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ChemDIS: a chemical–disease inference 
system based on chemical–protein interactions
Chun‑Wei Tung1,2,3*

Abstract 

Background:  The characterization of toxicities associated with environmental and industrial chemicals is required 
for risk assessment. However, we lack the toxicological data for a large portion of chemicals due to the high cost of 
experiments for a huge number of chemicals. The development of computational methods for identifying potential 
risks associated with chemicals is desirable for generating testable hypothesis to accelerate the hazard identification 
process.

Results:  A chemical–disease inference system named ChemDIS was developed to facilitate hazard identification for 
chemicals. The chemical–protein interactions from a large database STITCH and protein–disease relationship from 
disease ontology and disease ontology lite were utilized for chemical–protein–disease inferences. Tools with user-
friendly interfaces for enrichment analysis of functions, pathways and diseases were implemented and integrated into 
ChemDIS. An analysis on maleic acid and sibutramine showed that ChemDIS could be a useful tool for the identifica‑
tion of potential functions, pathways and diseases affected by poorly characterized chemicals.

Conclusions:  ChemDIS is an integrated chemical–disease inference system for poorly characterized chemicals with 
potentially affected functions and pathways for experimental validation. ChemDIS server is freely accessible at http://
cwtung.kmu.edu.tw/chemdis.
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Background
Humans are exposed to thousands of chemicals in every-
day life. Nevertheless, the toxicological data required for 
risk assessment are largely unknown for a large portion of 
chemicals. Instead of applying in vitro or in vivo experi-
ments directly that are expensive and time-consuming, 
the computational integration of existing toxicogenom-
ics information for the inference of potential toxicities 
and pathways could largely accelerate the process of risk 
assessment.

For the integration of toxicogenomics information, 
the Comparative Toxicogenomics Database (CTD) was 
constructed by curating chemical–gene/protein inter-
actions from more than 100,000 selected articles for a 

decade [1, 2]. The chemical–gene–disease associations 
could be inferred by combining chemical–gene interac-
tions with gene–diseases associations. CTD consisting of 
high-confidence chemical–gene interactions is a useful 
resource for studying chemical-induced diseases. Please 
note that the inferred associations could be either thera-
peutic or toxic effects. While the analysis of chemical–
gene/protein interactions could be useful for narrowing 
down potentially affected diseases, the interactions alone 
can not be used to determine whether a chemical induces 
therapeutic or toxic effects due to the complex nature of 
biological systems involving various interaction types. 
Experiments should be subsequently applied to deter-
mine which effects are associated with a given chemical. 
In spite of the limitation, the inference analysis is capable 
of identifying a small subset of potentially affected dis-
eases with interacting genes/proteins for experimental 
validation that greatly accelerates the hazard identifica-
tion process. Traditional bioassays are usually designed 
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for a few specific toxicological and pharmacological end-
points. The integrated analysis of interactions reported 
from individual toxicology and pharmacology studies is 
of great importance giving systematic effects that may 
not be easily observed from the individual studies. How-
ever, for poorly characterized chemicals, only a few inter-
acting genes were curated in CTD making the inference 
of potential diseases impossible.

Instead of analysis of enriched diseases from all inter-
acting genes, ChemProt [3] and HExpoChem [4] focused 
on analyzing diseases for each chemical-interacting gene/
protein based on protein–protein interactions. Although 
the one-by-one analysis of diseases for each gene could 
be helpful for studying chemical-induced diseases, a 
systematic enrichment analysis based on all interacting 
genes/proteins could provide overall effects that are more 
easily interpretable.

Recently, a computational inference approach was 
proposed to identify potential diseases associated with 
maleic acid, a poorly characterized chemical with only 
one gene curated in CTD database [5]. The utilization of 
chemical–protein interaction data from STITCH 3.1, one 
of the largest chemical–protein interaction databases [6], 
enabled the inferences of functions, pathways and dis-
eases affected by maleic acid. The approach is potentially 
useful for the identification of diseases associated with 
poorly characterized chemicals.

In order to facilitate the inferences of functions, path-
ways and diseases affected by various environmental and 
industrial chemicals, a comprehensive resource named 
ChemDIS was constructed by integrating the chemi-
cal–protein interactions in human from STITCH data-
base and enrichment analysis tools. The newly published 
STITCH 4 with 45% more high-confidence interactions 
than its previous version [7] was integrated that enlarged 
the applicability domain of ChemDIS to poorly charac-
terized chemicals. Tools for the enrichment analysis of 
gene ontology (GO) terms [8], pathways (KEGG [9] and 
Reactome [10]), disease ontology (DO) [11] and disease 
ontology lite (DOLite) [12] were implemented and inte-
grated in ChemDIS.

The usefulness of ChemDIS for poorly characterized 
chemicals was demonstrated by an analysis of maleic 
acid and sibutramine. ChemDIS successfully inferred 
kidney diseases that were reported in a safety assessment 
of maleic acid [13] but not identified in our previous 
study [5]. In addition, newly identified immune system 
and infectious diseases provide directions for future 
studies. For the analysis of sibutramine, the previously 
reported adverse effects including hypertension, myo-
cardial infarction, heart disease, anorexia nervosa and 
bipolar disorder [14–17] were also successfully identi-
fied by ChemDIS. ChemDIS with user-friendly interfaces 

is expected to be a useful server for identifying potential 
risks associated with poorly characterized chemicals.

Implementation
ChemDIS was constructed by integrating chemical–pro-
tein interaction data from STITCH database with various 
enrichment analysis tools for chemical–disease inference. 
The analysis functions were implemented using R and 
Rserv. User interfaces were implemented using HTML, 
PHP, JavaScript, JQuery and Yadcf (Yet Another DataTa-
bles Column Filter [18]). Autocomplete function for chem-
ical search was implemented based on JQuery and Redis, 
an advanced key-value cache and store database [19].

Figure  1 shows the system flow of ChemDIS. The 
chemical information of structures and physicochemical 
properties was downloaded from PubChem [20]. Open-
Babel [21] was applied to represent the 2D structures 
of chemicals. Chemical–protein interaction data were 
retrieved from STITCH database, an aggregated database 
of interactions from several interaction databases [7], 
such as CTD [5], ChEMBL [22], DrugBank [23], Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [9] and 
Reactome [10]. The aggregated interaction data were also 
shown to be useful for predicting non-genotoxic hepato-
carcinogenicity [24]. Both STITCH databases of versions 
4 and 3.1 were integrated into ChemDIS connecting over 
300,000 chemicals and 19,489 and 16,973 human pro-
teins, respectively. The combined scores obtained from 
STITCH were used for filtering interacting proteins with 
three confidence levels of high, medium and low.

Enrichment analysis tools were implemented and inte-
grated into ChemDIS for analyzing functions, pathways 
and diseases affected by a given chemical. For enriched 
functions, clusterProfiler [25] will be applied to analyze 
enriched gene ontology (GO) terms for molecular func-
tion, biological process and cellular component. The 
enriched KEGG [9] and Reactome [10] pathways will 
be analyzed using clusterProfiler and ReactomePA [26], 
respectively. For inferring diseases affected by a given 
chemical, enriched DO [11] and DOLite [12] terms will 
be analyzed using DOSE package [27]. DOLite is a sim-
plified vocabulary list from DO, a standardized ontology 
connecting human proteins to diseases. All the enrich-
ment analyses are based on hypergeometric tests with 
the Benjamini–Hochberg approach [28] for multiple test-
ing correction. Enriched terms with a corrected p value 
<0.05 will be identified.

Results and discussion
ChemDIS
ChemDIS provides a unique resource for inferring func-
tions, pathways and diseases associated with chemi-
cals based on chemical–protein interactions. Figure  2 
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shows the web-interface of ChemDIS equipped with 
a quick search tool and a hyperlink to advanced search 
tool. The quick search tool utilizes default parameters 
of 0.15 for interaction score and 4 for database version. 
Given a chemical queried by users, its basic structure and 
property information including chemical 2D structure, 
hydrogen-bond acceptor, hydrogen-bond donor, IUPAC 
name, INCHI, INCHIKEY, molecular formula, molecular 
weight, canonical SMILES, isomeric SMILES and topo-
logical polar surface area (TPSA) is available at Chem-
DIS. To give insights into the functions and pathways 
affected by chemicals, built-in functions are available for 
analyzing enriched GO terms and pathways (KEGG and 
Reactome).

Diseases associated with chemicals will be inferred 
from their interacting proteins based on DO and DOLite. 
The utilization of standardized DO terms integrated 
from multiple ontology sources [11] is expected to pro-
vide comprehensive analysis results, while DOLite terms 
offer simplified disease terms that are more interpret-
able. Hyperlinks to external databases are available for 
detailed information of chemicals, proteins, genes, GO, 
pathways and DO. Result tables are sortable by clicking 
the header of tables with search functions for filtering 
results. All analysis results generated from ChemDIS are 
downloadable.

Due to the dependence of ChemDIS on chemical–
protein interactions, the number of interactions for a 
given chemical determines its applicability domain. 

For chemicals with more than or equal to 30 interact-
ing human proteins, 14,831 chemicals can be analyzed 
at ChemDIS, compared with 1,190 chemicals and 2,097 
chemicals for CTD without and with the incorporation 
of cross-species interactions, respectively (Access date: 
April 5, 2015). Table 1 shows the detailed comparison of 
ChemDIS and CTD. ChemDIS utilizing chemical–pro-
tein interactions from the large database STITCH 4 ena-
bles the inference of potential risks for a wide range of 
chemicals.

Case study of maleic acid
As a case study, the potential risks of maleic acid on 
human health were reanalyzed using ChemDIS and com-
pared with our previous study [5]. Based on STITCH 4, 
36 genes mapped from maleic acid-interacting proteins 
were identified using the keyword ‘maleate’, a synonym 
of maleic acid, and default threshold 0.15 for interaction 
score that all interacting proteins will be utilized for the 
following analysis. Hyperlinks to Ensembl [29] protein 
database and NCBI Gene database were also available for 
detailed information.

Both neuronal system and metabolism were identified 
to be potentially affected by maleic acid from GO and 
pathway enrichment analyses that were consistent with 
our previous report. Hyperlinks to external databases of 
QuickGO [30, 31], KEGG and Reactome were also avail-
able at ChemDIS. DO enrichment analysis confirmed 
that disease of mental health, nervous system disease and 

Figure 1  System flow of ChemDIS system.



Page 4 of 7Tung. ﻿J Cheminform  (2015) 7:25 

Figure 2  The user interface of ChemDIS providing two search tools: a the quick search and b advanced search.

Table 1  Comparison of ChemDIS and CTD

ChemDIS CTD (Apr 5, 2015)

Source of interactions for disease inference STITCH Manual curation

No. of chemical–gene/protein interactions 4,523,609 (human) 397,051 (human)
1,041,256 (all species)

No. of chemicals (≥1 interacting genes/proteins) 96,218 (human) 7,432 (human)
10,837 (all species)

No. of chemicals (≥30 interacting genes/proteins) 14,831 (human) 1,190 (human)
2,097 (all species)

GO analysis GO GO

Pathway analysis Reactome and KEGG Reactome and KEGG

Disease analysis DO and DOLite MEDIC

No. of disease terms 8,727 (DO)
561 (DOLite)

11,885



Page 5 of 7Tung. ﻿J Cheminform  (2015) 7:25 

disease of metabolism could be potentially associated 
with maleic acid. The identification of cardiovascular dis-
eases was also consistent with our previous study.

A snapshot of DO enrichment analysis for maleic acid 
is shown in Figure  3. The gene ratio indicates the ratio 
between the number of interacting genes associated with 
a DO term and the number of interacting genes mapped 
to DO terms. The ratio between the number of genes 
associated with a DO term and the number of genes 
mapped to DO terms is represented as background ratio 
(Bg Ratio). The p value and adjusted p value are calcu-
lated based on the hypergeometric test without and with 
multiple test correction, respectively. The q value is a 
measure of false discovery rate [32].

Newly identified diseases included immune system, 
kidney and infectious diseases. Notably, kidney diseases 
inferred by ChemDIS has been shown in experimen-
tal animals that our previous study failed to identify [5]. 
ChemDIS successfully identified known diseases associ-
ated with maleic acid including kidney [13], behavioral 

and gastrointestinal diseases [33]. DOLite enrichment 
analysis showed that hypertension could be associated 
with maleic acid. The detailed analysis results for maleic 
acid is available in Additional file 1: Table S1. In sum-
mary, ChemDIS identified 3 and 29 DO terms for known 
and newly identified diseases from 8,727 DO terms, 
respectively. In addition, a newly identified DOLite term 
of hypertension was identified. The analysis results pro-
vide future directions of toxicological research on maleic 
acid. For CTD, 1 and 56 disease terms were identified for 
known and newly identified diseases, respectively. Please 
note that the inference from CTD was based on only one 
gene giving low-scoring diseases without sufficient infor-
mation for further experimental validation.

Case study of sibutramine
In addition to the maleic acid with less known associ-
ated diseases, a withdrawal drug sibutramine was used to 
evaluate the ability of ChemDIS to identify known asso-
ciated diseases. Similar to maleic acid, there is only five 

Figure 3  Snapshot of DO term enrichment analysis for maleic acid.
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genes curated in CTD database giving only partial inter-
action information making the disease inference difficult. 
Sibutramine is originally indicated for the management 
of obesity and has been withdrawn from the market due 
to the concern of cardiotoxicity [15, 16]. The reported 
adverse effects associated with sibutramine include symp-
toms of cardiovascular, nervous and gastrointestinal sys-
tem diseases and disease of mental health. Hypertension, 
myocardial infarction, arrhythmias, tachycardia, stroke, 
bipolar disorder, headache, insomnia, constipation, ano-
rexia nervosa and sexual dysfunction have been reported 
to be associated with sibutramine [14–17, 34–36].

ChemDIS identified 44 genes mapped from 
sibutramine-interacting proteins based on STITCH 4. The 
DO terms of cardiovascular system disease, hypertension, 
myocardial infarction and heart disease were success-
fully identified. The enriched DO term of heart disease 
accounts the arrhythmias, tachycardia and stroke. Chem-
DIS performs well for identifying known sibutramine-
induced cardiotoxicity. The corresponding DO terms 
for nervous system disease were also identified includ-
ing nervous system disease and bipolar disorder. The 
enriched DO term of nervous system disease implies the 
symptoms of headache and insomnia. For constipation, 
the DO term of gastrointestinal system disease was iden-
tified. For the disease of mental health, the correspond-
ing DO terms of disease of mental health and anorexia 
nervosa were identified accounting the adverse effects 
of sexual dysfunction and anorexia nervosa. A DOLite 
analysis also successfully identified hypertension and ano-
rexia nervosa. As the interaction data grows, the inferred 
diseases could be more precise. In addition to the adverse 
effects, the desired therapeutic effects were also identi-
fied as DO terms of obesity, fatty liver disease, overnutri-
tion, nutrition disease and eating disorder and the DOLite 
term of obesity [37, 38]. The detailed analysis results for 
sibutramine is available in Additional file 2: Table S2.

Generally, ChemDIS identified 103 DO terms and 
7 DOLite terms from a large pool of disease terms that 
largely help the prioritization of potentially associated 
diseases. Among the 103 identified DO terms, 10 and 5 
terms are consistent with previously reported adverse 
and therapeutic effects, respectively. For the 7 inferred 
DOLite terms, there are 2 and 1 terms corresponding to 
known adverse and therapeutic effects. Newly identified 
associations include the remaining 88 and 4 terms for 
DO and DOLite, respectively. For CTD, most of the iden-
tified 57 disease terms were low-scoring associations that 
the average number of genes used for each inference is 
only 1.12. While 5 and 2 terms from CTD analysis were 
consistent with the previously reported adverse and ther-
apeutic effects, respectively, it is difficult to experimen-
tally validate the results without sufficient information.

Conclusions
ChemDIS is an integrated chemical–disease inference 
system with a user-friendly interface. Benefit from the 
integration of the large STITCH database, ChemDIS is 
expected to be helpful for inferring potential diseases 
associated with poorly characterized chemicals. The 
integration of analysis tools enabled the identification 
of affected functions and pathways that can be further 
studied experimentally. The analysis of maleic acid and 
sibutramine demonstrated the capability of ChemDIS 
for identifying a small number of potential affected 
diseases from the large pool of disease terms. To fur-
ther improve the applicability of ChemDIS to chemi-
cals without sufficient interaction data, future works 
could be the implementation of pharmacophore- and 
docking-based target identification methods such as 
PharmMapper [39, 40] and PDTD [41], respectively, 
and incorporation of predicted targets for enrichment 
analysis.

Availability and requirements
ChemDIS is freely available at http://cwtung.kmu.edu.
tw/chemdis without restrictions for academic use.
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