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Abstract 

Background:  Drug-target identification is crucial to discover novel applications for existing drugs and provide more 
insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along 
with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect 
discovery.

Results:  In this article, we propose a method based on the integration of 3D chemical similarity, target and adverse 
effect data to generate a drug-target-adverse effect predictor along with a simple leveraging system to improve iden-
tification of drug-targets and drug-adverse effects. In the first step, we generated a system for multiple drug-target 
identification based on the application of 3D drug similarity into a large target dataset extracted from the ChEMBL. 
Next, we developed a target-adverse effect predictor combining targets from ChEMBL with phenotypic information 
provided by SIDER data source. Both modules were linked to generate a final predictor that establishes hypothesis 
about new drug-target-adverse effect candidates. Additionally, we showed that leveraging drug-target candidates 
with phenotypic data is very useful to improve the identification of drug-targets. The integration of phenotypic data 
into drug-target candidates yielded up to twofold precision improvement. In the opposite direction, leveraging drug-
phenotype candidates with target data also yielded a significant enhancement in the performance.

Conclusions:  The modeling described in the current study is simple and efficient and has applications at large scale 
in drug repurposing and drug safety through the identification of mechanism of action of biological effects.

Keywords:  3D molecular structure, Pharmacophoric, Target, Adverse effect

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Drugs can bind different protein targets in the human 
organism. This action in multiple targets is responsible 
for therapeutic effects along with clinical adverse effects. 
For this reason, improvement in the identification of 
drug-target interactions is of great importance in the dis-
covery of additional applications for drugs already in the 
market, also called drug repurposing, and in drug safety 
through the explanation of undesirable adverse effects 

caused by drugs administration. From the initial discov-
ery stages to the final approval in the pharmaceutical 
market, molecules have to pass through many evaluation 
steps with the consequent high associated costs and fail-
ure risks [1]. The estimated cost to develop a new drug 
until commercialization can reach 1 billion [2, 3]. How-
ever, drug repurposing strategies can decrease the over-
all time and cost since existing drugs have been already 
studied from the point of view of safety and pharmacoki-
netic profiles [4]. Discovery of new targets for existing 
drugs is also important in drug safety since supplies valu-
able information about possible mechanism of action of 
adverse drug effects (ADEs) [5].
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In the last years, different computational methods have 
been developed to discover new drug-protein interac-
tions [6]. Molecular similarity has been widely applied 
in medicinal chemistry to discover molecules that bind 
a specific target [7]. However, similarity can be deter-
mined using different measurements. Molecules can be 
compared based on their 2D molecular structure [8, 9]. 
Keiser et  al. [10] showed the usefulness of comparing 
molecular fingerprints to generate an approach called 
SEA (Similarity Ensemble Approach) with great potential 
in the prediction of new targets. The authors showed that 
targets can be predicted according to the similarity based 
on their ligands and discovered new potential applica-
tions for existing drugs [10, 11]. On the other hand, 3D 
molecular structure comparison offers also great poten-
tial in medicinal chemistry and drug discovery [12, 13]. 
It has been shown that both 3D and 2D molecular struc-
ture analysis provide different abilities to capture diverse 
structural patterns related with biological activities [14, 
15]. Other types of molecular similarities have also pro-
vided great insights in drug-target discovery. Campillos 
et al. [16] used adverse drug reactions profiles to develop 
a target identification model validated experimentally. 
Nevertheless, exploiting clinical data of the disease con-
stitutes another example of a system to identify new 
targets related to drugs [2]. Some bioinformatics meth-
odologies compared drugs based on gene expression 
profiles in microarrays and yielded associations between 
drugs, targets, pathways and diseases [17–21]. Integra-
tion of heterogeneous chemical and biological data into 
predictive models was also a successful strategy in the 
detection of new targets, indications and adverse effects 
[22–26]. In summary, different similarity measures and 
methods have been published with important applica-
tions in drug-target identification and hence, drug repur-
posing and drug safety [27].

On the other hand, drug similarity has also been 
applied to identify directly associations between drugs 
and adverse effects. As an example, 2D and 3D struc-
ture similarity modeling was previously implemented in 
the detection of drug candidates responsible for adverse 
effects [28–30]. Other types of studies with great applica-
tions in drug safety and pharmacovigilance have shown 
potential in drug-adverse effect detection through data 
mining of the scientific literature [31] or pharmacovilance 
databases [32–34], such as Electronic Health Records or 
the FDA Adverse Event Reporting System [35]. The avail-
ability of big heterogeneous data sources combined with 
the explosion of computational methods encourages the 
large-scale study of relationships between drugs, targets 
and adverse effects.

In this article, we integrated and leveraged informa-
tion from different sources, such as chemical similarity, 

targets and adverse drug effects (ADEs), to generate a 
predictor to identify drug-targets, target-adverse effects, 
and drug-adverse effects associations. We compared 
drug similarity through a 3D pharmacophoric approach 
and incorporated similarity data into an extensive source 
of targets provided by ChEMBL [36] to develop a multi 
drug-target predictor. Additionally, we developed a tar-
get-adverse effect model to be applied to the drug-tar-
get predictor with two purposes: to generate hypothesis 
about drugs, targets and adverse effects, and improve 
drug-target identification. We hypothesize that a new 
target predicted for a drug is more likely to be true when: 
(1) the new target is also associated with adverse effects 
according to the target-ADE model and (2) the drug is 
described to be related to those adverse effects in SIDER 
(reference standard for drug-ADEs) [37]. The same idea 
but in the opposite direction can be applied in the iden-
tification of new drug-ADEs through drug-target lever-
aging. We also linked the target-adverse effect model to 
a 3D drug-ADE predictor previously published by our 
research group [30]. The new predictor was integrated 
with drug-target data extracted from ChEMBL (reference 
standard of drug-targets) [36] to improve the recognition 
of drugs that cause adverse effects. Figure  1 shows the 
main steps summarizing the study.

Results
Drug‑target modeling
We integrated 3D chemical/pharmacophoric similarity 
into target data from ChEMBL [36] as described in Meth-
ods (1526 drugs and 726 targets). Our predictor gener-
ated 1,107,876 drug-target combinations with associated 
leave-one-out scores. Each drug-target candidate is asso-
ciated with the 3D maximum similarity score against the 
set of drugs that interact with the same target according 
to ChEMBL. We labeled as true positives (TP) the drug-
target associations already collected in ChEMBL and 
as false positives (FP) the rest of possible combinations 
(we defined the FP cases from the unknown cases with 
no target information collected in the ChEMBL). ROC 
curve was plotted with an area of 0.82 (see Fig. 2a). We 
also plotted precision and enrichment factor (EF) in dif-
ferent top positions for the global drug-target predictor 
(see Fig. 2b, c).

We carried out a hold-out validation of our predic-
tor. The 20  % of the drug-target combinations found in 
ChEMBL were included in a test set whereas the model 
was constructed with the 80 % of the initial drug-target 
data. This step was repeated but increasing the size of the 
test to the 40 % and modeling the 60 % of the data. Selec-
tion of the sets was made through a random process. 
Results showed that the predictor barely is affected by the 
division of the data into training and test sets (see Fig. 3a 
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and Additional file  1: Table S1). Ability of the model to 
detect novel associations was also assessed and differ-
ent sets with all the close neighbors were removed. We 
eliminated from the training all the drugs belonging to 
8 Anatomical Therapeutic Chemical (ATC) categories 
[38], including ACE inhibitors, Angiotensin II antago-
nists, Benzodiazepines, Beta-blocking agents, Fluoro-
quinolones, Imidazole/triazole derivatives, Nucleosides/
Nucleotides and Sulfonamides. ROC results for each 
ATC category showed that the model has good abil-
ity to predict a class of drugs when no ATC representa-
tives were included to construct the model. The area 
under the ROC curve (AUROC) for the different groups 
spans values from 0.58 to 0.83 (see Fig. 3b). Besides per-
formance including all the targets in the ROC (Fig.  2a), 
we assessed the quality of each individual target model. 
Figure 3c shows the number of individual target models 
found for different intervals of AUROCs. Out of 726 indi-
vidual target models, 427 yielded an AUROC ≥0.70. We 
did not find correlation between performance in the indi-
vidual target models and the number of drugs that bind 
the target in our reference standard (see Additional file 2:  
Figure S1).

Results for the 3D predictor were compared with a 2D 
model. Both methods performed similarly and yielded 
ROC curves greater than 0.80 (see Additional file  3: 
Figure S2). However, as it was shown previously, 3D 
structure methods captured a diverse chemical space 
compared to 2D techniques and can generate different 
sets of candidates [14, 30, 39]. Previous research showed 
chemical-biological relationships captured by 3D molec-
ular structure methods and not detected by 2D meth-
ods, and vice versa. To prove the potential of detecting 
a different chemical space, we have plotted in Additional 
file 4: Figure S3 the 10 % top scored drug–drug similari-
ties in a matrix of drugs using both approaches. Some 
drug pair examples are detected by 3D methods and not 
detected according to 2D approaches and vice versa.

Target‑phenotype modeling
We developed a system to detect targets that have poten-
tial to induce adverse reactions. In a similar way as Kuhn 
et  al. [40], we implemented drug-target data extracted 
from ChEMBL into drug-phenotypic data from SIDER 
[37] to identify target-adverse effect combinations that 
are overrepresented. After the removal of targets and 

Fig. 1  Flowchart of the main steps included in the study
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adverse effects associated with less than five drugs, we 
collected a data made out of 347 targets, 1773 adverse 
effects, 12,341 drug-target cases and 86,397 drug-adverse 
effect points (Additional file 5: Figure S4 provides num-
ber of adverse effects and targets for each drug). We gen-
erated causal hypothesis between protein interaction and 
adverse effects looking for enrichment values of protein 
associated with adverse effects. Each target-adverse effect 
combination was associated with an enrichment factor 
(EF) and a q-value (see Fig. 4a and Methods).

The target-phenotype model was validated using two 
external reference standards of known associations 
between proteins and adverse reactions. A database 
generated in a previous study [40] by surveying the sci-
entific literature to find target-adverse effect associa-
tions and manually verified was used as a validation set 
(49 target-adverse effects). A second reference standard 
of 42 target-adverse effects was taken into account and 
extracted from the DART database (Drug Adverse Reac-
tion Target Database) [41]. Both test sets are provided in 
Additional file 6: Table S2. We labeled the known associa-
tions as true positives within the whole set generated by 
our model and calculated the area under the ROC curve 

for the external tests (AUROCs were 0.70 and 0.71 for 
the Kuhn and DART tests respectively). More detailed 
results of our validation process, including sensitivity and 
specificity at different thresholds, are provided in Addi-
tional files 7 and 8: Tables S3 and S4. The q-values cal-
culated for the target-adverse effect associations included 
in the reference standards were lower than the q-values 
in the model background (see Fig.  4b). Our system pri-
oritized the true positive cases over the complete set of 
target-adverse effect associations. For the next imple-
mentation step, a final set of 2426 target-adverse effect 
candidates was selected with an EF > 5 and q < 0.05 and 
at least 3 drugs in common in both protein and adverse 
effect (Additional file 9: Table S5 contains the list of 2426 
target-adverse effects with EF and q-values).

Linkage of drug‑targets and target‑adverse effects
The set of target-adverse effects extracted previously, 
with an EF > 5, q < 0.05 and at least 3 drugs representing 
the case, was linked to each drug-target candidate with a 
3D score ≥ 0.75 (see Fig. 5a). It is worth noting that each 
drug-target candidate can be associated in this way with 
different adverse effects (ADEs). The predictor generated 

Fig. 2  ROC curve (a) for the global drug-target predictor along with precision (b) and enrichment factors (c) in different top positions
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38,181 drug-target candidates with multiple associated 
adverse effect data (338,638 drug-target-adverse effect 
individual data points are provided in Additional file 10: 
Table S6). Our database provides drug-target-ADE can-
didates and further experimental studies would be neces-
sary to confirm or reject the associations.

Leveraging drug‑targets with drug‑phenotype
We integrated phenotype data from SIDER into the drug-
target associations to improve the performance, what 
we called leveraging drug-targets with phenotypes. We 
selected the set of 38,181 drug-target candidates with 
multiple associated adverse effect data. For each drug-
target association, we counted the number of predicted 
adverse effects corroborated in SIDER for the drug (TP), 
the number of predicted adverse effects not found in 
SIDER for the drug (FP), the number of adverse effects 
described in SIDER not predicted for the drug (FN) and 
number of adverse effects not described in SIDER nor 
predicted by the model (TN). Based on these parameters 
we calculated enrichment factors (EFs) with associated 
q-values for each drug-target association. A set of 921 
drug-target associations with an EF > 1 and q-value <0.05 
was selected for final analysis. When this set of candi-
dates was compared to the initial set of drug-target can-
didates generated by the 3D model by itself we found an 
increase in precision and enrichment factor (EF com-
pared against random results). Precision and EF in dif-
ferent top positions comparing both sets are reported in 
Fig. 5. For instance, the EF reaches values of 32 and 18 at 
top position 500 calculated with the 3D model with phe-
notypes and the 3D model by itself respectively. Results 
showed that integrating drug-phenotype data into the 
drug-target candidates improved the precision in drug-
target identification. Some examples of new drug-tar-
get associations yielded by the modeling are shown in 
Table  1. However, further studies are necessary to con-
firm the candidates pointed out by the models.

Leveraging drug‑adverse effects with drug‑target data
In a similar way as described above, we used drug-target 
data from ChEMBL to improve the identification of drug-
adverse effects (see Fig.  6). A previously published 3D 
drug-adverse effect predictor [30] was used as a source 
of associations between drugs and adverse effects with a 
3D score threshold of 0.75. The drug-adverse effect data 
was linked to the 2426 target-adverse effect associations 
and a set of 100,713 drug-adverse effects with associated 
target data was generated. It is worth noting that for each 
drug-adverse effect association there can be also differ-
ent targets associated with the same adverse effect. We 
calculated EFs and q-values for each drug-adverse effect 
association (see Methods). A set of 1294 drug-adverse 
effect associations with an EF > 1 and q-value <0.05 was 
extracted as a set of candidates.

We compared the performance of the 3D drug-adverse 
effect model by itself with the 3D drug-adverse effect 
model leveraged with target data. Precision and EF in 
different top positions are shown in Fig. 6b, c. Precision 

Fig. 3  a Performance of the 3D drug-target model (AUROCs) in the 
hold-out validations extracting 20 and 40 % of the initial data into 
test sets. b Performance of the 3D drug-target model (AUROCs) using 
8 Anatomical Therapeutic Chemical (ATC) categories as test sets: ACE 
inhibitors (A), Angiotensin II antagonists (B), Benzodiazepines (C), 
Beta-blocking agents (D), Fluoroquinolones (E), Imidazole/triazole 
derivatives (F), Nucleosides/Nucleotides (G) and Sulfonamides/urea 
derivatives (H). c AUROC values for the individual drug-target models
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was improved in different top positions when the data 
is leveraged with target information. However, precision 
decreases until reach a similar value in the final position 
1294 (0.43 for 3D drug-adverse effect model leveraged 
with phenotypic data and 0.36 for the 3D drug-adverse 
effect model by itself ). Implementing target data into 
drug-adverse effect candidates enhanced also identifica-
tion of drug-adverse effect associations.

Discussion
We have developed a method that integrates 3D struc-
tural similarity, protein interactions and adverse effects, 
in a large scale multi drug-target-adverse effect predictor 
with novel implications in drug repurposing and patient 
safety. We also provided a leveraging system to better pri-
oritize the selected drug-target associations through the 
application of drug-phenotypic data. In the opposite way, 

improvement in the detection of drug-adverse effects was 
achieved integrating drug-target data from ChEMBL. We 
have shown that integrating drug-targets with drug-phe-
notype data and vice versa is very useful to enhance the 
performance of the predictors.

Our drug-target predictor scores the candidates based 
on the maximum 3D similarity against the set of drugs 
known to bind the protein. This system allows for each 
drug-target candidate isolating the drug that cause the 
signaling score and analyze all the information associ-
ated, such as type and conditions of the biological assay, 
protein organism or even different reported activi-
ties. The 3D pharmacophoric approach can associate as 
similar two drugs that belong to the same pharmaco-
logical category. However, it also allows the detection 
of pairs of drugs that are classified in different pharma-
cological classes. Additional file 11: Figure S5 shows the 

Fig. 4  a Illustration (no real data) of the target-phenotype predictor. ADE Adverse Drug Effect, EF Enrichment Factor, TP True Positives, FP False 
Positives, FN False Negatives, TN True Negatives. b Validation of the target-adverse effect predictor using two external reference standards of known 
target-adverse effect associations: a database generated by Kuhn et al. [40] extracted from the literature and manually reviewed, and a set of the 
associations extracted from DART database. A higher proportion of the target-adverse effect associations in the two reference standards have 
q-values lower than 0.05 compared to the model background
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Fig. 5  Intersection of drug-target and target-adverse effect data (a). Precision (b) and Enrichment Factor (c) in drug-target identification comparing 
the 3D drug-target model leveraged with phenotypic data with the 3D drug-target model by itself

Table 1  Examples of some drug-target candidates generated by our predictor

Each drug-target association is predicted to cause different adverse effects confirmed in SIDER through the calculation of the EF and q-values [predicted adverse 
effects corroborated in SIDER (TP), predicted adverse effects not found in SIDER (FP), adverse effects described in SIDER and not predicted (FN), adverse effects not 
described in SIDER and not predicted by the model (TN)]
a  TC is the Tanimoto coefficient between both drugs using MACCS fingerprint
b  Similar drug is the most similar drug binding the target in our ChEMBL data calculated with our 3D model
c  3D D-T is the 3D score that associates the drug candidate with the target according to our 3D model
d  Enrichment factor (EF) and q-values calculated for each drug-target association based on the integration of phenotype data from SIDER

TCa Similar drug in ChEMBL (ATC 
category)b

Drug candidate (ATC category) 3D D-Tc Target EF and q-valuesd

0.30 Diclofenac (antiinflammatory agent, 
non-steroid)

Carbamazepine (carboxamide deriv., 
antiepileptic)

0.83 Gamma-secretase EF = 3.17 q < .05

0.20 Phenytoin (hydantoin deriv., antie-
pileptic)

Venlafaxine (antidepressant) 0.82 Aquaporin-4 EF = 2.71 q < .05

0.65 Ondansetron (serotonin antagonist, 
antiemetic-antinauseant)

Molindone (indole deriv., antipsy-
chotic)

0.79 5-HT3 receptor EF = 17.73 q < .05

0.50 Oxymetazoline (descongestant, 
sympathomimetic)

Molindone (indole deriv., antipsy-
chotic)

0.77 Alpha-2-adrenergic receptor EF = 22.16 q < .05

0.65 Oxybuprocaine (local anesthetic) Metoclopramide (propulsive) 0.77 DNA repair protein RAD52 homolog EF = 6.57 q < .05

0.39 Niclosamide (salicylic acid deriv., 
anticestodal)

Thalidomide (immunosuppressant) 0.76 Tyrosine-protein kinase SRC EF = 2.75 q < .05

0.41 Diethyltryptamine (psychedelic drug) Metoclopramide (propulsive) 0.75 5-HT6 receptor EF = 8.21 q < .05

0.35 Pentamidine (agent against Leishma-
niasis/Trypanosomiasis)

Haloperidol (antipsychotic, buty-
rophenone deriv.)

0.75 Muscarinic acetylcholine M4 EF = 11.22 q < .05
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Anatomical Therapeutic Chemical (ATC) [38] relation-
ship between 1000 random pairs of drugs detected within 
the threshold of 0.75 for the 3D scoring, along with a his-
togram of the distribution of the cases. Drugs associated 
with a high score have the tendency of belonging to the 
same ATC class. However, as the 3D scores decreases we 
found more pairs of drugs with different pharmacological 
profiles.

In the generation of 3D drug similarity data, it is pos-
sible to use alternative methodologies, such as different 
drug conformational analysis, molecular alignments or 
3D similarity functions. In our conformational analysis 
protocol and due to simplicity reasons, only the global 
minimum energy structure for each drug was retained. 
However, a more complex approach can be taken into 
account retaining more conformations for each drug to 
better represent the bioactive bound conformation. Pre-
vious studies by our research group showed that although 
a set of conformations could describe better the bound 
form of drugs, the global minimum energy structures 
yielded also good root mean squared deviations (RMSDs) 
against crystallized drugs bound to the targets [30]. We 

collected a set of 158 co-crystallized drug structures in 
our data from the Protein Data Bank and compared them 
to: (1) the minimum energy 3D structure generated by 
our MCMM calculations, (2) the top10 minimum energy 
conformations extracted from the MCMM (the best 
RMSD against the crystal is selected). Additional file 12: 
Figure S6 shows the RMSDs calculated in the compari-
son. The average RMSD values are 1.66 and 1.05 for both 
protocols, respectively. Our protocol, taking into account 
only the minimum energy conformation, is simpler and 
showed good performance in the recovery of co-crystal-
lized drugs (122 out of 158 presented a RMSD lower than 
2.5).

Methods
3D pharmacophoric similarity
Drug structures
We downloaded the dataset of drugs available in Drug-
Bank [42]. We did not include proteins, large peptides 
and drugs with more than 200 atoms due to the com-
plexity to calculate the 3D most stable conformation of 
molecules with high degree of freedom. DrugBank also 

Fig. 6  Intersection of drug-adverse effect and target-adverse effect data (a). Precision (b) and Enrichment Factor (c) in drug-adverse effect identifi-
cation comparing the 3D drug-adverse effect model leveraged with target data with the 3D drug-adverse effect model by itself
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provided specified chiral centers information deter-
mining bioactive conformation of drugs. Our dataset 
included 1526 drugs that were pre-processed with Lig-
Prep [43]. This module generated protonation states at 
neutral pH and a maximum of three enantiomers in the 
case of lack of chirality information for some centers. 
Initial molecular geometry was also optimized using 
OPLS_2005 force field.

Monte Carlo Multiple Minimum (MCMM) conformational 
analysis
We carried out a MCMM conformational analysis for 
the drugs using Macromodel from Schrödinger [43]. We 
used water as implicit solvent in the calculation to gen-
erate more extended conformations representing with 
higher fidelity biological active conformations. Non-
bonded cut-off distances for H-bond, van der Waals and 
electrostatic forces were set to 4.0, 8.0 and 20.0 Å respec-
tively. Although different minimum energy structures 
can be studied, we retained only the OPLS_2005 global 
minimum energy structure as representative of the calcu-
lation to simplify next modeling stages.

Shape screening
We performed pharmacophoric calculations using Phase 
from Schrödinger package and assessed 3D similarity for 
all pairs of drugs. Each drug 3D most stable structure cal-
culated previously was used as a template. Shape screen-
ing generated different conformers for the rest of drugs 
and aligned them to each template to identify common 
pharmacophoric features between each pair of drugs. The 
calculation yielded a 3D similarity score, called Phase Sim 
property that measured the overlapping volume between 
the same types of pharmacophoric features present in 
each pair of superimposed drugs. The 3D score spans 
values between 0 (means minimum 3D similarity) and 1 
(means maximum 3D similarity), and it is defined as:

where O(A, B) is the overlap of the pharmacophoric sites 
between drugs A and B and max(O(A, A),O(B, B)) is the 
maximum of the self-overlaps.

Target data
We used ChEMBL database [36] as a source of protein 
data, including pharmacological targets, off-targets, 
enzymes and transporters. Drugs from DrugBank [42] 
were mapped to the ChEMBL data using a combination 
of drug name, InChI keys, and smiles codes resulting in a 
set of 1526 drugs by which target data was downloaded. 
Target information in the database was pre-processed as 
a previous step before data integration in the predictor. 

Sim(A,B) =
O(A, B)

max(O(A,A), O(B, B))

This step included incorporation of repeated drug-tar-
get cases into a unique case (different bioassays refer-
ring to the same target were clustered); elimination of 
biological data not well specified, such as cases labeled 
as “not determined”, “not active”, “not tested”, “no inhibi-
tion”, “potential missing data”, etc., or drug-target cases 
with low affinity or potency, i.e. cases where IC50, EC50 
or Ki was greater than 50  µM. Unspecified cases where 
the potency was only determined with a threshold,such 
as “EC50 greater than” were also eliminated from the ini-
tial data. Additional information, such as assay details 
was also retained and included in each drug-target case. 
To increase data robustness, only targets with at least 5 
associated drugs were considered in the modeling. Final 
drug-target data comprised 22,838 drug-target associa-
tions (positive controls) with 1526 drugs and 726 targets 
(1,107,876 possible combinations).

Phenotypic data
We used SIDER [37] as a resource of 99,423 drug-adverse 
effect associations (4192 adverse effects related to 996 
drugs) extracted from package inserts and public docu-
ments. SIDER database is an important source of adverse 
effect information, although some adverse reactions would 
need additional confirmation through more studies.

Drug‑target predictor: 3D drug similarity and target 
integration
Drug similarity based on 3D structure was integrated into 
the target ChEMBL data through a model that generates 
all possible drug-target combinations with an associated 
scoring (3D score). The model compares for each drug 
the similarity against the set of drugs known to bind each 
target. If the same drug-target combination is generated 
in repeated occasions with different scores, i.e., from the 
comparison of different drug pairs, only the maximum 
score is retained and the “origin” (drug known to interact 
with the target and data about potency and assay type) 
is associated as additional information to the drug-target 
candidate. In this way each drug-target candidate has 
associated the maximum similarity score against drugs 
interacting with the same target in ChEMBL. Out of all 
the possible drug-target combinations that the predic-
tor generates, some combinations are already found in 
ChEMBL (positive cases) whereas the other combina-
tions are new associations. ROC curves, precision and 
enrichment factor (EF) against random results were pro-
vided to assess the quality of the predictor:

Precision = TP
/

(TP + FP)

EF =
TP

(TP+FP)

/

TPr

(TPr+FPr)
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where TP is the number of true positives, FP is the num-
ber of false positives and TPr is the number of true posi-
tives in a random sample.

Target‑phenotype predictor: target and adverse effect data 
integration
In a similar way described by Kuhn et  al. [40], we 
integrated drug-phenotypic data from SIDER with 
drug-target data extracted from ChEMBL to detect over-
representations of protein-adverse effects (see Fig.  4a). 
Since the aim is the detection of targets that cause clini-
cal adverse effects, only human proteins in ChEMBL 
were integrated in SIDER adverse effect data. After map-
ping our initial 1526 drugs with drugs in SIDER and with 
drugs with human targets in ChEMBL data, we found 842 
drugs by which phenotypic and target data was combined. 
Targets and adverse effects associated with less than five 
drugs were not considered in the analysis. Our final data 
included 347 targets and 1773 adverse effects (615,231 
possible target-ADE associations). Enrichment factor (EF) 
and p values (Fisher’s exact test) were calculated for each 
target-adverse effect combination taking into account 
number of drugs associated with both target and adverse 
effect (TP), number of drugs that only bind the target 
(FP), drugs only associated to the adverse effect (FN), 
and number of drugs not associated with neither of them 
(TN). Since multiple associations are taken into account 
and following the protocol described by Kuhn et al. [40], 
we addressed multiple hypotheses by using q-values cal-
culated with the “qvalue” package in R [44] instead of raw 
p-values. Modeling was validated through the evaluation 
of two independent test sets of target-adverse effects asso-
ciations: (1) the Kuhn database, extracted in a previous 
study [40] from the scientific literature and manually veri-
fied and (2) the DART database (Drug Adverse Reaction 
Target Database) [41]. AUROCs, sensitivity, specificity, 
precision and enrichment factor at different top thresh-
olds were provided as a comparative measurement.

Integration of drug‑target and target‑adverse effect 
predictors
Final modeling was performed through the integration of 
previous models, the drug-target and the target-adverse 
effect predictors. A set of 178,385 drug-target associa-
tions with a 3D score threshold of 0.75 was selected as 
candidates. Regarding the target-adverse effect predic-
tor, we selected 2426 target-adverse effects with EF > 5, 
q-value  <0.05 and at least 3 drugs in common in both 
target and adverse effect. Both sets of signals were 
intersected to extract a final set of 38,181 drug-targets 
associated with multiple adverse effects (drug-target-
multiADEs). Considering drug-target-adverse effects as 
unique cases the number of data points is 338,638.

Leveraging drug‑protein interactions with phenotype data
In the set of 38,181 drug-target associations (3D score 
≥0.75 and with multiple associated adverse effects), we 
calculated enrichment factors (EFs) and q-values (multi-
ple testing using the “q value” package in R) based on TP 
(adverse effects corroborated in SIDER for the drug), FP 
(adverse effects not found in SIDER), FN (adverse effects 
found in SIDER but not predicted in the modeling), and 
TN (adverse effects that are not predicted by our model 
and they are not found in SIDER either). Performance in 
a set of 921 drug-target associations with an EF > 1 and 
q-value  <0.05 was compared to sets extracted from the 
drug-target model by itself.

Leveraging drug‑adverse effect associations with target 
data
Associations with a 3D score ≥0.75 between our drugs 
and adverse effects were extracted from a previous model 
reported by our research group [30]. In a similar way as 
described previously, drug-adverse effects were linked 
to the 2426 target-adverse effect associations to gener-
ate a set of 100,713 drug-adverse effects associated to 
different targets. Enrichment factors (EFs) and q-values 
were calculated for each drug-adverse effect associa-
tion using target information: TP (predicted targets vali-
dated in ChEMBL), FP (predicted targets not validated 
in ChEMBL), FN (targets present in ChEMBL for the 
drug that are not predicted by our modeling) and TN 
(targets not predicted and not described in ChEMBL). 
A set of 1294 drug-adverse effects with an EF  >  1 and 
q-value <0.05 were selected.
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