Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

Journal of

Cheminformatics

SOFTWARE Open Access

MORT: a powerful foundational library for
computational biology and CADD

Qian Zhang', Wei Zhang®, Youyong Li', Junmei Wang”, Jian Zhang® and Tingjun Hou'*"

Abstract

is described here.

force fields, etc.

suda.edu.cn/MORT/index.htm.

Background: A foundational library called MORT (Molecular Objects and Relevant Templates) for the development
of new software packages and tools employed in computational biology and computer-aided drug design (CADD)

Results: MORT contains several advantages compared with the other libraries. Firstly, MORT written in C++ natively
supports the paradigm of object-oriented design, and thus it can be understood and extended easily. Secondly,
MORT employs the relational model to represent a molecule, and it is more convenient and flexible than the
traditional hierarchical model employed by many other libraries. Thirdly, a lot of functions have been included in
this library, and a molecule can be manipulated easily at different levels. For example, it can parse a variety of
popular molecular formats (MOL/SDF, MOL2, PDB/ENT, SMILES/SMARTS, etc.), create the topology and coordinate
files for the simulations supported by AMBER, calculate the energy of a specific molecule based on the AMBER

Conclusions: We believe that MORT can be used as a foundational library for programmers to develop new
programs and applications for computational biology and CADD. Source code of MORT is available at http://cadd.

Keywords: Relational model, MORT, AMBER, Antechamber, Foundational library, CADD

Background

Molecular modeling techniques have been widely used in
the fields of chemistry, biology, drug design, and materials
science for studying molecular systems ranging from small
molecules to large biological molecules and even material
assemblies. A lot of molecular simulation and visualization
tools or packages have been developed [1-9]. Amber [6] is
extensively used for the simulation of biomolecules,
and XLEAP is its graphical user interface. XLEAP is
written in C but trying to use the object-oriented pro-
gramming (OOP) paradigm that is not natively sup-
ported by C. Therefore, the code of XLEAP is awkward
and extremely hard to be extended. Consequently, a lot
of functionalities that should have been incorporated
into XLEAP were either implemented as separate programs,

* Correspondence: tingjunhou@hotmail.com

"Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow
University, Suzhou, Jiangsu 215123, China

“College of Pharmaceutical Sciences, Zhejiang University, Hangzhou,
Zhejiang 310058, P. R. China

Full list of author information is available at the end of the article

@ Chemistry Central

such as ADDLES?2 for Locally Enhanced Sampling, and
antechamber for the calculations of partial charges and
the assignment of atom types, or merged into molecular
dynamics (MD) calculation stage as extra points. The
study we discuss here is trying to put this situation to an
end by developing a new foundational library that is called
Molecular Objects and Relevant Templates (MORT).
MORT is written in C++ that is a native OOP language,
and a relational model and other well-designed patterns
have been applied to this library, which makes it very flex-
ible. Furthermore, many commands/functions supported
by XLEAP and AmberTools have been merged into this
library [6]. Based on MORT, it will be very easy for
programmers or readers with interests to develop new
applications for computational biology and CADD.

Implementation

Data structure and basic features of MORT

The relational model of MORT

An advantage of MORT is that it employs the relational
model rather than the traditional hierarchical model to

© 2014 Zhang et al, licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.

http://cadd.suda.edu.cn/MORT/index.htm
http://cadd.suda.edu.cn/MORT/index.htm
mailto:tingjunhou@hotmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

store all the information of a molecule. In the hierarchical
model, a molecule owns some residues, and a residue
owns some atoms. Therefore, a molecule does not own
atoms directly. In the relational model, a molecule owns
residues and atoms directly, while a residue does not own
atoms, and they just have relations between each other.

The hierarchical model is used by XLEAP and some
other software packages (for example, NAB [10]). But it
has the following disadvantages. Firstly, the hierarchical
model is inconvenient for iterating over the atoms in a
molecule. In the hierarchical model, to iterate over
atoms, users need to iterate over all residues first. There-
fore, counting atom number is not a constant time oper-
ation but proportional to the number of residues. To
overcome this problem, some kind of cache may be used
to store the atom number or pointers to the atoms
inside a molecule. This solves the efficiency problem but
brings up a consistency problem, i.e. the cache needs to
be updated when an atom is deleted or inserted. Sec-
ondly, the hierarchical model has problems to handle
bonds, because in the hierarchical model, residues own
atoms, and it is natural that bonds should be owned by
residues too. A problem may always exist for inter-
residue bonds, whose ownership would be a dilemma
for the hierarchical model. Similar things happen to
other components, such as angles, torsions and im-
proper torsions. Thirdly, the hierarchical model is hard
to be extended. For example, adding a new object strand
is a very useful concept for a DNA system, because a
DNA molecule has two strands and each strand has sev-
eral residues. In the hierarchical model, we need to add an
extra layer between molecule and residue, but in practice,
all code that involves the iterations on atoms and residues
needs to be changed to iterate on strands first, which in
turn means massive changes to the existing code.

However, all these problems do not exist or can be
easily fixed for the relational model employed in MORT.
Firstly, the problem of iterating on atoms does not exist
because a molecule owns atoms directly, and then users
can perform the iteration on a molecule directly disre-
garding residues. Secondly, the relational model does
not have any problem dealing with bonds, angles and
torsions, because in the relational model a molecule dir-
ectly owns bonds, angles (if any) and torsions (if any).
Finally, compared with the hierarchical model, the rela-
tional model is extremely easy to be extended. Taking
the strand as an example, to introduce a strand by
employing the relational model, users do not need to
change the old code. Strand can only appear in DNA-
related program and all users need to do is to make sure
that the relations between strand and residues have been
created correctly.

It has been mentioned that in the relational model,
atoms, bonds and residues are owned directly by a

Page 2 of 9

molecule, so are angles, torsions and any other possible
components such as strands and improper torsions. In
MORT, these objects (atoms, bonds, etc.) are called
molecular objects (referred as MOs). Currently, MORT
supports eight types of MOs: atom, bond, residue, angle,
torsion, out-of-plane stretch (also known as improper
torsion), torsion-torsion interaction, and pi-torsion (the
latter two are used exclusively by the AMOEBA force
field). A four-character-long-code is assigned to each MO
type, and they are atom, bond, resd, angl, tors, oops, tor2
and ptor.

The names of these object types are encoded into
HASH values in order to save the time of comparing
characters. Each HASH is 10 letters long and only com-
posed of letters, digital characters and underlines. Some
HASH values are predefined, and the others can be gen-
erated by using a function with a string as the input.
The flowchart for the generation of a HASH value is
illustrated in Figure 1.

Composition of a molecule

The basic idea of MORT is: a molecule (represented by
class molecule_t) owns several MOs (atoms, bonds, etc.),
and each MO has its own properties and there are rela-
tions between them. In order to save the properties and
relations, two variables are created. The properties are
stored in components (represented by m_components),
and the relations are stored in adjacencies (represented
by m_adjacencys). Both of m_components and m_adja-
cencys are the member variables of class molecule_t.
A molecule usually has several components (i.e. an atom
component, a bond component, and even a residue
component in many cases) and has several adjacencies
(i.e. atom-atom adjacency, atom-bond adjacency, bond-
atom adjacency, atom-residue adjacency, and residue-
atom adjacency). Descriptions of the important classes
of variables are listed in Table 1.

A component physically contains all the properties of
a kind of molecular objects. For example, the atom com-
ponent of a molecule contains all the properties of
atoms. More specifically, the properties of the same type
are stored sequentially in an array, the atomic numbers
of all atoms are stored in an integer array, while the
names of all atoms are stored in a string array. However,
the properties whose type is numerical vector are han-
dled differently, and they are not stored in an array of
numerical vectors (which can be considered as a 2D
array of floating numbers) but in a 1D array of floating
numbers. The component is implemented in this way to
achieve the best space efficiency.

An adjacency records the relations between two com-
ponents. For each pair of connected molecular objects,
there is a record in the adjacency. More specifically, it
uses a 2D array to store connections.

Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

Page 3 of 9

string input

i=len(string)-1
sum=10
Te

‘a’< string[i] <z’

val=ascii(string[7])-97 l——DI sum = sum*40 + val

val=ascii(string[])-65 l_

‘ N
i <>—

valascii(string[i])-48 |

Y

| output sum I

Figure 1 The flowchart for the generation of a HASH value. This function will iterate through each character of the input, and the returned
value differs according to the type of the character: 1. an alphabetical character, its position comparing to ‘a’ (if it is lowercase) or ‘A’ (if it is
uppercase) will be returned (the positions of ‘a’ and ‘A" are set to 0); 2. a digit, the value of itself will be returned; 3. an underline, the value will be
set to 36. If it does not belong to any shown above, the function will do nothing and continue to calculate the next character. At the end of
each iteration, the value of one character will be added to the sum that is multiplied by 40 to get a new sum.

The composition of a molecule is shown in Figure 2. If
users want to handle a MO, such as creation or deletion,
they can operate with class morf_t, which is the base
class for all MO classes. In brief, class molecule_t is
designed for the storage of data, whereas class morf ¢ is
created for the modification, creation or deletion of ob-
jects, and it does not contain any data information.

Except for class molecule_t, another class (represented
by class database_t) is created to store the information of

Table 1 The descriptions of some important classes of
variables

Class Description
molecule_t a class contains molecular objects and their relationships
mcmpdata_t a class used to store the information of molecular objects
mcmprela_t a class used to store the relationships between

molecular objects

database_t a class contains lots of molecules

morf_t a base class of the molecular objects

atom_t a class used to handle atoms

bond_t a class used to handle bonds

angl_t a class used to handle angles

dihe_t a class used to handle dihedral angles

resd_t a class used to handle residues

a molecule: the molecule’s pointers and their correspond-
ing names. Therefore, if a molecule needs to be modified,
its corresponding pointers will be returned from the data-
base by using the function get_mol with its name as the
parameter. The structure of class database_t is shown in
Figure 3. Classes database_t and molecule_t are both
inherited from class entity_t, which is the base class for
the storage of data.

Assessing properties of MOs

As has been mentioned before, class morf t is created
for the modification, creation or deletion of objects. In
order to achieve the above goals, some functions are ne-
cessary to access the properties of MOs, and therefore
several member functions have been designed as follows:

void set_x(const string& pname, const value_type& v);
value_type get_x(const string& pname) const;
bool get_x(const string& pname, value_type& v);

The character ‘x” in the names of these functions can
be any of the following five characters: ‘7’ (for integer), ‘@’
(for double precision), ‘s’ (for string), v’ (for numeric vec-
tor) and ‘@’ (for any other data type), while the value_
type can be int, double, string, numvec and boost::any
depending on the ‘«4’. In order to accelerate the process,

Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

Page 4 of 9

Molecule
Component
ATOM: AL, A2 ... RESIDUE: R1,R2 ...
BOND:B1,B2... e
Adjacent
atom bond residue | e
=54
atom bond residue | e

Figure 2 The composition of a molecule.

string can be replaced by HASH values, and these
functions can be transformed into the following ones:

void set_x(const long long& pid, const value_type& v);
value_type get_x(const long long& pid) const;
bool get_x(const long long& pid, value_type& v);

Iterating on MOs

Two methods can be used to iterate on the MOs of a
molecule: MOITER (molecular object iterator, repre-
sented by class iter_T) or MORANGE (molecular object
range, represented by class range_T).

Database (database_t)

| |

Name (string) Pointer of one molecule class (molecule_ptr)

4
v
Molecule class (molecule_t)
v v

Component (m_components) Adjecent (m_adjecencys)

l |

Angle

Atom Bond Residue ...

Figure 3 The structure of class database_t. Contents in the
bracket are their corresponding classes.

MOITER is a random access iterator, and it has the
following member functions:

morf_t& operator*();

morf_t const& operator*() const;
morf_t & operator- > ();

morf_t const& operator- > () const;
iter_t& operator++();

iter_t& operator—();

iter_t operator++(int);

iter_t operator—(int);

iter_t& operator + =(ptrdiff t pdif);
iter_t& operator- = (ptrdiff_t pdif);

With all these member functions implemented, MOI-
TER works just like a pointer to class morf t. The follow-
ing two member functions of class molecule t return the
starting and ending iterators of a certain type of MO:

iter_t xxxx_begin ();
iter_t xxxx_end();

Here, xxxx could be any of the eight 4 character ID of
a molecular object type.

Another way to enumerate MOs is to use MORANGE
(molecular object range, represented by class range_T).
Class range_T has the following member functions:

morf_t operator(](int id) const;
morf_t at(int id) const;

Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

MORANGE in a sense works just like an array of
MOs. Class molecule t has the functions xxxxs() that
return the MORANGE of a certain type of MOs, while
class morf_t has similar member functions related_xxxxs()
that returns the MORANGE of related MOs.

Basic functions in MORT

A lot of functions supported by Antechamber and XLEAP
have been developed in MORT, and therefore based on
MORT it is very easy for users to develop new applica-
tions for computational biology and CADD. As shown in
Figure 4, a function in MORT is composed of data struc-
ture and algorithm. Algorithms are the operations that
can be applied by the users to the target, and data struc-
ture is separated into two parts: one for information stor-
age and the other for handling MOs. Proteins, ligands and
parameters are stored in molecules (represented by class
molecule_t), and are composed of MOs (atom, residue,
etc.). Molecules are stored in database (represented by
class database_t). Both of molecule t and database_t are
inherited from class entity_t. Class morf_t and its child
classes are used to modify, add and delete MOs. The func-
tions in MORT can be roughly divided into two categories:
object-related and property-related.

Object-related functions

Functions in this category can handle the MOs defined
in MORT. These functions have various usages, and they
are distributed in different directories.

(1). OBJFUN: a lot of functions are defined in this
directory, and they can be used to modify objects.
For example, the function fixbond can be used to fix
the bond order of a molecule based on several rules,
such as hard rule, length rule and conjugation rule,
as illustrated in our previous work [11]; the function

Page 5 of 9

addHs can be used to add the missing hydrogen
atoms of a molecule (bond information is required);
the function create can be used to create atoms,
bonds, residues, angles, etc.; the functions transform
and translate can be used to transform/move a
molecule according to one matrix/vector; the
function rotate can be used to rotate a molecule; the
function center can be used to determine the
geometrical center of a molecule or residue. A lot of
other functions are not mentioned here, and the
descriptions of the important functions can be found
in Additional file 1. Apart from being used alone,
reasonable combinations of these functions may be
more helpful to users. For example, the combination
of the functions fixbond, addHs and setpchg can be
used to add the missing information of a molecule,
which is necessary for the calculation of the energy.

(2).PDBENT and TRIPOS: functions in these two

directories are primarily used to handle the files in
PDB [12] and MOL2 [13] formats. The most
important functions are read_pdb/read_mol2 and
write_pdb/write_mol2, which act as the controller of
the data input/output stream in MORT. Each of these
functions is composed of several sections, and in
each section there is one function to parse the
corresponding information. For example, read_pdb is
used to get the molecule from a PDB formatted file.
While parsing the file, it can recognize the first four
letters of each line as its identity to determine which
section it belongs to, and then the corresponding
functions will be invoked to get the information from
this line. Take “ATOM?” for example: when “ATOM”
has been recognized, the function read_atom will be
used to parse the atom’s information (including its
name, coordinate and type). And then an atom object
will be created to store all the information.

— protein —|ATOM|

— ligand ——

- parameters —|

Function
Modify, Add, Delete
Storage entity_t morf_t
r . f A 1
molecule_t database_t atom_t bond_t

moleculel

molecule2

angl_t resd_t

Algorithm
Energy Calculation

Structure changing

Figure 4 The composition of a function.

Zhang et al. Journal of Cheminformatics 2014, 6:36 Page 6 of 9
http://www.jcheminf.com/content/6/1/36

(3). SMARTS: functions in this directory can handle two means to get the residues 1 to 10 from a molecule;

kinds of information: SMILES and SMARTS [14].
SMILES is the acronym of Simplified Molecular
Input Line Entry Specification that has been widely
used as a general-purpose chemical nomenclature
and data exchange format, and SMARTS is the
straightforward extensions of SMILES. The SMILES/
SMARTS of a molecule is stored as a character
string, which is the input parameter of the function
read_smiles/read_smarts. These functions can
extract the topology information of a molecule
from the input string, and then store them into the
database as a molecule. The whole process is not
very complicated, and it will handle one character
in each iteration. First, it will judge if the characters
are in bracket “[]” or not, because the characters in
or out of a bracket have different meanings. For
example, “C” in “xxCxx” means that it is a normal
carbon atom, but “C” in “[xxCxx]” may represent a
carbon isotope. After the judgment, the corresponding
functions will be used to analyze the character:
parse_charge can be used to get the charge
information from “+” and “-”; parse_ring can be
used to recognize the digit outside a bracket as

a starting/ending point of a ring; parse_weight can
be used to parse the element’s weight that is listed
in a bracket; parse_alpha can be used to interpret
the element’s type, etc. Finally, all the information
will be recorded into a molecule.

(4). CAPBOX: functions in this directory are mainly

designed to add the solvent environment to an
object. Four functions were designed to build
different kinds of solvation environments: solvatecap
can be used to add a solvate cap around the
specified position of a solute; solvatebox can be used
to add a solvate box to the solute in a cuboid way;
solvateoct can be used to add the solvate box to a
solute in a truncated octahedron way, which can
reduce the number of the added solvent molecules;
solvateshl can be used to add a solvate shell around
the whole solute. The algorithms of these four
functions are very similar. The process of solvateshl
is illustrated in Figure 5 as an example.

Apart from the functions mentioned above, the
function addions can be used to add positive/
negative ions to the whole molecule.

(5). ATMASK: sometimes, users may want to get the

selected partition of a molecule, such as the atoms
within 5A from the 4™ atom of a molecule. To
achieve this goal, the function mask_atom was
designed. This function can be employed to the
specified atoms and residues. The argument of this
function is a little complicated, and it is composed
of some figures and symbols. For example, “:1-10”

“@4 < @5” means to return all the atoms within 5A
from the atom 4.

Following is the steps to interpret “@4 < @5”. The
first “@” indicates that this is something about
atoms (“@” represents atoms and “” stands for
residues). The functions of class atom_node will
then be invoked, and the following letters or
numbers will be parsed as a MO in a specified
molecule (here “4” represents the 4™ atom). The
symbol “<” means to get the atoms/residues in a
certain distance, and then it will invoke the function
parse of class dist_node to interpret the next section.
The previous MO will be regarded as a core. The
second “@” indicates that the queried objects are
atoms, and “5” equals to the threshold of the
distance. Finally, the function match checks each
atom in the molecule that satisfies the condition,
and returns the qualified ones.

(6). FORMAT: functions defined here can be used to
handle different kinds of formatted files. For
example, the function read_sdf can be used to parse
the molecule from a MOL/SDF formatted file, and
the function load_mdb can be used to load the
molecules from a database file, which contains a lot
of molecules with the MOL2, MOL/SDF or OFF
format. Once a molecule has been loaded, it will be
stored in a database (represented by class
database_t) with its name as the identity.

Property-related functions

The functions in this category can add, modify, save and
delete different properties of a molecule, and all these func-
tions are distributed in their corresponding directories.

(1). ENEFRC: functions in this directory are energy-related.
The function eval_bond, eval_angl or eval_tors can
be used to calculate the energy of bonds, angles
or torsions. The non-bond energy can be calculated
in two ways. The function get_dir can be used to
calculate the energy based on periodic boundary
condition (PBC) by using Ewald summation [15,16].
And the other function nonbond_egh can be used
to calculate the polar contribution of desolvation
for a non-periodic model by using the Generalized
Born (GB) model [16] based on the following equations:

1 1 i *q;
Egg = -INVCHG2 * <1——> > 179 (1)
€ j=it+1 fGB

INVCHG2 = K, * C* x NA/ (107" « 4.184)
= 332.05Kcal/mol (2)

Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

Page 7 of 9

1 e [} @ . ° e ° »” h L. -~*® . °

I | + o

: : ¢ P \

: ™ |- ' ’ w.dist N ~

‘e ! ® ® ° o ! ®| °, l:k‘ . N & °

! I ! ' = T

I i I ! f I' | S

i ° e ® ® ° i o ('o ! A . . o Vo

' I = -~ | \

I 3 I I = W% L3

; | : : \ A

le i ° .) e | l!] "\ - . . . : o‘;

- N

I [jextentl e ;1

' : | v b

I . i ! \ extgnt

e Il o ° . ° . i ° o, \ @ . ' °

! e et st ———— L - v N - - o
e -

I solvlen ! ¥ = -

- o ° . | L L ~e L]]

Figure 5 A 2D schematic shows how solvateshl works. solvlen equals to the size of one solvate, r1/r2 equals to the van der Waals radius of
the solute/solvent atom; extent and closeness are the parameters of this function, closeness represents the closeness between solute and solvent,
and extent is used to determine the border of shell. The system will first be covered with a box, and then the box will be stretched to a big one
with the length equal to extent. Lots of grids will be generated to represent the centroids of solvents with interval equal to solvlen in the box. For
each atom in solvent, distance will be calculated between itself and the atoms in solute and the shortest one will be returned; if it is smaller than
dist or longer than extent, the solvent that it belongs to will be excluded from the shell. After checking all the solvents, only a part of them can
remain (marked as red), and the others (marked as green) will be neglected.

dist=closeness*(r1+r2)

fon= (7o exp(-r3/ 20)")))

le-zj =a; xq (4)

where K, C and NA are electrostatic constant, Coulomb
constant and Avogadro’s contant, respectively, € is the di-
electric constant of water (78.5), INVCHG2 is a constant
value of 332.05 kcal/mol, r; is the distance between two
atoms, a; and a; are equal to the Born radii of atoms i
and j. More detailed descriptions of the energy-related
functions can be found in Additional file 1.

(2). AMBFMT: In this part of MORT, some
functions were designed to read the AMBER and
AMOEBA force fields and save the properties of
a molecule into topology files. For example,
write_amber_prmtop can be used to generate two
files: topology (such as charge, bond, angle, etc.)
and coordinate files (space information), which can
be used as the input files for MD simulations.
read_frc/read_amoeba_frc can be used to get the
AMBER/AMOEBA force field parameters from an
AMBER/AMOEBA parameter file and then store
them into molecules.

For the better use of MORT, several commands have
been defined in directory “plugin”, which makes it
very convenient to develop one serviceable
application with just a few or sometimes just one
command for the developers.

(3). PLUGIN: commands in this directory can be
regarded as the MORT’s interface, and users can call

these commands to accomplish many kinds of tasks
with less effort than using functions. They can help
the developers do more work in less time.

In each command class, apart from its constructor and
destructor, one function is necessary:

virtual bool exec();

This function is a virtual function inherited from class
command_i, which is the base class of all the command
classes. exec performs variously in command_i’s child clas-
ses, reflecting the polymorphism of C++ language. Once
one command class is declared, exec should be used to
execute the corresponding commands at the end.

A lot of commands have be defined, for example,
source can be used to interpret the files displayed in
directory “dat/cmd”, which contains the commands used
for loading the force field parameters for the preparation
of other operations (so source is usually the first thing
that users need to do before executing any command);
merge can be used to put the objects listed in its argu-
ments together; solvate can be used to add the solvents
around a molecule; moloper can be used to add the
missing information to a molecule (mentioned in direc-
tory OBJFUN part), etc. These commands are all defined
in their own classes, and users need to declare the class
first before doing any operation. The details of the im-
portant functions and classes in MORT and the related
information of important commands can be found in
Additional file 1.

Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

Functions: fixbond, addHs ...

Commands: moloper, source ...

Package the functions with some codes,

3\“"}) compile it into a standalone program.

Apply the program to solve different kinds of

problems.

Figure 6 How to build a program based on MORT.

Results and discussion

MORT can be used as a foundational library to develop
new programs or software packages for computational biol-
ogy and CADD. Usually, based on MORT, only a few codes
are needed to solve a problem. For example, if users want
to calculate the energy of a protein, the energy-related
functions can be used conveniently. If the information of a
molecule is incomplete, fixbond, addHs and other functions
can work together to add the missing information.

MORT can serve as the core of one program, what users
need to do is to package this core with some necessary
codes. They can be compiled as a standalone program to
solve different kinds of problems. Figure 6 shows how a
program can be builded based on MORT. The source
code is provided with this manuscript as Additional file 2,

Page 8 of 9

and its installation script is documented in README.
Some emamples are listed in test directory.

Conclusions
A C++ based library MORT is developed as a new foun-
dation library for computational biology and CADD.
This new library has many advantages, especially for its
data structure and powerful functions. By employing the
relational model instead of the hierarchical model to
store data, less time is taken while iterating on the atoms
and it solves the annoying problems such as determining
the belongings of inter-residue bonds. In this model, all
bonds and atoms are independent and extra entities are
created to store the connection information and other
relations between these entities. A lot of functions have
been developed in this library, and Figure 7 shows how
MORT works while dealing with some operations.
Moreover, many commands in AmberTools have been
integrated into MORT. For example, setpchg can be used
to call the standalone program in Antechamber [17] to
assign atomic partial charges and parmchk can be used
to call Parmchk to add missing force field parameters.
With all these commands implemented, it is easy to
create the topology file for a protein-inhibitor complex
inside MORT without calling any outside programs.

Availability and requirements

MORT is available at http://cadd.suda.edu.cn/MORT/
index.htm, and it can be compiled into a static library
on Linux platform. It’s written in C++ and the boost
library (version 1.46.1 or newer) is needed.

n
Read Force Field | =======®>

ﬂ in

Molecule Input | ========>

4

Operations

4

Results Output

out

<llllllllll

Figure 7 The working flowchart of MORT when dealing with some operations.

DataBase

Charges, bond lengths,
atom radii and other
parameters.

Coordinates, atom
types, residue types
and etc., stored as class
molecule t.

Information above,

http://cadd.suda.edu.cn/MORT/index.htm
http://cadd.suda.edu.cn/MORT/index.htm

Zhang et al. Journal of Cheminformatics 2014, 6:36
http://www.jcheminf.com/content/6/1/36

Additional files

Additional file 1: The code organization, naming rules, and the
detailed descriptions of the important classes and functions of MORT.

Additional file 2: Source code of MORT.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

TH, QZ and WZ instigated the project, designed and implemented the
algorithms and developed the MORT library. TH, QZ, YL, JW and JZ drafted
the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This study was supported by the National Science Foundation of China
(21173156), the National Basic Research Program of China (973 program,
2012CB932600), and the Priority Academic Program Development of Jiangsu
Higher Education Institutions (PAPD).

Author details

'Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow
University, Suzhou, Jiangsu 215123, China. “College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China. *BGP
Research and Development Center at Houston, 10630 Haddington Dr,
Houston, TX 77043, USA. “Department of Biochemistry, University of Texas
Southwestern Medical Center, 5323 Harry Hines Blvd,, Dallas, TX 75390, USA.
°Department of Pathophysiology, School of Medicine, Shanghai Jiao-Tong
University, Shanghai 200025, P. R. China.

Received: 17 April 2014 Accepted: 23 June 2014
Published: 27 June 2014

References

1. Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpf JL: MDWeb and MDMoby:

an integrated web-based platform for molecular dynamics simulations.
Bioinformatics 2012, 28(9):1278-1279.

2. Cao DS, Xu QS, Hu QN, Liang YZ: ChemoPy: freely available python package
for computational biology and chemoinformatics. Bioinformatics 2013,
29(8):1092-1094.

3. Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics.

J Mol Graph 1996, 14(1):33-38.

4. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ:
AutoDock4 and AutoDockTools4: Automated docking with selective
receptor flexibility. J Comput Chem 2009, 30(16):2785-2791.

5. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith
JC, Kasson PM, van der Spoel D: GROMACS 4.5: a high-throughput and
highly parallel open source molecular simulation toolkit. Bioinformatics
2013, 29(7):845-854.

6. Case D, Darden T, Cheatham T Ill, Simmerling C, Wang J, Duke R, Luo R,
Walker R, Zhang W, Merz K: AMBER 12. San Francisco: University of California;
2012.

7. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg |,
Hamelryck T, Kauff F, Wilczynski B: Biopython: freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics
2009, 25(11):1422-1423.

8. Holland RC, Down TA, Pocock M, Prli¢ A, Huen D, James K, Foisy S, Dréger A,
Yates A, Heuer M: BioJava: an open-source framework for bioinformatics.
Bioinformatics 2008, 24(18):2096-2097.

9. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen
G, Gilbert JG, Korf I, Lapp H: The Bioperl toolkit: Perl modules for the life
sciences. Genome Res 2002, 12(10):1611-1618.

10. Macke TJ, Case DA: Modeling unusual nucleic acid structures. ACS Symp
Ser Am Chem Socn 1998, 1998:379-394.

11. Zhang Q, Zhang W, Li Y, Wang J, Zhang L, Hou T: A rule-based algorithm
for automatic bond type perception. J Cheminform 2012, 4(1):1-10.

12. Callaway J, Cummings M, Deroski B, Esposito P, Forman A, Langdon P,
Libeson M, McCarthy J, Sikora J, Xue D: Protein Data Bank contents guide:
Atomic coordinate entry format description. Brookhaven Natl Lab 1996.

Page 9 of 9

13. Tripos L: Tripos Mol2 File Format. In St. Louis, MO: Tripos; 2007.

14. Weininger D: SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. J Chem Inf Comput Sci
1988, 28(1):31-36.

15. Ewald PP: Die Berechnung optischer und elektrostatischer Gitterpotentiale.
Ann Phys 1921, 369(3):253-287.

16. Still WC, Tempczyk A, Hawley RC, Hendrickson T: Semianalytical treatment
of solvation for molecular mechanics and dynamics. / Am Chem Soc 1990,
112(16):6127-6129.

17. Wang J, Wang W, Kollman PA, Case DA: Automatic atom type and bond
type perception in molecular mechanical calculations. J Mol Graph Model
2006, 25(2):247-260.

doi:10.1186/1758-2946-6-36

Cite this article as: Zhang et al: MORT: a powerful foundational library
for computational biology and CADD. Journal of Cheminformatics

2014 6:36.

Publish with ChemistryCentral and every
scientist can read your work free of charge

“Open access provides opportunities to our
colleagues in other parts of the globe, by allowing
anyone to view the content free of charge.”

W. Jeffery Hurst, The Hershey Company.

e available free of charge to the entire scientific community

e peer reviewed and published immediately upon acceptance
e cited in PubMed and archived on PubMed Central

e yours — you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

ChemistryCentral

http://www.biomedcentral.com/content/supplementary/1758-2946-6-36-S1.doc
http://www.biomedcentral.com/content/supplementary/1758-2946-6-36-S2.zip

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Data structure and basic features of MORT
	The relational model of MORT
	Composition of a molecule
	Assessing properties of MOs
	Iterating on MOs

	Basic functions in MORT
	Object-related functions
	Property-related functions

	Results and discussion
	Conclusions
	Availability and requirements
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

