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Abstract

Background: With the rapid development of high-throughput genomic technologies and the accumulation of
genome-wide datasets for gene expression profiling and biological networks, the impact of diseases and drugs on
gene expression can be comprehensively characterized. Drug repositioning offers the possibility of reduced risks in
the drug discovery process, thus it is an essential step in drug development.

Results: Computational prediction of drug-disease interactions using gene expression profiling datasets and
biological networks is a new direction in drug repositioning that has gained increasing interest. We developed a
computational framework to build disease-drug networks using drug- and disease-specific subnetworks. The
framework incorporates protein networks to refine drug and disease associated genes and prioritize genes in disease
and drug specific networks. For each drug and disease we built multiple networks using gene expression profiling and
text mining. Finally a logistic regression model was used to build functional associations between drugs and diseases.

Conclusions: We found that representing drugs and diseases by genes with high centrality degree in gene networks
is the most promising representation of drug or disease subnetworks.
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Background
The development of many methods that enable the iso-
lation and study of individual cells and molecules has
revolutionized the process of drug discovery from being
at the physiological level to more the accurate molecular
level. This revolution was all due to the genome sequenc-
ing project that provides a complete list of genes and
gene products and enables the simultaneous monitoring
of the expression of the whole genome. Consequently,
this technology has shed light on possible computational
techniques for investigating new therapeutic applications
for already approved drugs or other safe drug candidates
in what is called drug repositioning. By definition, drug
repositioning techniques ignore the first testing phases,
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that might take a decade and cost more than 1$ billion,
and progresses directly to drug applications [1]. This strat-
egy certainly has the potential of being the most efficient
technique for drug discovery since it provides reduced
development costs and shorter paths to approval [2].
Computational prediction of drug-disease associations

has become one of the leading approaches to drug-disease
treatment investigation. Network and systems biology
enable a better understanding for drug discovery by con-
sidering a global physiological environment of protein
targets. Thus network biology has played a central role in
developing efficacious therapies that alter entire pathways
rather than single proteins, resulting in the potential for
fighting complex multifactorial diseases [3]. This finding
confirms that medicine is no exception to the mathemat-
ical system theory that states the scale and complexity of
the solution should match the scale and complexity of the
problem. It seems clear that therapies modulating a sin-
gle target yield nothing but minor alteration of a diseases
complex machinery. Therefore for the past few years the
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focus to fight complex diseases has been on network cen-
tric but not gene centric [4] modules. Out of the different
approaches and data sources that have been used for drug
repositioning, microarrays and text mining have been
the most prevalent. Gene expression microarrays have
been broadly and successfully used to study the molecular
pathophysiology of diseases [5-8] and drugmode of action
[9-12]. Noteworthy that most of these approaches were
based on gene set enrichment (GSEA) statistical tech-
niques [13]. For instance, Lamb et al. [10] studied hun-
dreds of molecules over different cell lines, drug doses and
exposure time slots. This approach has enabled Lamb and
colleagues to create ranked lists of genes for each sample
and finally to use GSEA to build associations from differ-
ent molecules. Similarly Iorio et al. [12] used a merging
procedure to merge all the ranked lists related to a partic-
ular drug into one representative ranked list of genes for
the drug. Finally they applied GSEA to build a drug-drug
network based on the same concept. On the other hand,
there were many attempts to prioritize disease-associated
genes by integrating microarray expression profiles and
network data [14-17]. As described by Wu et al. [17]
these techniques can be sorted into three major cate-
gories. The first uses microarray data and t-tests to find
possible differentially expressed genes (DEG). Later on it
uses a gene network in order to prioritize genes that are
surrounded by DEGs [14]. The second technique consid-
ers the dynamic changes in interactions of the candidate
gene with other genes in the compared samples (normal
and disease samples), which has been done by defining
hubs from a protein-protein interaction network (PPIN)
and checking if the hub and its neighbors are co-expressed
together in different tissues [15]. The third technique con-
siders variations of gene interactions between compared
samples and their effects on gene expression to prior-
itize disease-associated genes [16]. More specifically, it
defines the set of DEG together with a manually curated
set of transcription regulators (TRs). Later, the difference
in coexpression between DEGs and TRs is computed in
the compared conditions. This difference is used for com-
putation of differential wiring that is going to be used for
prioritization purposes.
In addition to microarray expression profiles, many

text mining based tools and biological systems have been
successfully developed to connect and prioritize genes,
diseases and drugs. Some of these approaches use pattern-
based recognition techniques [18] and others inte-
grate protein-protein networks for prioritization purposes
[19-21]. For instance, Cheng et al. [18] have developed
a web-based text mining system called PolySearch for
extracting relationships between human diseases, genes,
mutations, drugs and metabolites. PolySearch employs
a text ranking scheme to score the most relevant sen-
tences and abstracts that associate both the query and

match terms with each other. Li et al. [19] proposed
a paradigm that integrates molecular interaction net-
work mining and text mining techniques. The proposed
paradigm starts by incorporating disease-specific seed
genes/proteins derived from prior knowledge. This seed
of genes is improved by expanding and re-ranking them in
the functional context by reprioritizing them in disease-
related molecular interaction networks. To avoid the
problem of being biased towards the initial set of genes,
OzgÃijr et al. [21] developed a framework that integrates
a text-mining curated protein-protein network that is
related to a particular disease with social network analy-
sis centrality measures to predict unknown disease-gene
associations. The authors used sentence parsing in order
to build a syntactic parse tree representing the syntactic
constituent structure of a sentence and to build a protein-
protein network from this tree. After building the disease
specific protein-protein network, the authors considered
all the seed genes in addition to their neighbors for further
analysis. Finally to prioritize genes related to a particu-
lar disease, they used degree, eigenvector, betweenness
and closeness network centrality metrics. It is notewor-
thy that some chemical structure similarity approaches
were used in drug repositioning in addition to the text-
mining andmicroarray based approaches. An outstanding
paper in this field was the one by Gottlieb et al. [22].
Their approach was designed to directly predict drug-
disease associations including both FDA approved drugs
and other molecules in the experimental phase. Their
algorithm works in three phases: (i) building five drug-
drug similarity measures and two disease-disease similar-
ity measures; (ii) building classification features and sub-
sequent learning classification rule that can distinguish
between true and false drug-disease associations by using
these similarity measures; and (iii) applying a logistic
regression classifier to predict any new possible drug-
disease associations. Thus for a given drug-disease associ-
ation from the gold standard (experimentally curated list
of drug-disease interactions), the authors computed an
association score by considering all the other known drug-
disease association. Even though this technique attained
high sensitivity and specificity in cross-validation experi-
ments, it is not without limitations. Firstly, the proposed
method used 5 different drug similarity measures and
3 different disease similarity measures. This makes it
biased to include a drug without having its chemical struc-
ture, side effects, target sequence, target PPIN and its
target gene ontology. The same thing is applicable to dis-
eases. Furthermore this method does not consider the
similarity between drugs molecular actions. It only con-
siders the known targets for drugs to define similarities.
Sometimes there might be hidden or unknown drug tar-
gets that are not considered in this study resulting in a
bias since drugs trigger their action on target genes and
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have a consequent effect on other off-target genes. From
the approaches described above, one can conclude that
microarray expression profiles mining, text mining and
biological network analysis are very robust techniques
when it comes to connecting biological entities (drugs,
diseases and genes). In this work, we will study, analyze
and try to predict drug-disease associations in amore con-
textualized view that is provided by network biology. This
strategy will propel their association from the classical
empiricism to a pathway-based rational design of global
therapies. The main goal of this work is to identify a set
of genes that are prioritized according to their relevancy
to a particular disease or drug and then use these associ-
ations to build a drug-disease association network. Thus
instead of identifying disease related or drug related genes
from an expert-curated source, we will be utilizing text
mining and microarray data as genes associated with a
complex disease pathway are not all identified. Moreover,
many of these genes and proteins are still under investiga-
tion for potential values as disease biomarkers. The initial
set of genes extracted from each source will be further
extended from a source specific network, once by utiliz-
ing a microarray based network and the other by utilizing
a text-mining based network, by including their direct
neighbors for further analysis. By doing this network-
based approach, each drug or disease will be represented
by a subnetwork where edges represent an interaction
and nodes represent the set of seed genes for that par-
ticular drug/disease and their direct neighbors. Later on,
genes from each subnetwork will be reprioritized accord-
ing to their centrality measures in that subnetwork. Finally
a lasso regression model is used to predict drug-disease
associations by using drug-gene and disease-gene inter-
action networks using three different sources: microarray
data, text-mining data and finally an integrative source
that combines information from these two sources. A gen-
eral description for the proposed method is described in
Figure 1.

Methods
Defining the initial set of genes
In an experiment to quantitatively assess the druggable
potential of the human genome, conceivable results indi-
cated that only 10% of the genes in human genome
are considered drug targets, 10% are involved in dis-
ease pathophysiology and only 5% are both druggable
and relevant to disease [23]. We assumed that includ-
ing only genes that are related to a drugs mode of action
or a diseases pathophysiology can save processing time
and memory by excluding irrelevant genes from fur-
ther analysis. Particularly, we used DrugBank database
[24] to include all targets of our drug set and OMIM
database to include genes that are involved in disease
pathophysiology.

Refining gene lists using protein networks
To guarantee that we had selected a robust function set
of genes for drugs and diseases, we included other func-
tionally related genes, thereby extending our understand-
ing for drug mode of action or disease pathophysiology.
For this purpose we used functional protein interac-
tions from Reactome database [25] in order to extract
all the other genes that are functionally related (direct
neighbors) to our seed list of genes. In the context of
this work, we will refer to these lists as DiseaseExt and
DrugExt for the extended lists of diseases and drugs,
respectively.

Prioritizing genes using microarray and text mining data
In this section we describe two directions we followed
to prioritize DiseaseExt and DrugExt genes. In the first
approach, we used microarray expression data of cells
treated with drugs and diseases to rank genes based
on their differential expression capability. In the second
approach we used text mining techniques to rank genes
based on the frequency of their co-occurrence with dis-
eases or drugs.

Prioritizing gene lists based onmicroarray gene expression
Two different databases were used to generate microar-
ray based drug-gene and disease-gene interactions. For
drugs, we used the Connectivity Map website [26] that
contains 6100 ranked lists of genes for 1300 chemical sub-
stances. Note that ranking scores for genes are based on
their differential expression between untreated and drug
treated samples. So for a set of n genes the most positively
expressed gene was given a rank of 1 and the most nega-
tively expressed gene was given a rank of n. We extracted
these ranked lists and merged repeated samples for a par-
ticular drug as has been described by Iorio [12]. Thus
we ended up having a representative list of each of the
remaining 406 drugs after excluding chemical substances
that are not recognized in the DrugBank database [24].
We extracted the rank values for DrugExt genes and nor-
malized rank scores for each gene relevant to a particular
drug according to this list. Finally the 25 lowest and the 25
highest ranked genes for each drug were selected to rep-
resent the initial set of genes to a build drug-specific gene
network. We will refer to these sets as Mir-DrugExt. For
diseases, we used the Gene Expression Omnibus (GEO)
repository to generate microarray data for disease samples
and control samples. To select datasets, it was essential
in this experiment to select disease expression profiles
that were generated using Human Affymetrix platform
to make it consistent with the experiments generated for
drugs and avoid any possible platform-specific bias. Also
it was essential to include a set of diseases with .CLE
raw files uploaded since we planned to normalize exper-
iments with the same normalization algorithm. This set
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Figure 1 General framework for building drug-disease associations. This figure shows the general framework for our proposed paradigm. Steps
1 and 2 were used to extract the initial set of genes. Steps 3.1 and 3.2 extracted drug-gene and disease-gene co-occurrences, respectively. Steps 3.3
and 3.4 extracted drugmicroarray and diseasemicroarray data respectively. In step 4 we found the ranks of genes related to a specific drug or disease.
In step 5 we built the drug-specific and disease-specific gene-gene network. In step 6 we ran prioritization procedures as to launch drug-gene and
disease-gene interaction networks into a lasso regression. In step 7 we used lasso regression model to build drug-disease associations.



Qabaja et al. Journal of Cheminformatics 2014, 6:1 Page 5 of 14
http://www.jcheminf.com/content/6/1/1

of diseases was selected by manually browsing GEO for
disease experiments that satisfy the mentioned criteria.
This browsing process was done by two bioinformati-
cians and lasted for two weeks, resulting in a set of 24
diseases. CLE files for the 24 diseases were collected inde-
pendently and RMA normalization algorithm [27] was
used in order to normalize data. We extracted the gene
expression profiles for the DiseaseExt gene set by find-
ing a corresponding probe-set in microarray expression
profiles. Note that, the average expression profiles for all
probe-sets have been taken for genes that are represented
by more than one corresponding probe-set. Later on, we
used significant analysis of microarray or SAM technique
[28] in order to identify a differential expression score for
every single gene, and the genes were ranked according to
their scores from 1 to n. SAM assigns a score based on
changes related to standard deviations of some randomly
generated measurements of a particular gene. This score
ranges between a high positive indicating that the gene
has been up-regulated upon comparison between healthy
and diseased samples, and a high negative score indicating
that the gene has been down-regulated upon compari-
son between healthy and diseased samples. Finally the 25
lowest and 25 highest ranked genes for each disease were
selected to represent the initial set of genes to build a
disease-specific gene network. We will refer to these sets
as Mir-DiseaseExt.

Prioritizing gene lists based on PubMed abstracts
To prioritize genes for each drug and disease, we found
co-occurrences between these biological entities using
PubMed abstracts. More specifically, we queried PubMed
database to check the co-occurrences of every single
disease/drug with every single gene in DiseaseExt and
DrugExt. It is noteworthy that we considered all possi-
ble annotations or MeSH terms for specific disease, drug
or gene. Since co-occurrences can be vulnerable to false
positives, we set to zero any drug-gene or disease-gene
co-occurrence that was less than 5. After defining these
co-occurrences we used regularized a log odd ratio con-
nectivity measure to reflect the strength of the ties in
our drug-gene and disease-gene co-occurrence matrices.
The resulting score yielded a positive value for enriched
drug-gene or drug-gene pairs and a negative value for
underrepresented pairs. As described previously [19], the
connectivity between a particular drug or disease D and a
gene G or ConnectDG can be computed according to the
following formula:

ConnectDG = ln(ABSDG∗N+λ)−ln(ABSG∗ABSD+λ)

(1)

Where ABSDG is the total number of abstracts in which
drug or disease D and gene G were co-mentioned

together. ABSG and ABSD is the number of abstracts in
which gene G and drug or disease D was mentioned,
respectively. N is the size of all tested abstracts. λ is a small
constant that has been added to avoid out of bound errors
in case any of ABSDG, ABSG, or ABSD values were zero.
The only concern with using this formula is that the N
term in our case is very big (all abstracts in PubMed), thus
making score biased toward the left hand side of the for-
mula. On the other hand, using any small reasonable value
to replace N would make the score biased toward the right
hand side of the formula. Therefore we sought to mod-
ify both sides to fit our analysis according to the following
formula:

ConnectDG = ln(ABSDG ∗ max(ABSD,ABSG) + λ)

− ln(ABSD + ABSG + λ)

(2)

And we set λ to 1 in all cases. Finally we included all
genes with a positive ConnectDG score relevant to a par-
ticular disease or drug. We will refer to these gene sets
as Txt-DiseaseExt and Txt-DrugExt for diseases and drugs
respectively.

Generating disease-specific and drug-specific gene
module signatures
After we refined the DiseaseExt and DrugExt gene sets
using microarray and text mining techniques, we sought
to find gene subnetworks (gene modules) to represent
each drug and disease. As described above, our major
goal was to utilize the information that is stored in bio-
logical networks and thus focus our attention on net-
work topological features to predict drug indications. We
intended to generate two subnetworks for every single
drug or disease using two different sources of informa-
tion: microarray expression profiles (Mir-DiseaseExt and
Mir-DrugExt) and text mining data (Txt-DiseaseExt and
Txt-DrugExt). To generate the text-mining based subnet-
works we first extracted a comprehensive network that
represents gene-gene interactions from text papers. More
specifically we used the whole set of genes we were
working on to query STRING web server [29]. STRING
server stores a huge gene-gene network derived from
four different sources: genomic context, high throughput
technology, co-expression and text mining. We extracted
text mining based interactions between Txt-DiseaseExt
and Txt-DrugExt genes for each disease and each drug
respectively. We will use the terms TxtNet-DiseaseExt
and TxtNet-DrugExt to refer to these interactions. We
used a similar methodology in order to generate the
microarray based subnetworks. The only difference was
with generating the comprehensive network that repre-
sents the interactions between all genes. Since microar-
rays measure the level of expression between genes
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and can be utilized to understand functional relation-
ship between genes, we sought to use a functional
gene-gene network to generate microarray based net-
work. For this purpose, we extracted the interactions
between our set of genes (Mir-DiseaseExt and Mir-
DrugExt) both from a functional protein-protein network
[25] and a signaling network [30]. We will use MirNet-
DiseaseExt and MirNet-DrugExt to refer to functional
protein interactions specific to each disease and drug
respectively. The whole process of generating disease-
specific subnetworks is described in Figure 2. Note that
everything in Figure 2 applies to finding drug-specific
subnetworks.

Using logistic regression to build drug-disease associations
Logistic regression measures the relationship between a
binary response variable (Disease-gene network) and one
or more predictor variables (drug-gene networks). We
used logistic regression modeling in this work as the
response variables, which represent association between
diseases and genes, are binary. To model this problem as
a regression model, we write the disease gene network
as a linear combination of the drug-gene subnetworks. In
other words, we consider that multiple drugs can have an
effect on the genes associated with diseases.

Prioritization of genes in drug and disease specific
subnetworks
After generating the disease-specific and drug-specific
gene-gene networks we ran a prioritization process that
is based on different centrality measures; namely, degree
centrality, closeness centrality and betweenness centrality.
The Gephi tool [31] was used to compute these measures
for all subnetworks generated for the set of diseases and
drugs. Finally for each drug/disease we only considered
genes that have a centrality score greater than the average
centrality score among all other genes. Thus we built six
different drug-gene and disease-gene Boolean interaction
networks by utilizing the two subnetworks (text-mining
based and microarray based) extracted for each drug and
disease. More specifically, for each drug/disease, we used
a text-mining based subnetwork to build three drug-gene
or disease-gene interaction networks using the three pri-
oritization techniques and did the same to build another
three microarray based networks. These networks were
then entered into a logistic regression model to produce
six different drug-disease interactions as being shown in
Figure 3.

Evaluating the performance of the framework
To evaluate the performance of the integrative frame-
work, we constructed a gold standard disease-drug net-
work from PolySearch server [18]. This gold standard

contains 474 positive interactions between 22 diseases
and 406 drugs. To generate negative interactions, we
selected 400 interactions between disease and drugs that
have 0 co-occurrence in PubMed abstracts. We com-
pared the performance of each drug subnetwork to predict
disease subnetworks with the gold standard. We used
Receiver Operating Characteristics (ROC) curve analysis
to produce AUC values to assess the performance of each
subnetwork.

Results
Selecting a robust set of genes for drugs and diseases
We first selected 571 genes that are targeted by at least
one drug in the DrugBank database. We also extracted
820 genes that are associated with a disease according to
the OMIM database. To refine these two sets of genes,
we incorporated protein networks at this stage. There-
fore the final list contained 2343 genes. To prioritize
these lists of genes for each drug and disease, we fol-
lowed two approaches. The first approach prioritized the
genes based on their differential expression behavior in
cells treated with the drug or in disease samples compared
to normal samples. Only the top 50 (25 most upregu-
lated and 25 most downregulated) were selected at this
stage. The second prioritization method was based on co-
occurrence rate between drugs and genes or disease and
genes in PubMed abstracts. Drug-gene and disease-gene
pairs with high co-occurrence rate were filtered at the next
stage.

Constructing disease-gene and drug-gene interactions
To predict interactions between diseases and drugs, we
first built functional interactions between diseases and
genes from one side and drugs and genes from another
side. To build each network we followed a systematic
integrative approach that incorporates protein networks
at several steps in the methodology. We built drug-gene
interactions using both text mining (TxtNet-DrugExt)
and microarray data (MirNet-DrugExt). Similarly, we
built disease-gene interactions using text-mining (TxtNet-
DiseaseExt) and microarray (MirNet-DiseaseExt). For the
microarray based networks, we incorporated functional
protein networks to extract the gene interacting with the
top 50 genes representing each drug and disease. As a
result, for each drug and disease, we obtained a list of
functionally interacting genes to represent drug or dis-
ease subnetworks. For the text mining based networks,
we incorporated a gene-gene network extracted from
STRING database, and then extracted genes linked with
the genes which? co-occurred with the drugs or diseases.
Finally, for each of these networks, we calculated three
centrality measures (degree, betweenness, closeness) of
the genes in each network and then selected the genes



Qabaja et al. Journal of Cheminformatics 2014, 6:1 Page 7 of 14
http://www.jcheminf.com/content/6/1/1

Figure 2 Generating a disease-specific and drug-specific gene-gene network. This figure shows the process of generating the drug-specific
and disease-specific gene-gene network. The process starts by finding all possible interactions between the initial set of genes in steps 2.1 and 2.2
both from a text-mining source and a functional PPI source, respectively. The initial list of genes for each disease and each drug are then used to
query the extracted network in a data source specific manner. Finally the interactions between these genes and their direct neighbors would be
considered as a disease-specific or drug-specific gene-gene network.
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Figure 3 Building six different drug-disease association networks. This figure shows the process of building six different drug-disease
association networks. Starting with drug-specific and disease-specific subnetworks in step1, we have imported these networks into the Gephi tool to
check different centrality measures for every single gene in step 2. In step 3, for each drug/disease we have selected genes with a centrality measure
(degree, closeness and betweenness) that is higher than the average centrality measures for all genes. These selected genes have been used to build
drug-gene and disease-gene Boolean networks. This step has been independently repeated for the three centrality measures and for the two data
sources. Thus we ended up having six different drug-gene and disease-gene networks that have been used to train the regression model in step 4.
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with high centrality measures as described in the previ-
ous section. As a result, we ended up with 12 networks:
6 for drugs and 6 for diseases that were used in the logis-
tic regression model. The resulting disease-gene networks
are a matrix of 2343 genes and 22 diseases, and the drug-
gene network is a matrix of 2343 genes and 406 drugs.
Table 1 summarizes the number of the interactions in each
matrix.

Performance assessment of different strategies
After constructing the drug-gene and disease- gene net-
works, we used logistic regression to predict associa-
tions between drugs and diseases, and then assessed
the performance of the resulting interaction against the
gold standard using AUC. Disease networks were used
as response variables and Drug networks were used as
predictive variables. Figure 4 shows the AUC values of
the six networks described in Table 1. Results show
that selecting genes based on their centrality degree in
the drug or diseases specific network outperforms other
centrality measures. We then combined the text based
and microarray based networks for each centrality mea-
sure. The results showed that combining text mining and
microarray data improves the performance of AUC.When
we used protein-based networks to compare the perfor-
mance of the networks generated to networks that do
not incorporate protein, we found that incorporating pro-
tein networks improves the AUC as well. This finding
also reflects the robustness of networks in revealing some
hidden information that can be utilized for prediction
purposes.

Drug-disease network
A full list of interacting drug-disease networks is available
in Additional file 1, which shows the drug-disease network
using microarray based networks and using degree cen-
trality. 374 interactions between 22 diseases and 183
drugs are predicted using our proposed regression model.
We used the Gephi tool to build a visualized version of
these interactions as shown in Figure 5. In the Discussion
section we focus on some prostate cancer-drug interac-
tions that were predicted using our proposed paradigm.

Prostate cancer genes
We further assessed the genes found to be relevant to
prostate cancer. Based on the microarray-based network,
98 genes were associated with prostate cancer, and based
on text mining, 133 genes were associated with prostate
cancer; 34 of them were identified with both procedures.
We used the Expression2kinase tool to predict drugs
targeting those 34 genes, and several were found: e.g.,
tichostatin, betazole, scriptaid, troglitazone, and felodip-
ine. Unfortunately, none of them was predicted in our
approach, due to lack of expression data for these drugs
except troglitazone. When we characterized the function
of the 34 prostate genes, we found they were significantly
associated with BCR free survival (Figure 6) and to multi-
ple cancer pathway genes (Figure 7). These results suggest
that the integrative approach we followed to define disease
subnetworks to represent each disease can efficiently pre-
dict disease related genes. This result provides evidence
that predicting drugs that can in effect counteract the 34
genes could be a significant milestone toward reducing
prostate cancer risk.

Table 1 Summary of the networks we generated for each drug and diseases using different centrality measures

Drug-gene networks

Name Source Size Number of links Centraility measure

TxtNet-DrugExt-D Text mining 2343x406 14375 Degree

TxtNet-DrugExt-B Text mining 2343x406 21443 Betweenness

TxtNet-DrugExt-C Text mining 2343x406 19890 Closeness

MirNet-DrugExt-D Microarray 2343x406 29289 Degree

MirNet-DrugExt-B Microarray 2343x406 34520 Betweenness

MirNet-DrugExt-C Microarray 2343x406 15350 Closeness

Disease-gene networks

TxtNet-DrugExt-D Text mining 2343x22 2297 Degree

TxtNet-DrugExt-B Text mining 2343x22 2471 Betweenness

TxtNet-DrugExt-C Text mining 2343x22 1199 Closeness

MirNet-DrugExt-D Microarray 2343x22 1956 Degree

MirNet-DrugExt-B Microarray 2343x22 1885 Betweenness

MirNet-DrugExt-C Microarray 2343x22 1062 Closeness



Qabaja et al. Journal of Cheminformatics 2014, 6:1 Page 10 of 14
http://www.jcheminf.com/content/6/1/1

Figure 4 Performance assessment of different approaches. This figure shows the performance assessment of multiple approaches to predict
disease-drug interactions. Networks that have been generated with genes with a high degree of centrailty have the highest AUC values. Mir-degree
is the AUC prediction of using MirNet-DrugExt-D as the predictive variable and MirNet-DiseaseExt-D as the response variable.

Figure 5 Predicted drug-disease interaction network. This figure shows the resulting drug-disease interaction network. Note that different
colors represent different drug-disease communities using modularity function in Gephi tool.
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Figure 6 Kaplan-Meier curve of the 34 prostate genes. This figure shows the Kaplan-Meier curve of the 34 prostate cancer related genes. From
the figure, it can be seen that alteration in these genes is significantly associated with high risk of BCR recurrence.

Discussion
Drug repositioning is one of the most important tech-
niques that is being used to improve drug discovery
process. Drug repositioning most attractive feature is
its ability to reduce costs and provide shorter paths to
approval compared to the daunting traditional techniques.
Most of the proposed techniques for drug repositioning
tend to use a specific source of data to predict drug-
disease interactions. In this work we integrated data from
three major sources into a single paradigm to predict
some novel drug-disease interactions. More precisely,
microarray expression profiles, text-mining and biolog-
ical networks were all integrated to build a drug-disease
network. Comparing the proposed paradigm with a drug-
disease gold standard demonstrated the robustness of the
integrative paradigm in predicting drug-disease interac-
tions. More specifically, the AUC showed that selecting
hub genes from combined network, microarray and text
mining, would be more representative than selecting
these genes from either of these sources independently.
These findings, shown in Figure 4, were validated with
considering hub genes in three centrality contexts: degree,
betweenness and closeness. The results were consistent in
all these centrality measures; hub genes using a combined
network were more representative than hub genes using
a single data source network. Finally we wanted to check
for biological meaning for some of the predicted asso-
ciations. More specifically we focused on some prostate

cancer-drug associations and browsed the scientific lit-
erature for biological sense. Azacitidine is a pyrimidine
nucleoside analogue that inhibits DNA methyltrans-
ferase, impairing DNA methylation [24]. Azacitidine is
used for treatment of patients with myelodysplastic syn-
drome subtypes; refractory anemia with ringed or excess
blasts or acute myleogenous leukemia [24]. Azacitidine
is believed to exert its effect by causing hypomethy-
lation of DNA on abnormal hematopoitic cells in the
bone marrow. According to our study, Azacitidine was
found to have a role in prostate cancer treatment. In an
experiment to study the effect of Azacitidine in aggres-
sive prostate cancer models, it improved the anti-tumor
effect of Docetaxel and cisplatin drugs. The authors
suggested using Azacitidine as a chemosensitizing agent
in chemoresistant tumors [32]. In another experiment
[33], Azacitidine was found to have anti-proliferative
activities when administrated chronically. This treatment
resulted in a marked decrease in tumor cell proliferation
with significant increases in androgen and PSA protein
levels. Another interesting association predicted by our
suggested model was Berberine and prostate cancer. In
many experiments Berberine was found to have anti-
tumor activities on prostate cancer cell lines [34,35], and
found to induce G1 arrest at low concentration [34]. In
addition, at high concentration it has been found to effi-
ciently abrogate G2/M arrest. The results suggest that
combined administration of Berberine and caffeine may
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Figure 7 Protein network of the 34 prostate genes and cancer genes. This figure shows the functional protein network of the 34 prostate
genes predicted by our model and other cancer related protein partners. Most of the genes in this network are oncogenes and tumor suppressors
in addition to other keys players in cancer development.

accelerate the killing of cancer cells. Berberine suppresses
AR, which is known to be activated in cancer signaling
and suggests that Berberine presents a promising agent
for the prevention and/or treatment of prostate cancer
[35]. Paclitaxel is an antineoplastic agent indicated as a
first-line and subsequent therapy for the treatment of
advanced carcinoma of the ovary and other various can-
cers including breast cancer [24]. According to our model,
Paclitaxel was found to have a strong association score
with prostate cancer. Indeed, the anti-neoplastic activity
of Paclitaxel on prostate cancer was detected in many
experiments [36,37]. The findings suggest that Paclitaxel
induces nuclear translocation and activation of PKC-Ît’,
which in turn causes Golgi-Cdk1 activation. Golgi-
mediated signaling cascades facilitate mitochondria
involved apoptotic pathways, the thing that might explain

the anti-tumor activity of Paclitaxel. Surface modified
tumor cells may have potential clinical benefit for patients
with prostate cancer when it is combined with paclitaxel
[35]. With the consideration that immunochemotherapy
must depend on careful selection of paclitaxel dosage and
the sequence of paclitaxel/vaccine administration.

Conclusion
The presented results in this work demonstrates that
defining robust gene signatures for diseases and drugs
from expression profiles and literature and using protein
networks to refine and prioritize genes is valuable and
have potential in clinical pharmacogenomics research.
The results can significantly accelerate the translation into
the clinics of known compounds for novel therapeutic
uses.
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