
Empereur‑mot et al. J Cheminform  (2015) 7:52 
DOI 10.1186/s13321-015-0100-8

RESEARCH ARTICLE

Predictiveness curves in virtual 
screening
Charly Empereur‑mot1, Hélène Guillemain1, Aurélien Latouche2, Jean‑François Zagury1, Vivian Viallon3,4,5 
and Matthieu Montes1* 

Abstract 

Background:  In the present work, we aim to transfer to the field of virtual screening the predictiveness curve, a 
metric that has been advocated in clinical epidemiology. The literature describes the use of predictiveness curves to 
evaluate the performances of biological markers to formulate diagnoses, prognoses and assess disease risks, assess 
the fit of risk models, and estimate the clinical utility of a model when applied to a population. Similarly, we use logis‑
tic regression models to calculate activity probabilities related to the scores that the compounds obtained in virtual 
screening experiments. The predictiveness curve can provide an intuitive and graphical tool to compare the predic‑
tive power of virtual screening methods.

Results:  Similarly to ROC curves, predictiveness curves are functions of the distribution of the scores and provide a 
common scale for the evaluation of virtual screening methods. Contrarily to ROC curves, the dispersion of the scores 
is well described by predictiveness curves. This property allows the quantification of the predictive performance of 
virtual screening methods on a fraction of a given molecular dataset and makes the predictiveness curve an efficient 
tool to address the early recognition problem. To this last end, we introduce the use of the total gain and partial total 
gain to quantify recognition and early recognition of active compounds attributed to the variations of the scores 
obtained with virtual screening methods. Additionally to its usefulness in the evaluation of virtual screening methods, 
predictiveness curves can be used to define optimal score thresholds for the selection of compounds to be tested 
experimentally in a drug discovery program. We illustrate the use of predictiveness curves as a complement to ROC 
on the results of a virtual screening of the Directory of Useful Decoys datasets using three different methods (Surflex-
dock, ICM, Autodock Vina).

Conclusion:  The predictiveness curves cover different aspects of the predictive power of the scores, allowing a 
detailed evaluation of the performance of virtual screening methods. We believe predictiveness curves efficiently 
complete the set of tools available for the analysis of virtual screening results.

© 2015 Empereur-Mot et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Structure-based and ligand-based virtual screening of 
compound collections has become extensively used in 
drug discovery programs to reduce the number of com-
pounds going into high throughput screening procedures 
[1]. The aim of virtual screening methods is to enrich a 
subset of molecules in potentially active compounds 

while discarding the compounds supposed to be inactive 
according to a scoring function [2]. One of the issues with 
their use in prospective screening is to choose an opti-
mal score selection threshold for experimental testing. It 
is usually estimated empirically through the analysis of 
retrospective virtual screening outputs on benchmark-
ing datasets, which include known active compounds and 
putative inactive compounds (also known as decoys).

In this context, different metrics have emerged to 
evaluate the performance of virtual screening methods: 
enrichment factors (EFs), receiver operating character-
istics (ROC) curves [2], the area under the ROC curve 
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(ROC AUC) [2], the partial area under the ROC curve 
(pAUC) [3], the Boltzmann-enhanced discrimination 
of ROC (BEDROC) [4], the robust initial enhancement 
(RIE) [5]; ROC and EF being the most widely used. The 
ROC curves and their AUC provide a common scale to 
compare the performances of virtual screening methods. 
However, the ROC curves and their AUC suffer from 
two limitations. First, virtual screening methods are used 
to prioritize a subset of the screened compound collec-
tion for experimental testing, whereas ROC curves and 
ROC AUC summarize the ability of a method to rank a 
database over its entirety [4, 6]. Second, these two met-
rics are exclusively based on the ranks obtained by the 
compounds according to the score they obtained with the 
virtual screening method and do not take into account 
the difference in score between successively ranked com-
pounds. Additionally, ROC curves are not suited to esti-
mate the size of the molecular fraction selected at a given 
threshold. The true positive fraction (TPF) and false posi-
tive fraction (FPF) of the ROC plot can reflect a very dif-
ferent number of compounds on an identical scale, which 
can be misleading for analyzing the early recognition of 
active compounds.

EFs are more reliable towards the early recognition 
problem, since they are focused on the true positive 
fraction [2]. However, with EFs, the “ranking goodness” 
before the fractional threshold is not taken into account 
and their maximum value is strongly dependent on the 
ratio of active compounds over decoys in the benchmark-
ing dataset (i.e. prevalence of activity) [2, 4, 7]. Another 
problem reported in previous studies is that metrics that 
seem to be statistically different such as ROC AUC, BED-
ROC, the area under the accumulation curve (AUAC) 
and the average rank of actives are in fact intimately 
related [4, 7, 8].

Different metrics have been proposed to overcome the 
limitations of the widely used EF and ROC curves, such as 
pAUC [3], BEDROC [4] and RIE [5], which better address 
early recognition. However, some limitations still persist: 
(1) the rank-based problems of ROC AUC are inherited 
by pAUC; (2) the maximum RIE value is dependent on the 
ratio of active compounds over decoys (similarly to EFs) [4]; 
and 3. BEDROC is dependent on a single parameter that 
embodies its overall sensitivity and that has to be selected 
according to the importance given to the early ranks. Unbi-
ased comparisons between different evaluations are then 
rendered difficult by such a sensitive parameter [4, 6].

In the present work, we aimed to transfer to the field 
of virtual screening the Predictiveness Curve (PC) [9], a 
metric that has already been advocated in clinical epi-
demiology [10–14], where the values of biomarkers are 
used to formulate diagnoses, prognoses and assess dis-
ease risks. The use of PCs is described in the literature 

to evaluate the performance of given biological markers, 
to assess the fit of risk models and to estimate the clini-
cal utility of a model when applied to a population. The 
dispersion of the scores attributed to the compounds by 
a given method is emphasized with the predictiveness 
curve, providing complementary information to classi-
cal metrics such as ROC and EF. Predictiveness curves 
can be used to (1) quantify and compare the predictive 
power of scoring functions above a given score quantile; 
and (2) define a score threshold for prospective virtual 
screening, in order to select an optimal number of com-
pounds to be tested experimentally in a drug discovery 
program. In this study, we show how PCs can be used 
to graphically assess the predictive capacities of virtual 
screening methods, especially useful when considering 
the early recognition problem. Next, we applied the PC 
to the analysis of retrospective virtual screening results 
on the DUD database [15] using three different methods: 
Surflex-dock [16], ICM [17], and Autodock Vina [18]. We 
introduced the use of the total gain (TG) [19] to quantify 
the contribution of virtual screening scores to the expla-
nation of compound activity. Standardized TG (noted as 
TG) ranges from 0 (no explanatory power) to 1 (“perfect” 
explanatory power) and can be visualized directly from 
the predictiveness curve [19]. Similarly, the partial total 
gain (pTG) [20] allows the explanatory power of virtual 
screening scores in the early part of the benchmarking 
dataset to be quantified as a partial summary measure of 
the PC. By monitoring the performances of three virtual 
screening methods using the predictiveness curve, TG 
and pTG on the DUD dataset, we have proposed a new 
approach to define optimal score thresholds adjusted to 
each target. Finally, we have discussed the interests of 
using predictiveness curves, total gain and partial total 
gain in addition to the ROC curves to better assess the 
performances of virtual screening methods and optimize 
the selection of compounds to be tested experimentally 
in prospective studies.

Methods
The directory of useful decoys (DUD) dataset
The DUD is a public benchmarking dataset designed for 
the evaluation of docking methods containing known 
active compounds for 40 targets, including 36 decoys for 
each active compound [15]. We selected for each target 
its corresponding DUD-own dataset that comprises only 
its associated active compounds and decoys. In our study, 
we used DUD release 2 dataset available at http://dud.
docking.org.

Selection and preparation of the protein structures
We selected for this study the 39 targets issued from the 
DUD for which at least one experimental structure was 

http://dud.docking.org
http://dud.docking.org
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available. Target PDGFR-β was thus excluded since it was 
obtained through homology modeling. Hydrogen atoms 
were added using Chimera [21].

Computational methods
Surflex‑dock
Surflex-dock is based on a modified Hammerhead frag-
mentation-reconstruction algorithm to dock compound 
flexibly into the binding site [16]. The query molecule is 
decomposed into rigid fragments that are superimposed 
to the Surflex protomol (i.e. molecular fragments covering 
the entire binding site). The docking poses were evaluated 
by an empirical scoring function. For each structure, the 
binding site was defined at 4Å around the co-crystallized 
ligand for the protomol generation step. In this study, Sur-
flex-dock version 2.5 was used for all calculations.

ICM
ICM is based on Monte Carlo simulations in internal 
coordinates to optimize the position of molecules using 
a stochastic global optimization procedure combined 
with pseudo-Brownian positional/torsional steps and fast 
local gradient minimization [17]. The docking poses were 
evaluated using the ICM-VLS empirical scoring function 
[22]. The binding sites defined for docking were adjusted 
to be similar to the Surflex protomol. ICM version 3.6 
was used for all calculations.

AutoDock Vina
Autodock Vina generates docking poses using an iter-
ated local search global optimizer [23] which consists in 
a succession of steps of stochastic mutations and local 
optimizations [18]. At each step, the Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS) is used for local 
optimization [24]. Autodock Vina evaluated docking 
poses using its own empirical scoring function. The bind-
ing sites have been defined identically to the ones used 
for Surflex-dock and ICM calculations to obtain similar 
spatial search areas in all of the docking experiments. We 
used Autodock Vina version 1.1.2 for all calculations.

ROC curves analysis
The ROC curve applied to the retrospective analysis of 
a virtual screening experiment is a plot of the true posi-
tive fractions (TPF, y-axis) versus false positive fractions 
(FPF, x-axis) for all compounds in a ranked dataset [2, 6]. 
Each point of the ROC curve then represents a unique 
TPF/FPF pair corresponding to a particular fraction of 
the molecular dataset. A scoring function that would be 
able to perform perfect discrimination (i.e. no overlap 
between the two distributions of active and inactive com-
pounds according to their calculated scores of binding 
affinity) has a ROC curve that passes through the upper 

left corner of the plot, where the TPF is 1 (perfect sensi-
tivity) and the FPF is 0 (perfect specificity). The theoreti-
cal ROC curve resulting from an experiment in which the 
scoring function would have no discrimination is a 45° 
diagonal line from the lower left corner to the upper right 
corner. Qualitatively, the closer the curve is to the upper 
left corner, the higher the overall accuracy of the test. 
The area under the ROC curve (ROC AUC) summarizes 
the overall performance of a virtual screening experi-
ment [2], whereas the partial area under the ROC curve 
(pAUC) allows to focus on a specific region of the curve 
and is usually calculated at a given early FPF value [3].

Predictiveness curves calculation
The approach we used in this study relies on the use 
of logistic regression to model how the scores issued 
by virtual screening methods explain the activity of 
the compounds in a virtual screening experiment. We 
used generalized linear models with a binomial dis-
tribution function and the canonical log link to calcu-
late each compound probability of activity from the 
scores obtained by the compounds in a virtual screen-
ing experiment. Parameters were fit using the iteratively 
reweighted least squares algorithm. The predictive-
ness curve was then built as a cumulative distribution 
function (CDF) of activity probabilities. Let A denote 
a binary outcome termed compound activity where 
A = 1 for active and A = 0 for inactive. The probability 
of a compound to be active given its VS score Y = y is 
Pact(y) = P[A = 1 | Y = y]. We proposed the use of the 
predictiveness plots, R(v) versus v, to describe the pre-
dictive capacity of a VS method, where R(v) is the activ-
ity probability associated with the vth quantile of the VS 
scores: R(v) = P[A =  1 | Y = F−1(v)], and F is the CDF 
of VS scores. Hence, predictiveness plots provide a com-
mon scale for making comparisons between VS methods 
that may not be comparable on their original scales [12]. 
Suppose pL and pH are two thresholds that define “low 
probability of activity” and “high probability of activ-
ity”. Then the proportions of the compounds with low, 
high, and equivocal probabilities of activity are R−1(pL), 
1 − R−1(pH) and R−1(pH) − R−1(pL), respectively, using 
the inverse function of R(v). Virtual screening scores that 
are uninformative about compound activity assign equal 
activity probabilities to all compounds, Pact(Y) = P[A = 1 
| Y] = P[A = 1] = p, where p is the prevalence of activ-
ity in the molecular dataset. On the other hand, perfect 
VS scores assign Pact(Y) = 1 for the proportion p of com-
pounds with A =  1 and Pact(Y) =  0 for the proportion 
1 −  p with A =  0. Correspondingly, its PC is the step 
function R(v) =  I[(1 − p)  <  v], where I is the indicator 
function. Most scoring functions are imperfect, yield-
ing activity probabilities between these extremes. Good 
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predictions issued from virtual screening methods yield 
steeper predictiveness curves corresponding to wider 
variations of activity probabilities.

Predictiveness plots analysis
The ability of the models to highlight score gaps between 
compounds and relate those differences to activity prob-
abilities allowed us to quantify the predictive power of 
virtual screening methods in terms of both scoring and 
ranking. Displaying the PC then allows for an intuitive 
analysis of the performances of virtual screening meth-
ods. The visualization of the total gain, partial total gain 
and the size of the molecular subset enables a straight-
forward interpretation of the results (Fig. 1a). For a com-
pletely uninformative model the PC would correspond to 
a horizontal line at the level of activity prevalence (Fig. 1). 
Inversely, steep predictiveness curves enable the obser-
vation of an inflexion point from which the curve rises. 
Hence, additionally to its benchmarking interests, PC 
provides a guidance to choose an optimal score thresh-
old from VS results, allowing one to assess decision cri-
teria from multiple points of view. Visualizing the curve 
allows to determine if activity probability variations are 
important enough to induce the selection of a threshold 
for prospective virtual screenings. Usual metrics can also 
be interpreted from the predictiveness curve: the true 
positive fraction (TPF), false positive fraction (FPF), posi-
tive predictive value (PPV) and negative predictive value 
(NPV) (Fig. 1b).

Performance metrics
Statistical analysis was conduced using the R soft-
ware [25]. The package ROCR [26] was used to plot 
ROC curves and perform ROC and partial ROC AUC 
calculations.

Enrichment factors were computed as follows:

where Hitsx% is the number of active compounds in the 
top x% of the ranked dataset, Hitst is the total number of 
active compounds in the dataset, Nx% is the number of 
compounds in the x% of the dataset and Nt is the total 
number of compounds in the dataset.

The contribution of virtual screening scores to the 
explanation of compounds activity can be quantified over 
a dataset using the standardized total gain (TG) [19], 
introduced by Bura et  al. as a summary measure of the 
predictiveness curve:

where p is the prevalence of activity in the molecular 
dataset and R(v) is the value of the activity probability at 
the vth quantile. The total gain is normalized by its maxi-
mum value, so that TG values are in the range [0,1] (null 
to perfect explanatory power). TG summarizes the pro-
portion of variance in a binomial outcome explained by 

EFx% =
Hitsx%/Nx%

Hitst%/Nx%

TG(v) =

∫
1

0
|R(v)− p| dv

2p (1− p)

Fig. 1  Schematic diagram presenting how performance metrics relate to the predictiveness curve. Displaying the PC allows for an intuitive 
selection of thresholds. Performance metrics related to a chosen threshold are easily interpreted from the curve. a Partial total gain (pTG): hatched 
area/blue frame; total gain (TG): blue area. b True positive fraction (TPF): blue area/area under activity prevalence; false positive fraction (FPF): red 
area/(1-area under activity prevalence); positive predictive value (PPV): blue area/blue frame; negative predictive value (NPV): white area/red frame
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the model. In our application, TG quantifies the success 
of a VS method to rank and score compounds depending 
on activity, over the complete molecular dataset.

The predictive performance of VS scores can be quanti-
fied above the vth quantile of the molecular dataset using 
the partial total gain (pTG) [20], recently introduced 
by Sachs et al. as a partial summary measure of the PC, 
defined as:

where p is the prevalence of activity in the molecular 
dataset and R(v) is the value of the activity probability at 
the vth quantile of the dataset. The denominator term is a 
standardization factor leading to pTG values in the range 
of 0 to 1 and makes pTG prevalence independent. pTG 
summarizes the proportion of variance in a binomial out-
come explained by the model above the vth quantile. In 
our application, pTG quantifies the contribution of vir-
tual screening scores to the explanation of compounds 
activity above the vth quantile of the molecular dataset.

Results
Assessment of the predictive power of a scoring function
We first illustrated the use of the predictiveness curve 
as a complement to the ROC curve with the results 
obtained from Surflex-dock, ICM, and Autodock Vina 
on target retinoic X receptor (RXR) of the DUD dataset 
(Fig. 2). For these methods, the ROC AUCs indicated that 
the discrimination of active compounds over inactive 

pTG(v) =

∫
1

v
|R(v)− p| dv

(1− v)(1− p)

compounds within the complete dataset was successful 
(Surflex-dock: 0.907, ICM: 0.812, Autodock Vina: 0.944). 
The ROC curve profiles suggested that acceptable early 
recognition has been achieved by the three methods 
(Surflex-dock pAUC2  %: 0.167, ICM pAUC2  %: 0.342, 
Autodock Vina pAUC2  %: 0.330), which was confirmed 
in terms of enrichment (Surflex-dock EF2 %: 16.84, ICM 
EF2 %: 24.06, Autodock Vina EF2 %: 26.47). Under these 
conditions, following the first described use of the ROC 
curves for the analysis of virtual screening results [2], 
score selection thresholds could be extracted from the 
curve points prior to FPF = 0.2 by maximizing the sensi-
tivity or the specificity of the method.

In the present case, the analysis of the predictive-
ness curves brought complementary insights. Total gain 
values indicated that the detection of the activity of the 
compounds is related to more important score variations 
with Autodock Vina, compared to ICM and Surflex-dock 
(Surflex-dock TG =  0.675, ICM TG =  0.124, Autodock 
Vina TG  =  0.740). The contributions of each scoring 
function to the early detection of active compounds can 
be quantified using the partial total gain (Surflex-dock 
pTG2  %: 0.308, ICM pTG2  %: 0.026, Autodock Vina 
pTG2  %: 0.653), which enables a straightforward com-
parison of the performances of the methods in a limited 
range of the dataset. In the case of ICM, even if the ROC 
curve profile supported that global and early enrichments 
are achieved, the associated PC corresponded to a quasi 
null-model, associated to a low TG value. Even if ICM 
was able to rank the active compounds satisfactorily, the 
analysis of the PC informed us that the score variations 

Fig. 2  Predictiveness and ROC curves for the virtual screenings of ACE, ACHE, ADA, ALR2, AMPC, AR, CDK2, COMT, COX1 and COX2 selected from 
the DUD datasets using Surflex-dock, ICM and Autodock Vina (black, red and green curves, respectively). Dashed gray lines indicate the prevalence of 
activity and random picking of compounds. Vertical dashed lines represent the thresholds we manually selected from the analysis of the curves. Met‑
rics associated to the selected thresholds are available in Tables 2, 3, 4. Partial metrics at 2 % and 5 % of the ranked dataset are available in Additional 
file 1: Table S1; Additional file 2: Table S2 and Additional file 3: Table S3
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between the active compounds and the decoys were not 
representative of the activity of the compounds. Then, 
deriving score thresholds from the analysis of retrospec-
tive virtual screening experiments with ICM would not 
be relevant for the prospective detection of active com-
pounds on RXR.

The PCs could graphically emphasize the performance 
of each method on early enrichment, highlighting that 
the most predictive method towards the activity of the 
compounds on RXR was Autodock Vina, over Surflex-
dock and ICM.

Selection of optimal score thresholds
A visual analysis of the PCs for RXR clearly displayed 
that Autodock Vina outperformed Surflex-dock and 
ICM in terms of early enrichment and that its scoring 
function would be more predictive of activity within its 
high scores. In particular, for Autodock Vina on this tar-
get, an inflexion point was observable where the PC rose 
steeply (3.38  % of the ranked dataset), which allowed 
the retrieval of a score selection threshold from which 
the scores are highly associated with the activity of the 
compounds in the corresponding subset (Autodock 
Vina pTG3.38 %: 0.488, Autodock Vina EF3.38 %: 21.39) 
(Fig. 2, vertical dashed green line). The pTG of 0.488 in 
the selected subset signified that each compound in this 
subset has an average probability gain of 0.488 of being 
active over the random picking of compounds. For Sur-
flex-dock the PC showed a different profile, gradually 
increasing to reach activity probabilities over 0.5. In this 
particular case, the threshold selection is graphically 
estimated depending on the size of the selected subset. 
We have estimated the optimal selection threshold for 
Surflex-dock at 3.25  % of the ranked dataset (Surflex-
dock pTG3.25  %: 0.265, Surflex-dock EF3.25  %: 10.37) 
(Fig.  2, vertical dashed black line), which was close to 
the optimal threshold retrieved with Autodock Vina. 
We then projected these two thresholds on the ROC 
curves (Fig.  2, horizontal colored dashed lines). Inter-
estingly, the visualization of these two thresholds on 
the PC and ROC curves emphasized the bias induced 
by the ROC towards the estimation of the size of the 
selected subset. For the two close selected thresholds 
the corresponding points on the ROC curves largely dif-
fer emphasizing that the ROC curves are not adapted to 
visualize the size of the selected datasets (Surflex-dock 
TPF3.25 %: 0.350, Surflex-dock FPF3.25 %: 0.025, Auto-
dock Vina TPF3.38 %: 0.750, Autodock Vina FPF3.38 %: 
0.016).

Emphasize on the different early recognition profiles
We performed virtual screening experiments on 39 tar-
gets from the DUD dataset using Surflex-dock, ICM 

and Autodock Vina. For 9 out of the 39 targets (ACHE, 
AMPC, FGFR1, GR, HIVRT, HSP90, PR, TK and 
VEGFR2), none of the three virtual screening methods 
yielded differences in score that were predictive of the 
activity of the compounds, resulting in PCs quasi null-
model profile and very low TG values.

Surflex-dock, ICM and Autodock Vina screenings 
of the remaining datasets resulted in PCs with a profile 
that allowed an estimation of an optimal score selection 
threshold at the steepest inflexion point of the PC for 
respectively 22, 19 and 17 datasets. ROC AUC and TG 
are presented in Table  1. PCs and ROC plots are pre-
sented in Figs. 3, 4, 5 and 6 and include the display of the 
score selection thresholds (dashed colored lines). Score 
selection thresholds, pTGs, pAUCs and EFs for each vir-
tual screening method in the resulting subsets are pre-
sented in Tables 2, 3 and 4.

The score selection thresholds for each method var-
ied with the datasets (Surflex-dock: 6.73–12.83, ICM: 
−52.17 to −22.69, Autodock Vina: −12.10 to −9.00). 
Mean EF and median EF in the resulting subsets for each 
virtual screening method were superior to 13.00. The 
analysis thus allowed to identify target specific optimal 
score selection thresholds that yielded satisfying EFs, 
up to two digits, for 57 out of the 117 possible method/
dataset associations (Figs. 3, 4, 5, 6). For 1 out of the 117 
possible method/dataset associations, the defined thresh-
old resulted in no enrichment (Surflex-dock on SAHH). 
For the remaining 59 method/dataset associations, the 
predictiveness curves suggested a defect of association 
between the scores obtained by the compounds and their 
activity.

The score selection thresholds for each method varied 
with the datasets (Surflex-dock: 6.73–12.83, ICM: −52.17 
to −22.69, Autodock Vina: −12.10 to −9.00). Mean EF 
and median EF in the resulting subsets for each virtual 
screening method were superior to 13.00. The analy-
sis thus allowed to identify target specific optimal score 
selection thresholds that yielded satisfying EFs, up to 
two digits, for 57 out of the 117 possible method/data-
set associations (Fig. 3, 4, 5, 6). For 1 out of the 117 pos-
sible method/dataset associations, the defined threshold 
resulted in no enrichment (Surflex-dock on SAHH). 
For the remaining 59 method/dataset associations, the 
predictiveness curves suggested a defect of association 
between the scores obtained by the compounds and their 
activity.

We finally highlighted systems that illustrated the inter-
est of using the PCs as a complement to the ROC curves: 
(1) Surflex-dock and ICM applied to the HMGR dataset 
represented one of the best-achieved early recognition 
cases, both PCs displaying a steep inflexion point. In this 
case, the analysis of the PC validated the profile of the ROC 
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Table 1  Description of  the benchmarking dataset from  the DUD, including  global metrics of  the virtual screens per-
formed using Surflex-dock, ICM and Autodock Vina

Target Nb of actives Nb of compounds Prevalence Surflex-dock ICM Autodock vina

TG ROC AUC TG ROC AUC TG ROC AUC

ACE 49 1846 0.0265 0.035 0.464 0.299 0.655 0.189 0.408

ACHE 107 3999 0.0268 0.012 0.512 0.115 0.614 0.107 0.662

ADA 39 966 0.0404 0.310 0.699 0.250 0.320 0.110 0.438

ALR2 26 1021 0.0255 0.250 0.536 0.228 0.647 0.295 0.677

AMPC 21 807 0.0260 0.227 0.687 0.134 0.534 0.214 0.325

AR 79 2933 0.0269 0.067 0.684 0.151 0.691 0.396 0.745

CDK2 72 2146 0.0336 0.186 0.608 0.364 0.734 0.212 0.620

COMT 11 479 0.0230 0.392 0.733 0.256 0.698 0.001 0.440

COX-1 25 936 0.0267 0.078 0.587 0.372 0.727 0.348 0.726

COX-2 426 13715 0.0311 0.396 0.784 0.056 0.555 0.461 0.736

DHFR 410 8777 0.0467 0.387 0.715 0.198 0.618 0.337 0.737

EGFR 475 16471 0.0288 0.018 0.461 0.352 0.697 0.159 0.605

ER ago 67 2637 0.0254 0.301 0.708 0.462 0.772 0.533 0.833

ER antago 39 1487 0.0262 0.412 0.758 0.263 0.631 0.176 0.562

FGFR1 120 4670 0.0257 0.134 0.569 0.097 0.403 0.083 0.441

FXA 146 5891 0.0248 0.521 0.860 0.326 0.702 0.132 0.616

GART 40 919 0.0435 0.555 0.881 0.492 0.783 0.287 0.710

GPB 52 2192 0.0237 0.218 0.675 0.434 0.835 0.361 0.757

GR 78 3025 0.0258 0.010 0.564 0.050 0.450 0.126 0.560

HIVPR 62 2100 0.0295 0.517 0.808 0.175 0.649 0.317 0.743

HIVRT 43 1562 0.0275 0.185 0.621 0.191 0.622 0.234 0.633

HMGR 35 1515 0.0231 0.642 0.878 0.438 0.723 0.080 0.545

HSP90 37 1016 0.0364 0.098 0.598 0.224 0.340 0.136 0.612

INHA 86 3352 0.0257 0.112 0.551 0.032 0.524 0.203 0.544

MR 15 651 0.0230 0.492 0.796 0.401 0.732 0.614 0.844

NA 49 1923 0.0255 0.633 0.870 0.764 0.923 0.198 0.350

P38 454 9595 0.0473 0.231 0.651 0.127 0.367 0.087 0.572

PARP 35 1386 0.0253 0.435 0.738 0.440 0.755 0.324 0.728

PDE5 88 2066 0.0426 0.062 0.524 0.465 0.775 0.121 0.582

PNP 50 1086 0.0460 0.404 0.755 0.072 0.635 0.034 0.536

PPAR 85 3212 0.0265 0.676 0.901 0.415 0.748 0.499 0.801

PR 27 1068 0.0253 0.109 0.527 0.130 0.686 0.080 0.525

RXR 20 770 0.0260 0.675 0.907 0.124 0.812 0.740 0.944

SAHH 33 1379 0.0239 0.391 0.811 0.330 0.751 0.338 0.717

SRC 159 6478 0.0245 0.162 0.569 0.420 0.748 0.288 0.694

THR 72 2528 0.0285 0.447 0.787 0.420 0.798 0.331 0.706

TK 22 913 0.0241 0.139 0.668 0.015 0.453 0.110 0.583

TRP 49 1713 0.0286 0.767 0.953 0.155 0.637 0.140 0.619

VEGFR2 88 2994 0.0294 0.092 0.558 0.201 0.625 0.034 0.504

Minimum 11 479 0.0230 0.010 0.461 0.015 0.320 0.001 0.325

Maximum 475 16471 0.0473 0.767 0.953 0.764 0.923 0.740 0.944

Mean 97 3134 0.0294 0.302 0.691 0.268 0.650 0.242 0.625

Median 50 1923 0.0265 0.250 0.687 0.250 0.686 0.203 0.619
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Fig. 3  Predictiveness and ROC curves for the virtual screenings of DHFR, EGFR, ER, FGFR1, FXA, GART, GPB, GR and HIVPR selected from the DUD 
datasets using Surflex-dock, ICM and Autodock Vina (black, red and green curves, respectively). Dashed gray lines indicate the prevalence of activity 
and random picking of compounds. Vertical dashed lines represent the thresholds we manually selected from the analysis of the curves. Metrics 
associated to the selected thresholds are available in Tables 2, 3, 4. Partial metrics at 2 % and 5 % of the ranked dataset are available in Additional 
file 1: Table S1; Additional file 2: Table S2 and Additional file 3: Table S3
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Fig. 4  Predictiveness and ROC curves for the virtual screenings of HIVRT, HMGR, HSP90, INHA, MR, NA, P38, PARP, PDE5 and PNP selected from the 
DUD datasets using Surflex-dock, ICM and Autodock Vina (black, red and green curves, respectively). Dashed gray lines indicate the prevalence of 
activity and random picking of compounds. Vertical dashed lines represent the thresholds we manually selected from the analysis of the curves. Met‑
rics associated to the selected thresholds are available in Tables 2, 3, 4. Partial metrics at 2 % and 5 % of the ranked dataset are available in Additional 
file 1: Table S1; Additional file 2: Table S2 and Additional file 3: Table S3
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Fig. 5  Predictiveness and ROC curves for the virtual screenings of PPAR, PR, RXR, SAHH, SRC, THR, TK, TRP and VEGFR2selected from the DUD data‑
sets using Surflex-dock, ICM and Autodock Vina (black, red and green curves, respectively). Dashed graylines indicate the prevalence of activity and 
random picking of compounds. Vertical dashed lines represent the thresholds we manuallyselected from the analysis of the curves. Metrics associ‑
ated to the selected thresholds are available in Tables 2, 3, 4. Partial metrics at 2 %and 5 % of the ranked dataset are available in Additional file 1: 
Table S1; Additional file 2: Table S2 and Additional file 3: Table S3
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Fig. 6  Predictiveness and ROC curves for the virtual screenings of the 39 targets we selected from the DUD datasets using Surflex-dock, ICM and 
Autodock Vina (black, red and green curves, respectively). Dashed gray lines indicate the prevalence of activity and random picking of compounds. 
Vertical dashed lines represent the thresholds we manually selected from the analysis of the curves. Metrics associated to the selected thresholds are 
available in Tables 2, 3, 4. Partial metrics at 2 and 5 % of the ranked dataset are available in Additional file 1: Table S1; Additional file 2: Table S2 and 
Additional file 3: Table S3
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Table 2  Summary of the partial metrics associated to the thresholds we selected manually from the virtual screens per-
formed using Surflex-dock

Target Surflex-dock—manual thresholds

Rank threshold Activity threshold pTG pAUC EF Score Actives Cpds

ACE – – – – – – – –

ACHE – – – – – – – –

ADA 1.24 0.211 0.293 0.128 13.34 9.78 7 13

ALR2 1.18 0.103 0.119 0.231 24.17 6.73 8 13

AMPC – – – – – – – –

AR – – – – – – – –

CDK2 0.70 0.103 0.115 0.052 8.77 8.82 5 17

COMT 0.63 0.136 0.206 0.182 21.77 7.29 2 4

COX-1 – – – – – – – –

COX-2 0.98 0.160 0.165 0.017 3.79 8.24 16 136

DHFR 1.80 0.251 0.389 0.207 13.73 9.36 102 159

EGFR – – – – – – – –

ER ago 0.95 0.114 0.131 0.032 4.54 8.07 3 26

ER antago 1.28 0.185 0.315 0.071 15.25 10.07 8 20

FGFR1 – – – – – – – –

FXA 1.94 0.181 0.314 0.126 11.53 10.04 34 119

GART 2.94 0.249 0.345 0.062 4.92 12.47 6 28

GPB – – – – – – – –

GR – – – – – – – –

HIVPR 1.95 0.190 0.313 0.227 14.52 9.80 18 42

HIVRT – – – – – – – –

HMGR 2.05 0.173 0.471 0.449 24.35 8.91 18 32

HSP90 – – – – – – – –

INHA – – – – – – – –

MR 0.92 0.172 0.227 0.200 31.00 7.32 5 7

NA 2.91 0.180 0.320 0.339 15.84 11.37 23 57

P38 0.58 0.161 0.155 0.029 6.30 8.75 17 57

PARP 1.08 0.187 0.332 0.143 17.32 7.12 7 16

PDE5 – – – – – – – –

PNP 0.55 0.258 0.303 0.100 15.51 7.65 5 7

PPAR 2.71 0.221 0.441 0.395 20.18 12.83 47 88

PR – – – – – – – –

RXR 3.25 0.200 0.265 0.263 10.37 10.84 7 26

SAHH 0.87 0.154 0.200 0.000 0.00 10.08 0 13

SRC – – – – – – – –

THR 1.34 0.209 0.283 0.097 13.04 9.54 13 35

TK – – – – – – – –

TRP 4.03 0.193 0.414 0.442 13.98 8.80 28 70

VEGFR2 – – – – – – – –

Minimum 0.55 0.103 0.115 0.000 0.00 6.73 0 4

Maximum 4.03 0.258 0.471 0.449 31.00 12.83 102 159

Mean 1.63 0.181 0.278 0.172 13.83 9.27 17 45

Median 1.26 0.183 0.298 0.136 13.86 9.13 8 27
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Table 3  Summary of the partial metrics associated to the thresholds we selected manually from the virtual screens per-
formed using ICM

Target ICM—manual thresholds

Rank threshold Activity threshold pTG pAUC EF Score Actives Cpds

ACE 0.49 0.14 0.166 0.136 26.37 −31.64 7 10

ACHE – – – – – – – –

ADA – – – – – – – –

ALR2 0.49 0.11 0.118 0.038 6.54 −31.46 1 6

AMPC – – – – – – – –

AR – – – – – – – –

CDK2 1.30 0.18 0.231 0.059 10.28 −29.72 10 29

COMT – – – – – – – –

COX-1 0.53 0.14 0.165 0.050 12.48 –29.72 2 6

COX-2 – – – – – – – –

DHFR 0.38 0.16 0.148 0.018 5.04 −30.36 8 34

EGFR 0.93 0.16 0.179 0.101 18.79 −33.60 84 155

ER ago 1.63 0.20 0.252 0.197 19.68 −31.57 22 44

ER antago 1.01 0.10 0.157 0.062 14.30 −34.06 6 16

FGFR1 – – – – – – – –

FXA 0.59 0.12 0.140 0.067 14.57 −33.80 13 36

GART 2.50 0.25 0.293 0.142 11.49 −52.17 12 24

GPB 0.50 0.19 0.240 0.010 7.03 −35.50 2 12

GR – – – – – – – –

HIVPR – – – – – – – –

HIVRT – – – – – – – –

HMGR 0.99 0.14 0.454 0.257 29.76 −26.21 11 16

HSP90 – – – – – – – –

INHA – – – – – – – –

MR 1.54 0.12 0.185 0.400 23.67 −29.12 6 11

NA 4.11 0.15 0.385 0.580 18.15 −22.69 37 80

P38 – – – – – – – –

PARP 1.44 0.14 0.162 0.015 3.77 −36.20 2 21

PDE5 1.98 0.20 0.232 0.151 10.06 −28.00 18 42

PNP – – – – – – – –

PPAR 1.53 0.16 0.237 0.146 15.87 −42.49 21 50

PR – – – – – – – –

RXR – – – – – – – –

SAHH – – – – – – – –

SRC 0.83 0.17 0.220 0.082 14.82 −35.14 20 55

THR 1.58 0.17 0.236 0.050 6.85 −26.85 8 41

TK – – – – – – – –

TRP – – – – – – – –

VEGFR2 – – – – – – – –

Minimum 0.38 0.10 0.118 0.010 3.77 −52.17 1 6

Maximum 4.11 0.25 0.454 0.580 29.76 −22.69 84 155

Mean 1.28 0.16 0.221 0.135 14.19 −32.65 15 36

Median 1.01 0.16 0.220 0.082 14.30 −31.57 10 29
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Table 4  Summary of the partial metrics associated to the thresholds we selected manually from the virtual screens per-
formed using Autodock Vina

Target Autodock Vina—manual thresholds

Rank threshold Activity threshold pTG pAUC EF Score Actives Cpds

ACE – – – – – – – –

ACHE – – – – – – – –

ADA – – – – – – – –

ALR2 0.98 0.117 0.114 0.019 3.57 −10.10 1 11

AMPC – – – – – – – –

AR 1.06 0.141 0.214 0.113 13.92 −9.90 12 32

CDK2 0.79 0.124 0.103 0.054 13.25 −10.30 8 18

COMT – – – – – – – –

COX-1 0.64 0.165 0.225 0.000 16.05 −9.00 3 7

COX-2 1.74 0.224 0.345 0.201 19.53 −10.20 145 239

DHFR 1.29 0.218 0.250 0.051 6.57 −9.90 35 114

EGFR – – – – – – – –

ER ago 1.82 0.191 0.328 0.175 18.47 −9.50 23 49

ER antago – – – – – – – –

FGFR1 – – – – – – – –

FXA – – – – – – – –

GART – – – – – – – –

GPB 0.59 0.139 0.164 0.007 3.01 −9.20 1 14

GR – – – – – – – –

HIVPR 0.95 0.159 0.192 0.012 1.61 −10.70 1 21

HIVRT – – – – – – – –

HMGR – – – – – – – –

HSP90 – – – – – – – –

INHA 0.63 0.093 0.136 0.138 23.03 −11.10 13 22

MR 2.15 0.210 0.336 0.250 20.25 −10.30 7 15

NA – – – – – – – –

P38 – – – – – – – –

PARP 0.79 0.130 0.160 0.048 9.90 −10.30 3 12

PDE5 – – – – – – – –

PNP – – – – – – – –

PPAR 2.80 0.148 0.258 0.267 14.53 −12.10 35 91

PR – – – – – – – –

RXR 3.38 0.150 0.488 0.500 21.39 −10.60 15 27

SAHH 0.65 0.146 0.181 0.030 8.36 −9.00 2 10

SRC 0.39 0.149 0.154 0.005 4.70 −9.60 3 26

THR 0.59 0.164 0.187 0.056 13.17 −10.40 6 16

TK – – – – – – – –

TRP – – – – – – – –

VEGFR2 – – – – – – – –

Minimum 0.39 0.093 0.103 0.000 1.61 −12.10 1 7

Maximum 3.38 0.224 0.488 0.500 23.03 −9.00 145 239

Mean 1.25 0.157 0.226 0.113 12.43 −10.13 18 43

Median 0.95 0.149 0.192 0.054 13.25 −10.20 7 21
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curve and informed us that the scores obtained by both 
methods were highly associated to the detection of active 
compounds; (2) For the PARP dataset, the analysis of the 
PCs allowed to easily estimate an optimal score selection 
threshold for Surflex-dock whereas ROC AUCs and ROC 
curve profiles were very close for all methods; (3) For the 
GART dataset, the PCs emphasized a better predictive 
performance of Surflex-dock scores over ICM’s in the early 
part of the dataset, whereas the ROC curves profiles could 
lead to an opposite interpretation of the results.

Discussion
The goal of virtual screening methods in drug discovery 
programs is to predict the potential activity of the com-
pounds of a compound collection on a specific target. The 
result is a list of compounds ranked by a scoring function 
that estimates the activity on the target (binding affinity, 
equilibrium constant, binding energy), which will be con-
firmed experimentally. Since scoring functions are still 
the most limiting factor in virtual screening in particular 
to predict activity, it is usual to select empirically the top 
scoring compounds for experimental tests [27–29]. Sev-
eral performance metrics were developed over the years 
to evaluate the performance of virtual screening methods 
and guide the definition of the best protocols. The most 
used metrics suffer from three main limitations; (1) they 
focus on the predicted ranks of the compounds accord-
ing to the scoring function instead of taking into account 
the value of the score; (2) they do not focus particularly 
on the top scoring compounds; (3) they do not allow an 
intuitive estimation of the score threshold that would 
give the best confidence into finding active compounds. 
In the present work, we suggested the use of a metric that 
tackles these limitations, the Predictiveness Curve.

As expected, the score values issued from scoring 
functions differ from one system to another rendering 
direct score comparisons between different systems dif-
ficult. That is why benchmarking metrics use specificity 
and selectivity to focus on the ranks of the compounds 
according to the scoring functions instead of the score 
values. In prospective virtual screening experiments, 
since score values and resulting ranks are available to the 
expert, both should be used to perform the compounds 
selection for experimental tests. As pointed out by Trib-
alleau et  al., a ROC AUC of 0.9 means that a randomly 
selected active molecule has a higher score than a ran-
domly selected inactive 9 times out of 10 [2]. However, 
it does not mean that a hit would be confirmed experi-
mentally with a probability of 0.9. ROC curves charac-
terize the overall inherent quality of a virtual screening 
experiment and by no means are indicative of the qual-
ity of a particular compound or of a given subset of the 
initial compound collection. Finally, ROC plots do not 

allow a direct estimation of the size of an optimal sub-
set in terms of activity potential, which is a critical task 
of virtual screening. We suggested in the present work 
the use of logistic regression and PC analysis to provide 
activity probabilities related to the scores obtained by the 
compounds after virtual screening.

Considering early recognition, it seems surprising that 
in other fields where this problem occurs, such as infor-
mation retrieval, the metrics that are commonly used 
are not particularly efficient [30]. Likewise, there is still 
no consensus on the optimal metric to use to analyze 
the performance of virtual screening methods. ROC and 
EF are not able to discriminate the “ranking goodness” 
before the fractional threshold [4]. Furthermore, if two 
ranked lists display similar initial enhancements, but dif-
fer significantly just after the selection threshold, they 
would not be differentiated using EF or partial ROC met-
rics [2, 4, 31]. Since the overall distribution of the scores 
after virtual screening is taken into account by predic-
tiveness models, the PC is able to perform efficient dif-
ferentiation in this case. Hence, by summarizing the PC 
over a restricted range of compounds, pTG quantifies the 
enhancement of activity in the early part of the ranked 
molecular dataset and is a function of the overall success 
of the virtual screening experiment [20].

Now considering the choice of score selection thresh-
olds towards prospective virtual screening experiments, 
Neyman and Pearson, who pioneered hypothesis testing, 
asserted that there is no general rule for balancing errors 
[32]. In any given case, the determination of “how the bal-
ance [between wrong and correct classifications] should 
be struck, must be left to the investigator” [32]. In sum-
mary, balancing false-positive and false-negative rates 
has “nothing to do with statistical theory but is based 
instead on context-dependent pragmatic considerations 
where informed personal judgment plays a vital role” 
[33]. Triballeau et  al. transferred the ROC curve to the 
field of virtual screening and described how to retrieve 
score thresholds by maximizing either specificity or sen-
sitivity from the ROC analysis [2]. The PC has the advan-
tage to provide a probability-related interpretation of the 
scores by taking into account their variations, which effi-
ciently complements the ROC curve for benchmarking 
purposes. Predictiveness curves allow for the detection 
of optimal score selection thresholds in an intuitive and 
straightforward way; a task for which the ROC curves 
are not adapted. Through the analysis of PCs, we were 
able to estimate optimal score selection thresholds for 
each virtual screening method used in the study, which 
were associated to satisfying EFs in each resulting sub-
set. We were also able to detect an absence of associa-
tion between the scores obtained by the compounds after 
virtual screening and the activity of the compounds, in 
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particular for experiments that yielded high ROC AUC 
values. We demonstrated these usages on the DUD data-
set for three virtual screening methods, providing all PC 
and ROC curves with scores and metrics associated to 
each resulting subset (Figs. 3, 4, 5, 6; Tables 2, 3, 4).

The first objective of this paper is to introduce to the 
field of virtual screening the predictiveness curves for the 
purpose of benchmarking retrospective virtual screen-
ing experiments. We believe that benchmarking met-
rics have to take into account the values of the scores 
calculated in a virtual screening experiment for a better 
understanding of its results; which may also support the 
enhancement of the performances of scoring functions. 
The second objective of this paper is to provide a method 
to define score selection thresholds to be used for pro-
spective virtual screenings, in order to select an opti-
mal number of compounds to be tested experimentally 
in drug discovery programs. The predictiveness curves 
graphically emphasize the differences in scores that are 
relevant for the detection of active compounds in a vir-
tual screening experiment and ease the process of defin-
ing optimal thresholds. When retrospective studies on a 
specific target allowed to detect optimal score selection 
thresholds, considering that a prospective virtual screen-
ing experiment could be performed under similar condi-
tions, we can expect score variations to be reproducible 
and the corresponding score thresholds to be transfer-
able. Therefore, the resulting subset of compounds 
selected when applying the estimated score threshold 
would be expected to be highly enriched in active com-
pounds. However, score selection thresholds defined in 
retrospective studies must be considered carefully when 
applied for the selection of molecular subsets in prospec-
tive studies. It is important to keep in mind that all per-
formance measures should be interpreted in the context 
of the composition of the benchmarking datasets [34, 35] 
and that the score selection thresholds that would be esti-
mated during the benchmark should be adapted to the 
composition of the dataset that will be used for prospec-
tive screening.

Conclusion
The value of a continuous test in predicting a binary 
outcome can be assessed by considering two aspects: 
discrimination and outcome prediction. In the present 
study, we proposed predictiveness curves as a comple-
ment to the existing methods to analyze the results of 
virtual screening methods. Logistic regression models 
can be used to evaluate the probability of each compound 
to be active given the score it obtained through the vir-
tual screening method. The PC then provides an intuitive 
way to visualize the data and allows for an efficient com-
parison of the performance of virtual screening methods, 

especially considering the early recognition problem. 
Performance metrics are easily estimated from the pre-
dictiveness plots: TG, pTG, PPV, NPV, TPF and NPF. PC 
also ease the process of extracting optimal score selec-
tion thresholds from virtual screening results, which is a 
valuable step to proceed to prospective virtual screening. 
The enhancement of activity attributed to the variations 
of virtual screening scores can then be quantified in the 
resulting subsets of compounds using the pTG.

Visualizing both the predictiveness curve and the ROC 
curve empowers the analysis of virtual screening results. 
The two measures, however, summarize different aspects 
of the predictive performance of scores and thus answer 
different questions [14, 20]. On the one hand, we are 
interested in the ROC curve because it summarizes the 
inherent capacity of a virtual screening method to dis-
tinguish between active and inactive compounds. This 
information would aid in the decision to whether or not 
apply a virtual screening method in the first place. On 
the other hand, the predictiveness curve informs us on 
the association between virtual screening scores and the 
activity of the compounds. This information would aid 
in decision making when performing prospective virtual 
screening experiments. By simultaneously displaying PC 
and ROC, we believe researchers will be better equipped 
to analyze and understand the results of virtual screening 
experiments.
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