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Abstract 

Background:  The phenomenon of super-additivity of biological response to compounds applied jointly, termed 
synergy, has the potential to provide many therapeutic benefits. Therefore, high throughput screening of compound 
combinations has recently received a great deal of attention. Large compound libraries and the feasibility of all-pairs 
screening can easily generate large, information-rich datasets. Previously, these datasets have been visualized using 
either a heat-map or a network approach—however these visualizations only partially represent the information 
encoded in the dataset.

Results:  A new visualization technique for pairwise combination screening data, termed “Synergy Maps”, is pre-
sented. In a Synergy Map, information about the synergistic interactions of compounds is integrated with informa-
tion about their properties (chemical structure, physicochemical properties, bioactivity profiles) to produce a single 
visualization. As a result the relationships between compound and combination properties may be investigated 
simultaneously, and thus may afford insight into the synergy observed in the screen. An interactive web app imple-
mentation, available at http://richlewis42.github.io/synergy-maps, has been developed for public use, which may find 
use in navigating and filtering larger scale combination datasets. This tool is applied to a recent all-pairs dataset of 
anti-malarials, tested against Plasmodium falciparum, and a preliminary analysis is given as an example, illustrating the 
disproportionate synergism of histone deacetylase inhibitors previously described in literature, as well as suggesting 
new hypotheses for future investigation.

Conclusions:  Synergy Maps improve the state of the art in compound combination visualization, by simultane-
ously representing individual compound properties and their interactions. The web-based tool allows straightfor-
ward exploration of combination data, and easier identification of correlations between compound properties and 
interactions.
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Background
Compound combinations have recently received much 
interest, as they afford a number of advantages as ther-
apeutics compared to single agent treatments across a 
wide range of disease areas [1–4]. The phenomenon of 
super-additivity of the therapeutic effect of a combina-
tion, known as synergy, has the potential for improved 

pharmaceutical treatment options in terms of increased 
efficacy [5] and therapeutically relevant selectivity [6], 
whilst reducing the risk of toxicity [7] and side-effects 
[8]. Two recent reviews are available on the topic [9, 10]. 
However, how to determine which compound combi-
nations exhibit a desired form of synergy in a particu-
lar case is by no means clear, and the effect of multiple 
bioactive compounds in parallel is overall rather poorly 
understood.

Synergy in a combination is due to not purely addi-
tive interaction between the biological functions of 
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the component compounds. Progress has been made 
in attempts to model synergy, usually by attempting to 
discover these interactions. For example, models incor-
porating flux balance analysis (FBA) have been used to 
correctly predict synergistic interactions in Saccharo-
myces cerevisiae [11]. Enrichment analysis of molecular 
and pharmacological properties predicted several com-
binations to be synergistic, 69% of which were subse-
quently verified in the literature [12]. Clinical side effect 
annotations have been used to predict effective combina-
tions [13], and information from multiple domains have 
been integrated into a Probability Ensemble Approach 
to predict both efficacy and adverse effects of combina-
tions with high predictive power [14]. Various network 
approaches (such as the Stochastic Block Model [15] and 
the Prism algorithm [15, 16]) have been used to infer 
novel interactions from large incomplete drug interac-
tion databases such as DrugBank [17, 18]. Biological net-
work topologies of drug targets that lead to synergy have 
been identified through network modelling [19], and 
mechanisms of action of many known non-additive drug 
combinations have been deduced [20]. However, these 
models usually require heavily annotated data (such as 
with ATC codes, protein targets or side effect data)—a 
complete understanding of the origins and repercussions 
of synergy has not yet in general been achieved, and thus 
significant further work is needed, both experimental 
and in silico.

To this end, an experimental strategy for measuring 
synergy has been assaying all pairwise combinations for 
a relatively small compound library. A recently published 
example of this type of dataset is the DREAM Drug 
Sensitivity Challenge (subchallenge 2) [21], in which all 
combinations of 14 compounds were tested on the LY3 
lymphoma cell line. The degree of synergy for each com-
bination was indicated by the difference in growth inhibi-
tion observed by experiment from that predicted under 
the Bliss Independence model [22]. Other all-pairs com-
binatorial datasets include a 90 compound set (consisting 
of drugs and probes) assayed against the HCT116 colon 
cancer cell line [11], a set of 11 anticancer drugs tested 
also tested against HCT116 [23], a set 31 antifungal com-
pounds assayed against S. cerevisiae [24, 25], and an assay 
of 22 antibiotics against Escherichia coli [16]. Each of 
these datasets measure dose response surfaces [5], and 
derive synergy metrics from those surfaces (see original 
papers for examples). Whilst this is currently a reason-
able selection in terms of dataset size, compound variety 
and assay type, there is potential for many more experi-
ments—an exciting prospect is an upcoming National 
Cancer Institute Combination Screen of approximately 
100 anti cancer drugs tested pairwise against the 59 NCI-
60 cell lines [26].

Visualizing large numbers of combinations
The influx of this kind of combination data provides a 
new opportunity to analysts. Conventionally, a first step 
in a data focused study is an exploratory data analysis, 
principally focusing on informative visualization of any 
data collected with the goal of identifying major trends 
[27]. This can be challenging, due to structure of combi-
nation data, and the geometric scaling of possible combi-
nations with respect to compound library size [28]. Two 
major approaches have been utilized to visualize com-
bination data in the literature: heatmaps and networks. 
Heatmaps (see Fig.  1) are featured extensively in the 
literature [11, 15, 16, 21, 23, 25, 29]. Compounds of the 
dataset are represented as rows and columns, with their 
corresponding combinations positioned at the intersect-
ing elements. A color map [11, 15, 16, 21] or gradient 
may be used to indicate direction and/or degree of non-
additivity for each combination. The compounds may be 
ordered according to a particular physicochemical prop-
erty, grouped by targeted protein [11] or pathway [29], 
hierarchically clustered according to synergy profile [25] 
or just alphabetically [21].

Heatmaps are useful as an uncluttered static presenta-
tion of data. It is possible to identify disproportionately 
synergistic compounds and also compounds that behave 
similarly if clustering such as in Cokol et  al. [25] and 
Fig.  1 is applied. Additionally, relevant dose–response 
matrices may be superimposed [11, 23, 25] to reveal dif-
ferent shapes of response surfaces, which may encode 
information of underlying biological network topology 
[11, 30, 31]. A drawback is that little information about 
the actual compounds are encoded—they may be ordered 
according to a physicochemical property, but this is lim-
its further possible insight into the dataset. Furthermore, 
for a large dataset (for example over a hundred com-
pounds), such as those produced using high-throughput 
techniques [26], the heatmap quickly becomes cluttered 
and individual compounds become difficult to identify.

Network representation (see Fig.  2) for all pairs 
combination data is also popular [3, 15, 16, 24, 25, 
32]—nodes correspond to compounds, and edges to 
combinations, connecting their components. Edges may 
be coloured according to sign, and weighted accord-
ing to degree of synergy. A graph layout algorithm, 
such as circular [33] or force-directed [34] is usually 
employed to position nodes. This type of representation 
has a tendency to become overcrowded, and threshold 
values may be required to limit the number of edges. 
Despite this, networks have the potential to scale bet-
ter with dataset size than heatmaps as compounds are 
positioned in two dimensions rather than along a sin-
gle one. A notable shortcoming (shared with heatmaps) 
is that the nature of the compounds in the dataset is 
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not simultaneously well represented: it is only possi-
ble to show a few properties, through node color, size 
or superimposing numbers. An example of this may be 
found in a recent publication [24] where the cLogP of 
compounds were superimposed over the relevant node, 
and ordered in a circle to illustrate the increased poten-
tial of lipohilic compounds to participate in synergy. 

Whilst this may offer insight for the specific publication, 
it seems unlikely that a single property will satisfactorily 
explain synergistic behavior for all datasets.

Hence, an improvement in chemical property repre-
sentation for the visualization of compound combination 
screens is still very much desirable, which is the objective 
of the current work.

Fig. 1  Heatmap representation of the NCATS malaria dataset. The heatmap, created using the Python visualization package matplotlib [47], is con-
structed as a matrix; rows and columns map to individual columns of the dataset, and the intersecting elements to their combination. The heatmap 
used the pGamma metric described in Table 3. Compounds were clustered according to their predicted targets, using predictions from an inhouse 
target prediction tool, such that compounds with a similar bioactivity profile, such as Artesunate and Artemether, cluster together.



Page 4 of 11Lewis et al. J Cheminform  (2015) 7:36 

Chemical property visualization
Compounds have traditionally been represented under a 
descriptor space using a dimensionality reduction algo-
rithm as a scatter plot; a common example is Principle 
Component Analysis (PCA) [35] applied to physicochem-
ical descriptors. A state-of-the-art equivalent might be 
the use of Student’s t-distributed Stochastic Neighbour 
Embedding (t-SNE) [36] on proprietary descriptors [37]. 
In this way, compounds may be easily compared accord-
ing to their properties or features; adjacent compounds 
tend to share properties and behaviour in the descriptor 
space in question.

In this communication, we introduce a novel type of 
visualization for combination datasets, named “Synergy 
Maps”. Synergy Maps combine network and descrip-
tor space representation to yield an information dense 
presentation of a combination dataset. Specifically, the 
approach positions the nodes of a drug–drug interaction 
graph in two-dimensional space using the techniques 
referred to in the previous section; in this way, synergis-
tic interactions can be straightforwardly related to trends 
in compound properties, and thus hypotheses for the 
origins of the synergy might be more quickly proposed. 
We also introduce an interactive implementation, which 

enables the generation of synergy maps for novel com-
bination datasets, and allows for exploration of synergy 
under different spaces, metrics and datasets. Source code 
is provided as a GitHub repository.

As an example, we produce synergy maps for a combi-
nation dataset of 56 antimalarials tested against P. falci-
parum, and detail a quick analysis of the resultant maps.

Implementation
The application was constructed according to the cli-
ent–server paradigm: data processing, including the 
descriptor calculation, and subsequent dimensionality 
reduction, is performed in Python (the server process), 
then transferred via JavaScript Object Notation (JSON) 
to the client visualization, implemented in JavaScript (see 
Fig. 3 for details). The program can be run on any com-
puter with Python 2.7 and an HTML5 capable browser 
(tested on the latest Internet Explorer, Safari and Google 
Chrome).

Data processing
An input dataset should consist of compound data in 
the form of a Structure-Data File (SDF), and data asso-
ciated with their combinations (including calculated 

Fig. 2  Network Representation of the NCATS malaria dataset. This network visualization was created using Cytoscape [48]. Nodes represent com-
pounds, whilst edges represent combinations, with thickness indicating degree of non-additivity, and red and blue indicating antagonism and 
synergy respectively. The layout was generated using Cytoscape’s “organic” layout routine.
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synergy metrics) in the form of a comma separated val-
ues (CSV) file (examples provided with the repository). A 
script is then written (or a default one used), specifying 
the descriptors, dimensionality reduction techniques and 
synergy metrics to employ in generating the processed 
file (example scripts provided with the repository).

A previously collected all pairs combination dataset 
of 56 compounds tested against P. falciparum [38] was 
selected as an example dataset to concretely illustrate the 
technique. Each combination was tested in a 6 × 6 dose–
response matrix, varying the concentration of each com-
pound on each axis. The change in growth inhibition was 
measured at each dose combination, yielding a response 
surface. From this, 9 different synergy metrics [39] were 
evaluated for all 1,540 combinations. These were then 
preprocessed into the appropriate input format.

Compounds were initially standardized using Che-
maxon Standardizer [40], to ensure a consistent repre-
sentation of compounds. Descriptors for each compound 
were calculated for physicochemical, structural and 
biological spaces, each of which may be of relevance to 

synergy (Table  1). Firstly, all available physicochemical 
descriptors were calculated using PaDEL [41]. Secondly, 
Morgan fingerprints of radius 2, and folded to 2,048 bits 
were generated as structural descriptors using RDKit 
[42]. Finally, 1080 Naive Bayes binary models, trained 
using ChEMBL [43] bioactivities, were used to predict 
likely (human) protein targets for each structure (notably, 
the organism of interest is not human for the example, 
but these descriptors act as reasonable generic biological 
descriptors [44]).

The dimensionality of each space was then reduced to 
two dimensions using three different, yet complemen-
tary techniques (Table  2). Principal Component Analy-
sis (PCA) and MultiDimensional Scaling (MDS) were 
run using default parameters in scikit-learn [45], and 
student’s t-distributed Stochastic Neighbor Embedding 
(t-SNE), was employed using a perplexity of 40. This 
yielded nine sets of coordinates per compound.

Due to the relatively small chemical space spanned by 
the 56 compounds, an additional 175 diverse compounds 
from MIPE [39] were temporarily added to the dataset, to 

Fig. 3  Synergy Maps work flow. The work flow employed by the Synergy Maps application. The raw compound and combination data is trans-
formed in steps to yield processed data in JSON, which is then used by the JavaScript App to create the visualization. Specifically, the chosen 
descriptors (Table 1) are generated from the supplied chemical graphs, and then reduced to two dimensions by the selected dimensionality reduc-
tion techniques (Table 2). The combination data is assigned synergy values. The processed data is packaged into a JSON file.

Table 1  Descriptors calculated for the compounds, which were used for later visualization in Synergy Maps

Three diverse spaces were selected for representation of compounds, to give maximum insight into the properties of synergy in these different spaces. 
Physicochemical space are likely to differentiate compounds according to their ADMET properties; structural space will differentiate compounds according to the 
structure of their chemical graph; finally biological space attempts to differentiate compounds according to their relative affinity for protein targets. Hence, with this 
selection of descriptors our software is able to highlight structure in multiple facets of a dataset.

Represented space Descriptor type Implementation

Physicochemical 771 physicochemical descriptors PaDEL [41]

Structural 2,048 bit folded Morgan fingerprints [49] of radius 2 RDKit [42]

Biological 1,080 bayes affinity fingerprint [44] In house Naive Bayesian models
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diversify the space covered, and so allow for a better and 
more consistent dimensionality reduction step. This may 
not be necessary for a larger and more diverse compound 
set, but in practice made the resultant plots more repro-
ducible and transferable (this was especially the case for 
t-SNE, which has a non-convex objective function, and 
thus converges to different solutions each time it is run. It 
also allowed for a higher perplexity (roughly the expected 
density of neighbors) to be set, which prevents artificially 
large gaps opening in the dataset).

The combinations were filtered for quality: firstly 
through the Quality Control score (removing those with 
a score of above 4) of the data producer [38], then by 
removing extreme values (top and bottom 2.5% of values 
sorted by Gamma) on a case by case basis, by checking 
whether their surfaces appeared unlikely to be genuine 
(for an example, see Fig. 4). The synergy metrics provided 
were then standardized, such that an increase in syn-
ergy was represented by an increase in magnitude, and a 

negative sign used for antagonism for those metrics for 
which it was defined (Table  3). The processed data was 
then outputted as a JSON formatted file.

The output
The visualization stage uses the Data Driven Documents 
(D3) JavaScript library to produce a Scalable Vector 
Graphics (SVG) image of the network, positioning nodes 
according to the coordinates precalculated in the previ-
ous step. By default, blue and red edges represent syn-
ergistic and antagonistic combinations respectively, and 
edge width represents the extent of the interaction. Node 
area is used to represent the activity of the compound 
individually. Synergy cut-off values may be set using a 
slider to declutter the visualization of the many essen-
tially additive combinations.

The resultant networks generated for the example 
are shown in Fig.  5, and an annotated version of t-SNE 
applied to the Bayes Affinity fingerprints with pGamma 
(negative log of the Gamma metric from Cokol et al. [25]) 
synergy values is shown in Fig. 6. This representation may 
allow for the most interesting observations to be made: 
compounds that are predicted to modulate similar pro-
tein targets, and thus potentially share similar modes of 
action, are clustered together; if similar interactions are 
observed consistently between clusters, the underlying 
modes of action of each cluster might be hypothesized to 
interact as the cause of the synergy.

The static networks provide an insight into the rela-
tionship between compound properties and synergy, but 
the use of JavaScript enabled interactivity affords more 
involved exploration of the data. The author’s imple-
mentation may be accessed http://atrichlewis42.github.
io/synergy-maps, and source code at http://github.com/
richlewis42/synergy-maps. A screen shot of the software 
is shown in Fig. 7. Controls allow for the synergy metric, 
descriptor space or dimensionality reduction technique 
to be changed dynamically. This feature may be used 
to gain a feel of the relatedness of the different synergy 
metrics selected, or the different spaces and reduction 
algorithms. A filter controlling the minimum synergy 
and antagonism required for display is provided to avoid 

Table 2  Dimensionality reduction techniques implemented in Synergy Maps

Three differing dimensionality reduction techniques were employed; these methods provide a means to interpret the approximate structure of data in extremely high 
dimensional space (such as physicochemical space) on a two dimensional page. PCA locates a lower dimensional hyperplane of highest variance in a hyperspace, and 
projects the data onto the hyperplane. MDS attempts to preserve distances in high dimensional space with those lower dimensional space. Student’s t-distributed 
Stochastic Neighbour Embedding also employs distance based scaling, yet imposes statistical distributions on these; it has been asserted [36] that it outperforms 
other methods for locating structure in high dimensional data, whilst avoiding overcrowding the centre of the low dimensional space with data points.

Technique Implementation

Principal Components Analysis (PCA) [35] Scikit-learn [45]

Multidimensional Scaling (MDS) Scikit-learn [45]

Student’s t-distributed Stochastic Neighbour Embedding (t-SNE) According to original publication [36]

Fig. 4  Improbable combination surface. The surface yields a 
suspiciously strongly antagonistic (−0.7) value of pGamma. The 
surface implies that the growth of P. falciparum is rescued by a low 
concentration of Artemeter, a known antimalarial. In fact, it seems 
much more likely that the zero concentration row has simply been 
contaminated, causing an incorrect value of pGamma.

http://atrichlewis42.github.io/synergy-maps
http://atrichlewis42.github.io/synergy-maps
http://github.com/richlewis42/synergy-maps
http://github.com/richlewis42/synergy-maps
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Table 3  Synergy metrics calculated for the NCATS malaria dataset

The synergy metrics for the dataset. These were calculated for a previous study, however a couple of alterations were required to get a consistent behaviour, 
specifically positive and negative values relating to synergy and antagonism respectively: pBeta and pGamma were derived from Beta and Gamma [25] by taking 
the negative based-10 logarithm. The original metrics specify synergy below 1, and antagonism above, so this transformation handily yields the desired mapping of 
antagonism to negative values. −ExcessHSA and −ExcessCRX are derived from ExcessHSA and ExcessCRX [11] by taking the negative in order to attribute positive 
values to synergistic interactions.

Synergy metric Derivation

pGamma Negative based-10 logarithm of Gamma, from Cokol et al. [25]

Median Excess The median of the sum of the differences between the combination responses and the single agent responses

Num Excess The number of combinations in a block that show a better combination responses than both the corresponding single agents

−ExcessHSA Negative of ExcessHSA, from Lehár et al. [11]

−ExcessCRX Negative of ExcessCRX, from Lehár et al. [11]

LS3 × 3 The minimum value of the sum of the deviations from the HSA model are evaluated on all 3 × 3 submatrices of the response matrix 
(excluding the single agent row and column)

pBeta Negative based-10 logarithm of Beta, from Cokol et al. [25]

Fig. 5  Synergy Maps. Sample static networks. Nodes represent compounds, with radius indicating relative pIC50. Edges represent combinations, 
with thickness indicating degree of non-additivity, and red and blue indicating antagonism and synergy respectively. It appears that whilst PCA is 
a passable dimensionality reduction algorithm for physicochemical and structural space (despite concentrating points in the centre), it does not 
differentiate the compounds well in biological space. MDS does a little better, yet ultimately still concentrates points towards the centre, preventing 
compounds from being easily being differentiated. In the authors’ opinion, t-SNE performs well in all spaces; clear clusters can be seen, identifying 
groups of compounds similar in that space, yet points are still spread across space helpfully so as not to clutter the visualization.
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Fig. 6  Synergy Map, represented under t-SNE reduced biological space. Biological space, with various clusters annotated according to hypoth-
esized mode of action or drug function. It appears that the HDAC inhibitor cluster (Including Quisinostat, Trichostatin A and Panobinostat) tends to 
be disproportionately synergistic compared to other clusters, whilst the PI3K/mTOR inhibitors exhibit disproportional antagonism.

Fig. 7  Screenshot of the interactive web visualization. A screen shot of the interactive web visualization. The representation, reduction type, 
synergy metric and activity metric may be set by drop down menus in the top bar. Compounds may be searched for using the search box. A slider, 
shown in the top left, may be used to select threshold levels above and below which combinations should be shown. Individual compounds and 
combinations may be selected to bring up a tooltip, as shown for Dihydroartemisinin in this example. The tooltip will display any extra property 
information supplied, such as the primary mode of action in this example. Additional metadata specific to whether a compound or a combination 
has been selected is also given, such as the activities for a compound, and the synergies for a combination.
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overcrowding of the visualization. Tooltips provide addi-
tional information for compounds and combinations, 
originally supplied as extra fields in the original files; for 
the dataset used in this paper, an example is “hypoth-
esized mode of action” for compounds.

Results and discussion
Whilst the purpose of this paper is simply to introduce 
a novel visualization technique rather than analyze the 
resulting networks, it is possible to illustrate a few obser-
vations that may be made; these could be investigated 
further in subsequent assays. Firstly, we can see that com-
pounds annotated as histone deacetylase (HDAC) inhibi-
tors, which are clustered in the north-east of the Fig. 6, 
appear to be the most likely compounds in the dataset 
to be synergistic, and specifically with the compounds 

in the center (these are annotated with diverse modes of 
action, but often were kinase or phosphatase inhibitors). 
This property has been reported in the literature, where 
the HDAC inhibitor trichostatin A was found to inter-
act synergistically with geldanamycin, an Hsp90 inhibi-
tor [46], in P. falciparum. Interestingly, NVP-AUY922, 
an Hsp90 inhibitor included in the dataset, clustered to 
the centre; this is likely where geldanamycin would also 
be placed due to their similar annotated modes of action. 
This result would be in agreement with the observed 
trend and suggest that the method might yield some pre-
dictive power for unknown combinations. In contrast to 
this, PI3K inhibitors are shown to exhibit in general dis-
proportionately more antagonism with the other com-
pounds in the dataset. Whilst these observations are by 
no means reliable by themselves, they may form a basis 

Fig. 8  Validation through randomization and scrambling. In order to assess the meaningfulness of potential hypotheses drawn from a synergy 
map, it is advantageous to compare with random data, such as those in the figure, to protect against spurious correlations being interpreted for 
more than they are. The random compound positions (leftmost maps) are generated using random feature vectors, which were then reduced 
using t-SNE in an identical fashion to the Bayes Affinity vectors (rightmost maps). The random positioning of compounds appears not to produce 
the clusters observed when real data is used. Randomly shuffling the combinations values (topmost maps) reveals more realistic maps—there are 
several clusters which appear to share many synergies, for which hypotheses may have been proposed, illustrating the danger of overinterpretation 
of synergy maps.
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for further study, and provide an example in how this 
type of visualization may prove a useful first step in the 
analysis of pairwise combination data.

Comparisons
In the authors’ opinion, the observations described above 
are much less clear in the heatmap or network visualiza-
tion of the data, illustrating the strength of synergy maps. 
However there are some problems that arise, principally 
in ‘over fitting’ an interpretation—trends may appear at 
random, and as such ‘control’ visualizations should be 
consulted, to provide a reality check. These can be done 
by scrambling compound or combination data, or using 
random feature representations to generate compound 
coordinates, as shown in Fig. 8. Observed trends should 
certainly be treated with healthy skepticism, although 
it is likely that with the growth of high quality datasets, 
these chance correlations will lessen and more may be 
gained from the approach.

Conclusion
Synergy Maps, a novel method for visualization of a com-
bination data set was presented, integrating combination-
based information in a network, with compound-based 
information using a dimensionality reduced scatter-plot. 
An accompanying interactive visualization tool was 
also introduced, which enables fast and simple explora-
tion and presentation of combination data. An all-pairs 
combination dataset assayed against P. falciparum was 
analyzed as an example, identifying several properties 
already reported in the literature.
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