
and the 13C-NMR spectrum of 2,3,7,8-tetrachlorodibenzo-
p-dioxin (Figures 1a and 1b) and its corresponding
3D-SDAR fingerprint (Figure 1c). For example, in Figure 1c
the coordinates of the topmost left fingerprint element
are defined by the chemical shifts of atoms 1 and 6
(116.94 ppm) and the distance between them (5.52 Å).
Due to the D2h symmetry of the 2,3,7,8-tetrachlorodi-
benzo-p-dioxin molecule, the position of this fingerprint
element in the 3D-SDAR space coincides with the one
representing atoms 4 and 9. The remaining fingerprint
elements are constructed in a similar manner.
Because the units of length on each axis are not identi-

cal, X, Y and Z do not form a Cartesian coordinate sys-
tem. Since the number of carbon atoms in a molecule
(NC) determines uniquely the number of elements in a
fingerprint (NC(NC - 1)/2), each of the 94 AhR binders
will be represented by at least 66 such fingerprint ele-
ments in the 3D-SDAR space. This 3D-SDAR space was
further tessellated using regular grids to form bins ran-
ging in size from 2 ppm x 2 ppm x 0.5 Å to 20 ppm x
20 ppm x 2.5 Å (i.e. incremental steps of 0.5 Å on the
Z-axis and 2 ppm on the chemical shifts plane XY were
used). As a result, 50 regular grids of different granula-
rity were generated. A procedure performed separately
on each of the 50 grids counted the number of finger-
print elements of a molecule belonging to a given bin
(i.e., bin occupancy) and stored these values as row vec-
tors in m x n matrices. Here m represents the number
of compounds in the dataset, whereas n represents the
number of occupied bins.

Determination of the optimal number of randomization
cycles
Experiments aimed at the determination of the optimal
number of training/test subset randomization cycles ne-
cessary to achieve an asymptotic convergence of R2

test (an



Figure 1 (a) structure of 2,3,7,8-tetrachlorodibenzo-p-dioxin; (b) 13C NMR spectra of 2,3,7,8-tetrachlorodibenzo-p-dioxin; (c) 3D
fingerprint of 2,3,7,8-tetrachlorodibenzo-p-dioxin; The gray circles representing the shadows of the fingerprint elements in the
XY-plane and the drop lines are shown to indicate better the elements’ positions in the 3D-SDAR abstract space.
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average of N individual R2
test values, 10 ≤N ≤ 1000) to its

“true” value were conducted. As an example, Figure 2
shows the dependence between R2

test and the number of
randomization cycles in case of: i) our best PLS model
utilizing 10 ppm x 10 ppm x 0.5 Å bins and 7 latent vari-
ables (LVs) and ii) our best KNN model using 2 ppm x
2 ppm x 0.5 Å bins and 6 neighbors. Figure 2 indicates
that a minimum of 100 randomization cycles would be
needed so that the average R2

test values would converge
to their asymptotic values. Therefore, to reduce the
Figure 2 Average predictive performance of the PLS and KNN models
computational demand and to avoid reporting overly-
optimistic results, 100 randomizations for each of the 50
3D-SDAR data matrices were performed.

Model building
To explore the ability of different data processing tech-
niques to capture complementary portions of the variance
in biological data, two algorithms based on unrelated con-
cepts but operating on descriptor matrices originating
from the 3D-QSDAR approach were employed.
as a function of the number of training/test cycles.
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i) A SIMPLS based [28] PLS algorithm written in
Matlab [29] was employed to process each of the 50
3D-QSDAR data matrices. All descriptors were
standardized using the “zscore” Matlab function. As
described above, 100 random training/test set pairs
were generated and composite (ensemble) PLS
models for the training sets, including somewhere
between 1 and 10 LVs, were built. These models
were then used to predict the log(1/EC50) values for
the complementary 20% “hold-out” test subsets. At
the end, each of the individual 100 R2

training, R
2
test and

R2
scrambling values were recorded and their averages

for the composite models were reported. For each of
the 50 average models utilizing grids of different
granularity the random number generator was
initialized in order to recreate the same training/
hold-out test sequence (Additional file 1). Due to the
specifics of the chosen model-building procedure,
the reader should bear in mind that these average
reported parameters include contributions from
“good” as well as “bad” models (see the results and
discussion section).

ii) Alternatively, a KNN algorithm written in Matlab
and based on Tanimoto similarity [30] in its
generalized vector form, T A;Bð Þ ¼ A:B

Ak k2þ Bk k2−A:B was
employed. In this equation, A and B are data objects
represented by vectors (originally bit vectors). Thus,
the Tanimoto similarity is a dot product of two
vectors A and B (bin occupancy row vectors for a
pair of compounds) divided by the squared
magnitudes of A and B minus their dot product. In
other words, for compounds sharing common
structural features T will be closer to 1, otherwise T
will be closer to 0.

Because T is not invariant to standardization, the de-
sire for preservation of its universal nature required use
of the original, non-transformed 3D-SDAR descriptor
pool. At a constant granularity of the grid this specific
choice allowed bijection of T - there is one and only one
T for a given pair of compounds. For a standardized
descriptor pool, T loses its universal nature by being de-
pendant on the mean and the standard deviation of the
descriptors within the training set, and multiple T-s
between a pair of compounds would exist (i.e., T would
become a local characteristic of similarity).
These invariant T values (calculated for all pairs of

compounds) were later used to predict the hold-out test
set activities by ranking the compounds from the train-
ing set in a descending order of their similarity to each
compound from the hold-out test and using T of the
first K-neighbors (1 ≤ K ≤ 10) to weight their contribu-
tions to activity. Under these experimental settings, both
odd and even numbers of neighbors can be used. As
with PLS, the KNN validation procedure involved 100
randomized training/hold-out test set pairs recreated by
the use of the same random seed.

Fit and prediction
The majority of QSARs are built for prediction. Hence,
parameters such as the coefficient of determination for
the training set (R2

training) that measure the fitting ability
of a model play only a minor role, typically unrelated to
predictive power. Since we are more interested in the
behavior of models intended for prediction, our atten-
tion was primarily focused on R2

test and R2
scrambling. More

specifically, the behavior of R2
test was closely followed,

whereas R2
scrambling was monitored only as an indicator

of potential chance correlations.

Results and discussion
Similarity as a discrimination function
The ability of T to detect structural similarity and thus
structural variations is illustrated in Figure 3 (2 ppm x
2 ppm x 0.5 Å bins were used). Three regions of higher
similarity are clearly distinguishable: i) compounds with
IDs between 1 and 30 are all PCBs; ii) compounds with
IDs between 31 and 55 are PHDDs and iii) the remaining
39 compounds are PCDFs. Because T is calculated from
row vectors, it can be demonstrated that KNN operating
on T may capture information complementary to that of
the respective PLS models (virtually all multivariate
methods operate on column vectors). Thus, the degree of
orthogonality between PLS and KNN would be one of the
factors with an impact on the performance of consensus
PLS-KNN models. Another such factor would be the
complementarity of the information content specific to
3D-SDAR matrices of different granularity.

Optimal bin size
As described above a total of 50 PLS and KNN compos-
ite models of different granularity (each of which is a re-
sult of 100 training/test set combinations) were built.
The statistical parameters of these models calculated as
an average of their corresponding 100 individual values
are shown in Table 3. The predictive power of the PLS
and KNN models in terms of R2

test as a function of the
granularity of the 3D-SDAR abstract space is shown on
Figure 4.
From Table 3 and Figure 4 one can see that the PLS and

KNN models achieve their optimal performance at a dif-
ferent granularity of the grid. The best performing PLS
model reaches its highest average R2

test of 0.633 (σ = 0.147)
at 10 ppm x 10 ppm x 0.5 Å, while the KNN model
achieves it highest average R2

test of 0.618 (σ = 0.170) at
2 ppm x 2 ppm x 0.5 Å. This observation can be explained
by the combined effect of several contributing factors:



Figure 3 Tanimoto similarity between pairs of compounds for the AhR dataset using 2 ppm x 2 ppm x 0.5 Å bins.
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i) As described in the methodology section, the PLS
algorithm utilizes data standardization, which
adjusts for the size disparity of variables. Unlike PLS,
KNN uses the original bin occupancies. Thus, in the
case of PLS, the optimal bin size would mainly
reflect the inherent estimation error in the chemical
shifts of carbon atoms and their associated inter-
atomic distances. As demonstrated in [8], bins with
a high resolution on the Z axis (CiCj distance) and a
granularity of at least twice the estimation error of
13C chemical shifts in the XY plane would result in
PLS models of optimal performance. For the current
dataset, the 13C chemical shifts estimation error was
3.98 ppm, which would require bins with granularity
of at least 8 ppm in the XY plane. Hence, it is not
surprising that the best performing PLS model
utilizes 10 ppm x 10 ppm bins in the XY plane and a
0.5 Å on the Z-axis. Besides the 13C chemical shifts
estimation error, the optimal grid granularity also
depends on the bin occupancy. Bins that are too
narrow will result in a large, but sparsely populated
3D-SDAR matrix and PLS models unable to
generalize (poor predictive performance). On the
other hand, models using bins that are too wide
(e.g., > 14 ppm in the chemical shifts plane XY) may
assign fingerprint elements encoding divergent
structural features to the same bin, thus producing
models lacking in their ability to decode the under-
lying relationship between structure and activity.

ii) The use of T as a factor for activity determination in
KNN results in smaller optimal bin sizes in part due
to the cancelation of the error in the chemical shifts
plane (XY) for similar compounds. Note that the
highest contribution to the determination of activity
in KNN comes only from the first K-nearest
neighbors, which by definition are most similar to
the compound the activity of which is being
predicted. Because for similar structures the error of
prediction propagates in parallel, it is not surprising
that similarity based KNN algorithms will achieve
maximum performance at smaller bin sizes.

iii)Unlike PLS, which assigns a different contribution of
each bin to the final model, KNN treats all bins as
independent coordinates of a vector compared



Table 3 Average statistical parameters of the best PLS and KNN models at a given number of LVs and neighbors as a
function of the granularity of the 3D-SDAR space

Bin size Optimal
number
of LVs

Avg.
R2test
(PLS)

Std.
R2test
(PLS)

Avg.
R2scr
(PLS)

Std.
R2scr
(PLS)

Optimal
number of
neighbors

Avg.
R2test
(KNN)

Std.
R2test
(KNN)

2 ppm x 2 ppm x 0.5 Å 3 0.591 0.143 0.085 0.103 6 0.618* 0.170

4 ppm x 4 ppm x 0.5 Å 3 0.604 0.142 0.088 0.109 5 0.606 0.146

6 ppm x 6 ppm x 0.5 Å 5 0.532 0.167 0.074 0.097 7 0.453 0.178

8 ppm x 8 ppm x 0.5 Å 5 0.593 0.142 0.097 0.113 6 0.520 0.162

10 ppm x 10 ppm x 0.5 Å 7 0.633* 0.147 0.085 0.113 4 0.612 0.162

12 ppm x 12 ppm x 0.5 Å 3 0.474 0.178 0.105 0.115 9 0.432 0.181

14 ppm x 14 ppm x 0.5 Å 2 0.321 0.193 0.096 0.121 10 0.312 0.179

16 ppm x 16 ppm x 0.5 Å 3 0.383 0.154 0.073 0.090 10 0.353 0.166

18 ppm x 18 ppm x 0.5 Å 2 0.307 0.189 0.077 0.100 10 0.307 0.186

20 ppm x 20 ppm x 0.5 Å 2 0.410 0.178 0.122 0.137 9 0.356 0.180

2 ppm x 2 ppm x 1.0 Å 3 0.567 0.149 0.082 0.095 6 0.599 0.181

4 ppm x 4 ppm x 1.0 Å 3 0.562 0.149 0.081 0.099 3 0.558 0.179

6 ppm x 6 ppm x 1.0 Å 5 0.526 0.164 0.076 0.099 7 0.466 0.178

8 ppm x 8 ppm x 1.0 Å 4 0.542 0.161 0.095 0.116 6 0.504 0.164

10 ppm x 10 ppm x 1.0 Å 6 0.597 0.153 0.086 0.100 4 0.593 0.162

12 ppm x 12 ppm x 1.0 Å 2 0.440 0.176 0.101 0.128 10 0.429 0.182

14 ppm x 14 ppm x 1.0 Å 2 0.315 0.195 0.100 0.125 10 0.327 0.179

16 ppm x 16 ppm x 1.0 Å 5 0.251 0.147 0.069 0.090 10 0.357 0.168

18 ppm x 18 ppm x 1.0 Å 2 0.296 0.189 0.077 0.106 10 0.292 0.185

20 ppm x 20 ppm x 1.0 Å 2 0.405 0.176 0.128 0.137 10 0.358 0.180

2 ppm x 2 ppm x 1.5 Å 3 0.537 0.163 0.074 0.087 5 0.603 0.178

4 ppm x 4 ppm x 1.5 Å 3 0.542 0.151 0.077 0.101 6 0.574 0.160

6 ppm x 6 ppm x 1.5 Å 5 0.536 0.164 0.073 0.112 5 0.481 0.169

8 ppm x 8 ppm x 1.5 Å 8 0.500 0.196 0.090 0.106 9 0.498 0.164

10 ppm x 10 ppm x 1.5 Å 8 0.531 0.180 0.092 0.106 5 0.585 0.166

12 ppm x 12 ppm x 1.5 Å 2 0.440 0.174 0.104 0.132 10 0.421 0.180

14 ppm x 14 ppm x 1.5 Å 8 0.267 0.155 0.073 0.082 10 0.316 0.181

16 ppm x 16 ppm x 1.5 Å 6 0.286 0.147 0.063 0.081 10 0.359 0.169

18 ppm x 18 ppm x 1.5 Å 2 0.302 0.188 0.079 0.111 7 0.291 0.180

20 ppm x 20 ppm x 1.5 Å 2 0.406 0.176 0.121 0.138 10 0.365 0.182

2 ppm x 2 ppm x 2.0 Å 2 0.495 0.177 0.071 0.086 6 0.576 0.180

4 ppm x 4 ppm x 2.0 Å 3 0.504 0.158 0.080 0.102 7 0.535 0.172

6 ppm x 6 ppm x 2.0 Å 5 0.500 0.170 0.071 0.095 6 0.467 0.173

8 ppm x 8 ppm x 2.0 Å 4 0.508 0.159 0.095 0.121 10 0.481 0.169

10 ppm x 10 ppm x 2.0 Å 4 0.498 0.174 0.088 0.105 10 0.557 0.174

12 ppm x 12 ppm x 2.0 Å 3 0.450 0.171 0.102 0.116 10 0.430 0.181

14 ppm x 14 ppm x 2.0 Å 9 0.297 0.156 0.078 0.093 10 0.329 0.186

16 ppm x 16 ppm x 2.0 Å 7 0.207 0.142 0.057 0.075 10 0.359 0.166

18 ppm x 18 ppm x 2.0 Å 2 0.273 0.179 0.070 0.112 10 0.308 0.188

20 ppm x 20 ppm x 2.0 Å 2 0.410 0.174 0.131 0.137 10 0.383 0.179

2 ppm x 2 ppm x 2.5 Å 2 0.481 0.18 0.076 0.087 8 0.555 0.185
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Table 3 Average statistical parameters of the best PLS and KNN models at a given number of LVs and neighbors as a
function of the granularity of the 3D-SDAR space (Continued)

4 ppm x 4 ppm x 2.5 Å 3 0.485 0.163 0.079 0.101 7 0.522 0.182

6 ppm x 6 ppm x 2.5 Å 5 0.492 0.165 0.071 0.101 7 0.465 0.175

8 ppm x 8 ppm x 2.5 Å 3 0.422 0.173 0.097 0.122 6 0.485 0.175

10 ppm x 10 ppm x 2.5 Å 10 0.471 0.222 0.072 0.082 3 0.568 0.172

12 ppm x 12 ppm x 2.5 Å 2 0.404 0.174 0.097 0.135 10 0.429 0.180

14 ppm x 14 ppm x 2.5 Å 8 0.286 0.158 0.073 0.094 10 0.315 0.186

16 ppm x 16 ppm x 2.5 Å 7 0.244 0.133 0.057 0.076 10 0.339 0.167

18 ppm x 18 ppm x 2.5 Å 3 0.282 0.173 0.081 0.092 10 0.293 0.184

20 ppm x 20 ppm x 2.5 Å 1 0.397 0.176 0.137 0.152 10 0.358 0.176

*indicates the best PLS and KNN models.
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against other such vectors (i.e., assigns equal
contribution). Thus, depending on the model
building technique being employed, grids of different
granularity may be identified as performing better.

Composite and consensus models
For both PLS and KNN composite models, Figures 5a
and 5b show plots of the average predicted activities of
all 94 compounds (each was part of the hold-out test
and predicted ~20 times) against their experimental log
(1/EC50) values. Note that the coefficients of determin-
ation shown on Figures 5a and 5b differ slightly from
the R2

test values given in Table 3, as the latter represent
an average of 100 individual R2

test values for the random-
ized training/test subset pairs.
Because consensus requires at least two individual

models an obvious choice was to select complementary
Figure 4 Average R2test for the (a) PLS and (b) KNN models as a functi
composite PLS and KNN models (indicated by the green
arrows in Figure 4). This choice allowed the construc-
tion of consensus models from pairwise averaging of the
predictions from individual models using: i) the same al-
gorithm but different bin size (IDs 2 and 4); ii) the same
bin size but different algorithm (IDs 5 and 6) or iii) dif-
ferent algorithm and different bin size (IDs 1 and 3).
The percentage improvement in consensus modeling
over the average of the coefficients of determination of
the individual models is carried out in Table 4. Although
consensus between other pairs of individual models or
of higher order (averaging predictions from more than
two individual models) is possible and may perform bet-
ter, the enormous number of such models was prohibi-
tive and such efforts were not undertaken.
As can be seen from Table 4, both differences in the

data processing algorithms and the granularity of the
on of the 3D-bin size.



Figure 5 Plot of the predicted vs. observed log(1/EC50) values in case of: a) the composite PLS model using 10 ppm x 10 ppm x 0.5 Åbins
and 7LVs; b) the composite KNN model using 2 ppm x 2 ppm x 0.5 Å bins and 6 neighbors; and c) the PLS-KNN consensus model.
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3D-SDAR space contribute to the improvement in con-
sensus modeling. A comparison of the performance im-
provement of consensus models indicates that generally
the models of type iii perform best. A possible explan-
ation for this observation is that these models benefit
from: i) the complementary information extracted from
3D-SDAR matrices of different granularity and ii) the
utilization of different data processing algorithms.
Among these 6 consensus models, the one averaging the
predictions from the best performing PLS (10 ppm x
10 ppm x 0.5 Å bins, 7 LVs) and KNN (2 ppm x 2 ppm x
0.5 Å bins, 6 neighbors) individual models was charac-
terized by the highest coefficient of determination
(shown in Figure 5c and the last column of Table 2).
To further understand the factors playing a role in

consensus modeling and to explain the observed im-
provement over the composite PLS and KNN models,
analysis based on training/test set pairs of individual
models was carried out.
According to our initial hypothesis an improvement in

consensus modeling would be observed only if the indi-
vidual composite models account for complementary in-
formation (i.e., explain complementary portions of the
variance in the biological data). For this purpose, the be-
havior of the individual 100 sub-models resulting in the
best composite PLS and KNN models was investigated.
If for each of the 100 training/test set pairs both
Table 4 Improvement of R2test of consensus models over the a

ID Model 1 Model 2

1 PLS 10 ppm x 10 ppm x 0.5 Å KNN 2 ppm x 2 ppm x 0.5 Å

2 PLS 10 ppm x 10 ppm x 0.5 Å PLS 2 ppm x 2 ppm x 0.5 Å

3 PLS 2 ppm x 2 ppm x 0.5 Å KNN 10 ppm x 10 ppm x 0.5 Å

4 KNN 2 ppm x 2 ppm x 0.5 Å KNN 10 ppm x 10 ppm x 0.5 Å

5 PLS 2 ppm x 2 ppm x 0.5 Å KNN 2 ppm x 2 ppm x 0.5 Å

6 PLS 10 ppm x 10 ppm x 0.5 Å KNN 10 ppm x 10 ppm x 0.5 Å
algorithms capture almost identical structural informa-
tion encoded in the 3D-SDAR descriptor pool, the corre-
sponding R2

test values generated on each cycle should be
highly correlated and therefore no improvement in con-
sensus modeling would be observed. In other words, the
two algorithms would be somewhat redundant and the
consensus R2

test would be an average of R2
test for the 100

individual sub-models. It has to be emphasized that such
an experiment would be valid only in a case of matching
training/test subset pairs. This condition is satisfied by
the use of the same random seed for both PLS and KNN
and a random number generator which was initialized
after 100 runs.
Three different views of the 100 individual R2

test values
for the best composite PLS (10 ppm x 10 ppm x 0.5 Å
bins, 7 LVs) and KNN models (2 ppm x 2 ppm x 0.5 Å
bins, 6 neighbors), are shown in Figure 6. A plot of the
ranked R2

test values for each of these 100 models (Figure 6a)
indicated a similar level of performance of both algo-
rithms. Figure 6a also demonstrates that some combina-
tions of training/test subset pairs may produce highly
accurate models with R2

test reaching 0.9, while others may
result in models with inferior performance (i.e., models in
which the test set compounds are not well represented by
the training set).
Figure 6b shows a plot of R2

test of matching training/
test subset pairs processed alternatively by PLS or KNN.
verage R2test of the individual models (in %)

R2test for the
consensus model

Average R2test of the
individual models

%
improvement

0.685 0.620 10.5

0.673 0.609 10.5

0.658 0.603 9.1

0.654 0.614 6.5

0.640 0.612 4.6

0.633 0.611 3.6



Figure 6 Ranked (6a) and matched test set pairs (6b) hold-out R2test of the 100 individual PLS and KNN models producing the best
composite models. The distribution of the hold-out R2PLS-R

2
KNNis shown in 6c.
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Although, there were PLS and KNN sub-models per-
forming equally well (forming a cluster in the upper
right corner or the plot), a significant portion of sub-
models predicted well by PLS were combined with infer-
ior KNN models and vice-versa. This observation and
the relatively low R2 of 0.367 suggest that the two indi-
vidual models reflect different structural patterns in the
data and are partially “orthogonal”. The distribution of
ΔR2

test PLS-KNN shown on Figure 6c indicated that a
total of 28 models deviate by at least 1σ from the mean.
Figure 7 Orthographic projections in the planes XZ (Figures 7a and 7
bins with positive and negative PLS weights mapped back to the 3D-
PLS outperformed KNN for 13 models while KNN per-
formed better for the remaining 15 models. These 28
models, for which one of the algorithms succeeded in
establishing a structure-activity relationship undetected
by the other, were identified as a major contributing fac-
tor affecting the performance of consensus models.
Thus, a consensus PLS-KNN model would benefit from
the partial orthogonality of the PLS and KNN ap-
proaches on different sized bins and would outperform
the individual composite models.
d) and YZ (Figures 7b and 7e) of the most frequently occurring
QSDAR abstract space shown on Figures 7c and 7f.
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Interpretation
An essential part of the QSAR modeling process is the
interpretation of the model in terms of structural varia-
tions leading to corresponding changes in the biological
activity. For the purpose of interpretation the bins with
the 10 most positive and negative PLS weights for each of
the individual models forming the composite 10 ppm x
10 ppm x 0.5 Å PLS model were extracted and their rela-
tive frequencies of occurrence were calculated. Since each
of the individual models utilized 7 LVs, a total number of
14000 positive and negative bins were extracted (2 × 100
sub-models × 7 LVs × 10 bins). Unique among these were
87 bins with positive weights and 74 bins with negative
weights. Their corresponding relative frequencies of oc-
currence were calculated and ranked. For simplicity,
only the topmost 20% unique positive and negative bins
were mapped back to the 3D-SDAR abstract space (see
Figure 7).
A detailed examination of the 3D-SDAR maps shown

in Figure 7 reveals that none of the bins with positive
weights overlaps with any of the bins with negative
weights: i.e., the structural features affecting binding
Figure 8 Frequently occurring positively weighted bins from Figure 6
few bins are shown, though many more were present.
(increasing or decreasing log(1/EC50)) are well separated.
Therefore, compounds with 3D-SDAR fingerprints pre-
dominantly occupying bins with positive PLS weights
will be stronger binders (highly toxic). Conversely, che-
micals with fingerprint elements falling into regions of the
3D-SDAR space occupied by bins with negative weights
will be weaker binders (less toxic). This hypothesis was
tested using an in house program projecting some of the
most frequently occurring positively and negatively
weighted bins on the standard coordinate space. This pro-
jection allowed identification of subsets of structures in
which these bins can often be found together.
As was expected, most of the bins characterized by posi-

tive PLS weights were found in the structures of PHDDs
representing the most toxic class of chemicals in the data-
set investigated (see Figure 8). Specifically, a subclass of
polybrominated dioxins showed consistent presence of
multiple positively weighted bins (see Figure 8). As antici-
pated, 7 of these were among the top 10 most toxic com-
pounds in the dataset. However, infrequently occurring
bins specific to compounds with peculiar structural fea-
tures did not appear as highly ranked in the composite
c superimposed over the structures of dioxins. For clarity only a
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3D-QSDAR models. This explains the absence of bins
specific to the 2,8-dibromo-3,7-dichlorodibenzo-p-dioxin,
since it is the only dioxin derivative with both Cl and Br
substituents on the same ring.
Although in its current version 3D-QSDAR “sees” only

the carbon atoms, inferences about their chemical envi-
ronments can be easily drawn. For example Figure 9
shows that the 140 ppm - 150 ppm, 110 ppm - 120 ppm,
2.0 Å - 2.5 Å bin is persistently occupied by carbon
atoms neighboring the oxygen atoms in PHDDs, indicat-
ing the importance of oxygen atoms for binding to AhR
[14,31]. Hence, the lack of oxygens in the structure of
PCBs can be correlated to their weaker binding affinity
(and consequently their lower molar toxicity).
In contrast, most of the negatively weighted bins were

found to be present in the structures of PCBs. As can be
seen from Figure 9, positions 2 and 2′ and (due to sym-
metry) positions 6 and 6′ are particularly affected and
chlorine substitution at these positions will lower the
toxicity of PCBs, compared to that of other chlorine
substituted homologues.
As an intermediate chemical class with an average ac-

tivity higher than that of PCBs and lower than that of
PHDDs, the activity of dibenzofurans is affected by the
presence/absence of structural patterns similar to those
Figure 9 Frequently occurring negatively weighted bins from Figure
bins are shown, though more were.
observed in the structures of both PCBs and PHDDs.
For example, the presence of an oxygen atom resulting
in a chemical shift range of the neighboring carbon
atoms between 150 and 160 ppm will lower the EC50 of
PCDFs (higher toxicity). Analogously to the 2 and 2′ po-
sitions in biphenyls, chlorine substitution at positions 1
and 9 will result in PCDFs with toxicity lower than that
of PCDF homologues substituted elsewhere.

Comparison to earlier models
Due to variability in the datasets and the multitude of
available data processing algorithms and validation tech-
niques, a direct quantitative comparison with the QSARs
summarized in Table 1 is impossible. However, if one
takes into account the much stringent validation criteria
imposed in our work (vs the cross-validation procedures
employed in [13-21]) it is clear that the 3D-QSDAR
methodology performs at least on par with these earlier
models. Similarly to CoMFA [17] on a qualitative level
the 3D-QSDAR was able to recognize correctly the posi-
tions that affect the strength of binding to AhR. Since
our work is based on a dataset originally compiled by
Mekenyan et al. a more direct comparison with the
QSARs reported in [22] was possible. Multiple separate
QSARs for the three classes of PCBs, PHDDs and PCDFs
6f superimposed over the structures of PCBs. For clarity only a few
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with R2 ranging from 0.640 (n = 30) to 0.899 (n = 14) were
derived. The statistical parameters of a model combining
the most planar PCBs, PHDDs and PCDFs (n = 80) were
as follows: R2 = 0.73; s2 = 0.59; R2

cv = 0.73 and F = 69.2. In
comparison, for the complete set of 94 compounds our
best consensus model produced an R2

test of 0.685 and a
q2LOO of 0.79 which are both close to the R2

cv of 0.73
reported by Mekenyan et al.

Conclusions
We have introduced several validation techniques
intended to improve the quality and reliability of indi-
vidual and consensus QSAR models. Their use was
illustrated on a dataset of 94 AhR binders modeled by
3D-QSDAR. The functional dependence between R2

test

and the number of training/test subset randomization
cycles was used to determine the minimum number of
cycles necessary to achieve convergence of R2

test to its
asymptotic “true” value. In this specific case, which uses
20% of the compounds as a hold-out test set, 100
randomization cycles proved sufficient for achieving
convergence for both PLS and KNN models. The use of
a distance measure (Tanimoto similarity) as a discrim-
inant function in KNN was shown to produce models
with performance similar to that of PLS when applied
to the same dataset. A plot of R2

test for matching test set
pairs was used to demonstrate the partial orthogonality
of PLS and similarity based KNN approaches on differ-
ent bin granularity. However, further investigations may
shed additional light on the character of the multiple
factors playing role in the improvements observed in
consensus modeling.
In the last stage of the modeling process the most fre-

quently occurring positively and negatively weighted
bins were projected back to the standard coordinate
space to identify structural features related to toxicity. It
was found that most of the highly ranked bins with posi-
tive PLS weights were specific to a class of polybromi-
nated dioxins. The oxygen atoms of PHDDs and PCDFs
participating in formation of donor-acceptor bonds with
the receptor were associated with the high toxic effect of
these two chemical classes. In the absence of other substit-
uents, PCBs with chlorine atoms at positions 2 and 2′
(and due to symmetry positions 6 and 6′) were accurately
predicted to be relatively weaker binders (less toxic).

Additional file

Additional file 1: Matlab code used for generation of the
randomized hold-out test sets.
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