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Abstract 

Background:  The concept of molecular similarity is one of the central ideas in cheminformatics, despite the fact that 
it is ill-defined and rather difficult to assess objectively. Here we propose a practical definition of molecular similarity in 
the context of drug discovery: molecules A and B are similar if a medicinal chemist would be likely to synthesise and 
test them around the same time as part of the same medicinal chemistry program. The attraction of such a definition 
is that it matches one of the key uses of similarity measures in early-stage drug discovery. If we make the assumption 
that molecules in the same compound activity table in a medicinal chemistry paper were considered similar by the 
authors of the paper, we can create a dataset of similar molecules from the medicinal chemistry literature. Further-
more, molecules with decreasing levels of similarity to a reference can be found by either ordering molecules in an 
activity table by their activity, or by considering activity tables in different papers which have at least one molecule in 
common.

Results:  Using this procedure with activity data from ChEMBL, we have created two benchmark datasets for struc-
tural similarity that can be used to guide the development of improved measures. Compared to similar results from 
a virtual screen, these benchmarks are an order of magnitude more sensitive to differences between fingerprints 
both because of their size and because they avoid loss of statistical power due to the use of mean scores or ranks. 
We measure the performance of 28 different fingerprints on the benchmark sets and compare the results to those 
from the Riniker and Landrum (J Cheminf 5:26, 2013. doi:10.1186/1758-2946-5-26) ligand-based virtual screening 
benchmark.

Conclusions:  Extended-connectivity fingerprints of diameter 4 and 6 are among the best performing fingerprints 
when ranking diverse structures by similarity, as is the topological torsion fingerprint. However, when ranking very 
close analogues, the atom pair fingerprint outperforms the others tested. When ranking diverse structures or carry-
ing out a virtual screen, we find that the performance of the ECFP fingerprints significantly improves if the bit-vector 
length is increased from 1024 to 16,384.
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Background
The Similar Property Principle (SPP) is the observation 
that structurally similar molecules tend to have similar 
properties [1]. This is a cornerstone of drug discovery, as 
it means that successive small changes to the structure of 
an active should retain biological activity against a target. 
In this case the SPP is really an expression of the nature 
of protein–ligand binding. As with any guiding principle, 

there are exceptions; in drug discovery these are referred 
to as activity cliffs [2] where small changes in the struc-
ture cause large changes in biological activity. Unfortu-
nately the SPP does not provide any guidance on how to 
identify or measure whether two molecules are structur-
ally similar. Computationally, the most common way to 
measure this is to compare molecular fingerprints, binary 
or count vectors that encode features of molecules. This 
numerical measure of similarity may then be used for 
similarity searching, ligand-based virtual screens, clus-
tering and diversity analysis [3–5].
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As many molecular fingerprints are in widespread use 
[6], an important question to ask is which are better at 
measuring structural similarity. Benchmarks for ligand-
based virtual screening and investigations of neighbour-
hood behaviour could be considered as providing an 
answer to this question. A ligand-based virtual screen 
[7–11] tests the ability of a similarity measure to identify 
actives from within a set of decoys given a single active 
(or a small number of actives) as a query, with the under-
lying assumption that the actives are more structurally 
similar to each other than they are to the decoys. In other 
words, good performance in such screens relies on the 
reverse of the SPP, that molecules with similar proper-
ties are structurally similar. Note that such screens do not 
consider the degree of similarity beyond the goal of rank-
ing actives higher than decoys. Neighbourhood behav-
iour studies [12–15] investigate the correspondence 
between structural similarity measures and similarity in 
biological space (often a combined measure across sev-
eral targets). A typical study tries to identify the optimal 
structural similarity cutoff to yield the best balance of 
precision versus recall. Note that in this context, a “false 
similar” pair of molecules is structurally similar but not 
similar in terms of biological activity.

Several ligand-based virtual screening studies have 
found that the performance of the ECFP4 fingerprint is 
either the best or among the best, although one should 
note that the majority of these studies used a small num-
ber of targets (11 or fewer) and lacked an analysis of sta-
tistical significance. Hert et  al. [16] found that ECFP4 
fingerprints performed best on average for 11 targets 
from the MDDR (a viewpoint supported by a re-analysis 
of the same dataset by Bender et  al. [17]). Sastry et  al. 
[18] also looked at 11 targets from the MDDR and found 
that a radial fingerprint (which they identify as synony-
mous with ECFP, although different atom types may be 
used) was among the top three (Molprint2D and a den-
dritic fingerprint were better). However, on the Briem 
and Lessel benchmark dataset [19] (5 targets from the 
MDDR), Duan et al. [20] found that the same radial fin-
gerprint (that is, from Sastry et  al.) was best although 
Molprint2D was close in performance. In contrast to 
the previous studies, the 2013 study by Riniker and Lan-
drum included 88 targets, almost an order of magnitude 
more than previous ligand-based virtual screening stud-
ies, and did include a treatment of statistical significance. 
While the ECFP4 fingerprint had the best mean rank, the 
analysis was not able to show its mean rank to be signifi-
cantly better than that of topological torsions, ECFP6 or 
ECFC4. In the field of neighbourhood behaviour, Papa-
datos et  al. [14] found that ECFP6, SEFP4 and SEFP6 
performed consistently well across 27 chemotype-based 
datasets covering 9 targets.

Here we describe a new type of benchmark for struc-
tural similarity that takes into account the fact that struc-
tural similarity is a continuous scale rather than a binary 
property. This is not a virtual screen but instead consists 
of series of molecules arranged by structural similarity 
with respect to a reference.

While the SPP does not provide any guidance on how 
to rank molecules by structural similarity, as a start-
ing point we consider molecule A and B to be similar if 
it is reasonable that a medicinal chemist would synthe-
sise and test A and B around the same time as part of the 
same medicinal chemistry program. This definition has a 
number of attractive features. First of all, it is a measure 
of similarity directly linked to the task in which we are 
interested. It is also widely used in practice; typically a 
medicinal chemist has the final say on which molecules 
are selected for synthesis/testing from a set of hits in a 
virtual screen.

While there has been some recent work on compar-
ing human and computational measures of structural 
similarity [21], it is still the case that the “cognitive algo-
rithms by which medicinal chemists perceive similar-
ity are largely unknown” (to quote Maggiora et al. [22]). 
Our approach is to use the co-occurrence of A and B in 
an activity table in the published medicinal chemistry 
literature as an indication that two molecules are similar 
according to this definition, information which is avail-
able from the ChEMBL database [23]. In this way we 
extract pairs of molecules which were considered simi-
lar enough to be part of the same medicinal chemistry 
project, and on which a medicinal chemist was willing to 
bet their time that both would be active against the same 
target.

It may be that the answer to the question posed in the 
title depends on the degree of similarity. That is, which fin-
gerprint is best may be different when searching for close 
analogues versus searching for more distant analogues, 
versus separating actives and decoys in a virtual screen of 
compounds available for purchase. To consider this, we 
have developed two distinct benchmarks, which test the 
ability to distinguish similarity within different ranges.

1.	 The single-assay benchmark tests the ability to rank 
very similar structures relative to a reference. Five 
molecules differing by about 0.4 log units from each 
other were selected from the same ChEMBL assay. 
These are structurally similar according to our defini-
tion. Given the most active as the reference, the oth-
ers were ordered in decreasing order of activity. Our 
assumption is that the more similar the activity is to 
the reference, the more similar the structure will be.

2.	 The multi-assay benchmark tests the ability to rank 
more diverse structures relative to a reference. Given 
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a reference molecule, a series of four molecules with 
decreasing similarity (that is, increasing distance) to 
the reference was generated by linking from one paper 
with activity data to another through molecules in 
common between both. Figure  1 illustrates the con-
cept: M1 and M3 are similar according to our defini-
tion, as are the pairs M3 and M5, M5 and M7, M7 and 
M9. We assume that relative to M1, structural similar-
ity will decrease as one moves through the series M3, 
M5, M7, and M9 due to the size of chemical space 
(even in the vicinity of a particular target) and the 
nature of a random walk.

While no one similarity measure will be the best in 
every instance, the main goal of the current study is to 
determine which similarity measures in general corre-
spond best to a medicinal chemist’s notion of similar-
ity, and which should be avoided. Furthermore, we wish 
to provide benchmarks that will aid the development of 
improved similarity measures as they can distinguish 
between even small differences in performance. As 
improvements typically stem from incremental changes 
and parameter testing, this sensitivity will help guide 
these efforts. Finally, by comparison with the corre-
sponding results from a re-analysis of the virtual screen-
ing study of Riniker and Landrum, we can investigate the 
extent to which structural similarity is the same at dif-
ferent ranges of similarity, and determine whether the 
described benchmarks be useful in developing finger-
prints with improved performance in a virtual screen.

Methods
Structural fingerprints tested
The molecular fingerprints used were taken from the 
benchmarking platform described by Riniker and Lan-
drum [9] and are listed in Table 1. Although their study 
focused on results for 14 fingerprints, the associated code 
[24] includes a further 14, mainly additional variants 
of circular fingerprints but also hashed forms of atom 
pairs (HashAP) and topological torsions (HashTT). In 

this study we have used the full set of 28 fingerprints as 
implemented in the RDKit version 2015.09.2 [25].

The fingerprints may be classified as follows. Additional 
details are in the publication by Riniker and Landrum:

1.	 Path-based fingerprints RDKx where x is 5, 6, 7 
(hashed branched and linear subgraphs up to size 
x), TT (topological torsion [26], a count vector) and 
a binary vector form HashTT, AP [27] (atom pair, a 
count vector) and a binary vector form HashAP.

2.	 Substructure keys Avalon [28], MACCS.
3.	 Circular fingerprints The extended-connectivity fin-

gerprints [29] ECFPx where x is 0, 2, 4, 6, and the 
corresponding count vectors denoted as ECFCx. 
Also the feature-class fingerprints FCFPx and corre-
sponding count vectors FCFCx where x is 2, 4, 6.

A length of 1024 bits was used for all binary finger-
prints listed above, but for comparison a longer length 
of 16384 bits was used for a number of fingerprints (as 
in the original study). This longer version is indicated by 
the prefix “L”: LAvalon, LECFP6, LECFP4, LFCFP6 and 
LFCFP4. The Tanimoto coefficient was used to measure 
similarity for all binary fingerprints, while the Dice coef-
ficient was used for count vectors.

Dataset of similar structures
The set of all IC50, Ki and EC50 assays in ChEMBL 20 
was used as the source for activity data. Data marked by 
ChEMBL as duplicates from earlier publications were 
discarded as these may be reference compounds with a 
structure distinct from the rest of the assay. The dataset 
was restricted to assays containing from 8 to 25 (inclu-
sive) unique molecules. Smaller assays were found to 
contain more dissimilar molecules, and the value of 8 
was chosen as a trade-off between retaining as much data 
as possible and reducing the number of dissimilar mol-
ecules retained. The upper value of 25 was chosen con-
servatively to limit the chance that an assay described 
more than one scaffold series or was selected from a HTS 
campaign.

ChEMBL provides ‘parent structures’ for structures 
in the database—this is the neutral form with any salt 
removed. These parent structures were used in prefer-
ence to the original structure (where they differed). Fur-
thermore, stereoisomers were normalised to the same 
parent compound. While in theory it would be interest-
ing to consider differences in stereochemistry in the con-
text of structural similarity, the presence of erroneous 
stereoisomers due to unspecified stereocentres meant 
that normalisation was required. In any case, none of the 
2D fingerprints investigated in the current study are sen-
sitive to stereochemistry.

Fig. 1  Composition of a series in the multi-assay benchmark. The 
diagram shows a series consisting of five molecules M1, M3, M5, M7 
and M9 (in that order) taken from four assays in four different papers, 
where each assay has a compound in common
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In order to reduce the incidence of dissimilar structures 
in an assay, molecules were excluded from the dataset if 
they were members of any of the following sets. Promis-
cuous molecules were identified as those present in 5 or 
more papers in the entire set of IC50, Ki and EC50 data. 
Molecules with SMILES strings present in Wikipedia 
were identified using data provided by Ertl et al. [30, 31]. 
Finally, molecules marked by ChEMBL as having Interna-
tional Nonproprietary Names (INNs) were also excluded. 
Note that the stereo-normalised parent forms were used 
in each of these steps.

Multi‑assay benchmark
The multi-assay benchmark was created from the dataset 
of similar structures as follows. The dataset was first con-
verted to a graph of edges connecting molecules in the 
same assay: inner edges connect molecules that are both 
in at least two papers while outer edges connect mole-
cules where at least one is in at least two papers.

To create the first series in the benchmark, the first 
molecule in the dataset that was part of an outer edge was 
chosen. From this starting point a breadth-first search 
was made through the graph to create all series consisting 
of an outer edge, connected to an inner edge, connected 
to another inner edge, and finally to another outer edge. 
Next this set of series was filtered to ensure that no edge 
appeared in the same paper as another edge. To promote 
a diverse dataset, it was further filtered to remove any 
series where either end of the first edge was already pre-
sent in a benchmark series as part of a first edge. If any 
series remain, a single one is chosen whose component 
molecules appear in the fewest number of papers, and 
this series is added to the benchmark. This procedure is 
repeated for each molecule in the dataset that is part of 
an outer edge, giving a complete benchmark dataset size 
of 3629 (at minimum, see next paragraph).

To assess statistical significance, 1000 repetitions of the 
benchmark dataset were generated by randomly shuffling 
all components of the dataset (i.e. the order of the mole-
cules, the set of neighbours) and repeating the procedure 
described above. On average each repetition contained 
3675 series, but as the minimum size was 3629, only 
the first 3629 series in each repetition were used for all 
analyses. To assess the degree of variation introduced by 
the repetitions, a pairwise comparison showed that suc-
cessive repetitions had only 33 (±5) series in common, a 
value that rises to 321 (±17) when considering first two 
molecules in common and 673 (±20) for first molecules 
in common.

Single‑assay benchmark
The single-assay benchmark was created from the subset 
of the dataset of similar structures that contained IC50 

and Ki data marked as binding assays. Within an assay, 
molecules marked as inactive were excluded as was 
the molecule (or molecules) having the lowest activity 
value. Also, any assay that did not contain 5 molecules 
with activities separated by at least 0.40 log units was 
discarded.

To create the first series in the benchmark, the first 
assay in the dataset was selected and an attempt was 
made to find a set of 5 molecules whose activities differ 
by at least 0.38 log units (this attempt involved iterating 
randomly over all possible selections of 5 molecules from 
the assay several thousand times). This procedure was 
repeated for each assay in the dataset that is in a differ-
ent paper from those series already added to the bench-
mark, giving a complete benchmark dataset size of 4563 
(at minimum).

To assess statistical significance, 1000 repetitions of the 
benchmark dataset were generated by randomly shuf-
fling the order of the assays and repeating the procedure 
described above. On average each repetition contained 
4573 series, but as the minimum size was 4563, only the 
first 4563 series in each repetition were used for all analy-
ses. To assess the degree of variation introduced by the 
repetitions, a pairwise comparison showed that succes-
sive repetitions had only 331 (±13) series in common, a 
value that rises to 1383 (±24) when considering first two 
molecules in common and 2576 (±26) for first molecules 
in common.

Evaluation of relative performance on the single‑ 
and multi‑assay benchmarks
Each fingerprint was used to rank the second and sub-
sequent members of each series by structural similarity 
with respect to the first member, the reference molecule. 
This ranking was compared to the order in the bench-
mark using the Spearman correlation. To evaluate the rel-
ative performance of two fingerprints according a single 
repetition of the benchmark, the following comparison 
statistic was used: the net difference between the number 
of series for which the correlation value for fingerprint A 
was larger than fingerprint B minus the number of series 
where it was smaller. Given the 1000 repetitions, a dis-
tribution of these net differences was obtained. For two 
fingerprints with similar performance, this distribution 
should be centred around zero, and in general the mean 
value of this distribution gives a measure of the compara-
tive performance. The maximum possible value of the net 
difference is the size of the dataset.

Statistical significance at a confidence level of 1  % 
was assessed using a two-sided T-test (the ttest_1sampl 
method of SciPy [32]) where the null hypothesis is 
that the mean of the distribution is zero. As there are 
378 pairwise comparisons we corrected for multiple 



Page 5 of 14O’Boyle and Sayle ﻿J Cheminform  (2016) 8:36 

comparisons using the Holm–Bonferroni correction [33]. 
For the single- and multi-assay benchmarks, only 4 and 
5 comparisons respectively were not found to be statisti-
cally significant.

In order to summarise the data to form Hasse dia-
grams, it was necessary to identify incomparable finger-
prints. For example, FCFP4 and AP are incomparable 
in the context of the multi-assay benchmark. Although 
the pairwise data shows that FCFP4 is better than AP, 
this is incompatible with pairwise data involving the 
HashTT fingerprint as AP is better than HashTT but the 
difference between HashTT and FCFP4 is not statisti-
cally significant. As a result, no edge is shown between 
FCFP4 and AP. For the multi-assay benchmark four fin-
gerprint pairs were identified as incomparable, while 
none were identified as incomparable on the single-assay 
benchmark.

Re‑analysis of the Riniker–Landrum benchmark
The Riniker and Landrum benchmarking platform [9] is 
a ligand-based virtual screen against 88 protein targets. 
It is the union of three distinct datasets: 50 targets from 
ChEMBL 14, 21 from the Directory of Useful Decoys [34] 
(DUD) and 17 from the Maximum Unbiased Validation 
(MUV) dataset [35]. For each protein target, at least 30 
actives were present. 50 repetitions of each screening 
experiment were carried out where 5 actives were ran-
domly selected as the query and 20 % of the decoys were 
held back while the remaining actives and decoys were 
ranked based on maximum similarity to the query mol-
ecules (MAX fusion). The evaluation methods used in 
the original study included the area under the ROC curve 
(AUC), and a variety of early recognition methods. We 
focus here on results for BEDROC(20) [36] as this is the 
early recognition method for which the results are listed 
in Table 1 of the original study.

The datasets and software used to produce the results 
were included with the paper and also deposited in a 
GitHub repository [24]. We reran the benchmark pro-
cedure using the code in the repository and version 
2015.09.2 of the RDKit cheminformatics toolkit. The 
original analysis of the benchmark results ranked the 
fingerprints for each repetition using a specific evalua-
tion method [for example, BEDROC(20)], took the mean 
of these ranks over the 50 repetitions and then the mean 
over all of the proteins. The statistical significance of the 
pairwise differences was assessed using a bootstrapping 
procedure that sampled with replacement the ranks from 
each repetition. Sheridan [37] has also advocated the use 
of mean ranks instead of mean scores, as the latter are 
highly influenced by those proteins with a large range of 
scores. However the use of the mean rank is itself prob-
lematic as the pairwise similarity of two methods can be 

altered (and even inverted) by adding additional methods 
to an evaluation.

We avoided these problems by measuring the relative 
performance of two fingerprints using the same method 
described above for the new benchmarks. Using the data 
from a single repetition of the Riniker–Landrum bench-
mark, the following comparison value was used for each 
pair of fingerprints A and B: the net difference between 
the number of protein targets for which the evaluation 
method for fingerprint A was better than fingerprint B 
minus the number of targets where it was worse. Given 
the 50 repetitions, a distribution of this net difference 
was obtained. For two fingerprints with similar perfor-
mance, this distribution should be centred around zero, 
and in general the mean value of this distribution gives a 
measure of the comparative performance. The maximum 
possible value of the net difference is the size of the data-
set, 88.

The remainder of the analysis is the same as that 
described above for the single-assay and multi-assay 
benchmarks. Of the 378 pairwise comparisons, 35 were 
not found to be statistically significant at the 1 % level. No 
fingerprint pairs were found to be incomparable. Com-
pared to the analysis in the original paper, this approach 
has greater statistical power; for the original analysis, 46 
of the 91 pairwise comparisons (of 14 fingerprints) were 
not statistically significant at the 5 % level. Qualitatively 
the results are largely in agreement, although a com-
parison with Table 1 in the original study does highlight 
some differences; for example, RDK5 performs worse 
in our analysis, and the order of LAvalon and Avalon is 
reversed.

Results and discussion
Identifying structurally similar molecules from ChEMBL 
assays
Both of the new benchmarks use co-appearance in the 
same ChEMBL assay as an indication that two molecules 
are structurally similar (according to the definition in 
the Introduction). However, the naïve assumption that 
all molecules in the same ChEMBL assay are structurally 
similar is of course not true. Molecules already known 
to modulate the activity (e.g. inhibitors or agonists) are 
sometimes included for comparison; known inactives may 
be present as internal controls; assays may include several 
different chemotypes or scaffolds; indeed, the molecules 
in an assay may bear no structural similarity beyond hit-
ting a particular target (e.g. the result of a HTS campaign). 
While it is tempting to use a similarity measure to filter 
out structures that are dissimilar to the majority of an 
assay, this must be avoided as it would bias the results.

Instead we have used a series of filters that indi-
rectly remove data that has a high probability of being 
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dissimilar (see “Methods” section). To begin with, the 
dataset is restricted to assays containing between 8 and 
25 molecules (inclusive). Then molecules are removed 
if they appear in more than four papers (promiscuous 
molecules), if they are present in Wikipedia or if they 
have an INN. The effect of each successive filter on the 
within-assay pairwise similarity is shown in Fig. 2. With 
each filter, the peak at a Tanimoto value of 0.1 is reduced, 
an indication that structures dissimilar to the majority 
of the assay have been removed. Although the effect of 
eliminating Wikipedia structures may be small compared 
to earlier filters, visual inspection of benchmark series 
containing Wikipedia structures indicated that in about 
half of the cases the Wikipedia structure was not struc-
turally similar to at least one of its immediate neighbours 
in the series. A similar inspection for the few remaining 
structures with INNs did not indicate that retaining them 
would cause any problem but it seemed a reasonable pre-
caution to also remove those.

Naturally the procedure described here also removes a 
large amount of acceptable data in the context of many 
assays but this is unavoidable. It also will not eliminate 
all dissimilar structures since it is only able to identify 
such structures indirectly. Despite this, the procedure 
described was quite successful as illustrated by the reduc-
tion in the size of the peak at 0.1 Tanimoto in Fig. 2, and 
this is supported by inspection of the series generated for 
each benchmark.

Ordering molecules by structural similarity relative to a 
reference
In order to test a fingerprint’s ability to order molecules 
by structural similarity, we created two distinct bench-
mark datasets of thousands of series of 5 molecules, each 
series containing a reference molecule and an ordered 
arrangement of 4 molecules.

The single-assay benchmark consists of 4563 series 
each containing five molecules from the same ChEMBL 

Table 1  Key to fingerprint abbreviations used

See “Methods” section for associated references

Abbreviation Fingerprint description Class

AP Atom pair Path-based

Avalon Developed for substructure screen-out when searching Substructure keys

ECFC0 Count vector form of ECFP0 Circular

ECFC2 Count vector form of ECFP2 Circular

ECFC4 Count vector form of ECFP4 Circular

ECFC6 Count vector form of ECFP6 Circular

ECFP0 Extended-connectivity fingerprint of diameter 0 Circular

ECFP2 Extended-connectivity fingerprint of diameter 2 Circular

ECFP4 Extended-connectivity fingerprint of diameter 4 Circular

ECFP6 Extended-connectivity fingerprint of diameter 6 Circular

FCFC2 Count vector form of FCFP2 Circular

FCFC4 Count vector form of FCFP4 Circular

FCFC6 Count vector form of FCFP6 Circular

FCFP2 Feature-class fingerprint of diameter 2 Circular

FCFP4 Feature-class fingerprint of diameter 4 Circular

FCFP6 Feature-class fingerprint of diameter 6 Circular

HashAP Bit vector form of AP Path-based

HashTT Bit vector form of TT Path-based

LAvalon 16384-bit form of Avalon Substructure keys

LECFP4 16384-bit form of ECFP4 Circular

LECFP6 16384-bit form of ECFP6 Circular

LFCFP4 16384-bit form of FCFP4 Circular

LFCFP6 16384-bit form of FCFP6 Circular

MACCS Molecular ACCess System structural keys Substructure keys

RDK5 Encodes paths of maximum length 5 Path-based

RDK6 Encodes paths of maximum length 6 Path-based

RDK7 Encodes paths of maximum length 7 Path-based

TT Topological torsion fingerprint Path-based
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assay where none of the five molecules is within 0.38 
activity units of another. The members of each series are 
ordered by their activity with respect to the most active 
(the reference molecule). Examples from three differ-
ent publications are shown in Fig. 3a [38–40]. The basis 
for the use of these data as a benchmark for structural 
similarity is our assumption that structural similarity 
decreases relative to the reference molecule as one moves 
across the series to lower activity. While this procedure 
will not work for an arbitrary set of molecules active 
against a particular target (due to the presence of dif-
ferent scaffolds, binding modes and other confounding 
effects), it works in this case due to the constraint of our 
definition of similarity.

The multi-assay benchmark consists of 4563 series con-
taining five molecules where the first two are from the 
same ChEMBL assay, the third comes from a different 
paper but co-occurs with the second, the fourth from a 
different paper but co-occurs with the third, and simi-
larly the fifth. Three examples are shown in Fig. 3b each 
of which is based on structures from four publications 
[41–52]. The basis for the use of these data as a bench-
mark for structural similarity is the assumption that 
structural similarity decreases relative to a reference mol-
ecule as one moves from one paper to another through 

co-occurring molecules, given the size of chemical space 
and the nature of a random walk.

The assumptions listed above will not always be true, 
but this is not a problem so long as any other effects ran-
domly order the molecules. Of course, such randomly-
ordered series will add to the noise and set an upper 
bound on performance.

Figures  4 and 5 shows the distributions of Tanimoto 
values for the LECFP6 fingerprints of the four molecules 
in the series relative to the reference molecule. In both 
cases there is a clear shift to lower similarity values on 
moving across the series, which supports our assump-
tion. This shift is much more marked for the multi-assay 
benchmark compared to the single-assay benchmark, 
which is expected given that the structures in the single-
assay benchmark are all from the same paper (and assay). 
As the structural differences in the multi-assay bench-
mark are greater, it should present an easier task for fin-
gerprints and so the performance is likely to be better.

Benchmarking fingerprint performance
Each fingerprint was assessed for its ability to reproduce 
the series order for each series in the datasets, 4563 series 
in the case of the single-assay benchmark and 3629 for 
the multi-assay benchmark. That is, can the similar-
ity measure correctly order four query molecules with 
respect to a reference molecule?

Figures 6 and 7 give an overview of the average perfor-
mance for a subset of the fingerprints. If we consider the 
multi-assay benchmark first (Fig. 7), one of the best per-
forming fingerprints (LECFP4) can reproduce or almost 
reproduce (off-by-one) the original series order in 2201 
of the 3629 cases (61  %). This compares to the baseline 
ECFP0 fingerprint which can do so in only 1498 of the 
cases (41 %). The single-assay benchmark presents a more 
challenging set of series to be ordered; one of the best per-
forming fingerprints (HashAP) only gets the answer close 
to correct for 1744 of the 4563 cases (38  %). The corre-
sponding value for the ECFP0 fingerprint is 942 (20 %).

While Figs.  6 and 7 gives an overview of the average 
performance of different fingerprints, a method with 
more statistical power was used to calculate the relative 
performance of each fingerprint. If one considers a single 
repetition from either of the benchmarks, there are sev-
eral thousand independent test cases. For each one, it is 
possible to rank the various fingerprints by how well they 
perform. Using these ranks, for each pair of fingerprints 
A and B one can calculate the net difference between the 
number of times A performed better than B minus the 
number of times it performed worse. The distributions of 
these net differences over 1000 repetitions give a mean 
net difference for each pair as well as the ability to test 

Fig. 2  Histogram showing the effect of successive filters on the 
pairwise similarity of structures in the same assay. Pairwise similarity 
was measured using the LECFP4 fingerprint for pairs of structures 
from each assay in the dataset and a histogram generated using a 
bin width of 0.05. The initial data (green) was for assays containing up 
to 25 structures. Successive filters were then applied to restrict the 
data to those assays of size 8 or greater, to remove promiscuous mol-
ecules, and to remove molecules found in Wikipedia or with INNs. For 
comparison, the pairwise similarity of randomly chosen molecules 
from the entire dataset is shown as the dashed line. Histograms were 
normalised to 100 % over all bins, except for the histogram for the 
random data which was scaled to 30 %
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statistical significance. A similar method was used to 
assess fingerprint performance for the Riniker–Landrum 
virtual screening benchmark, for which 50 repetitions 
were present.

 Figures 8, 9 and 10 show a subset of these distributions 
versus the HashTT fingerprint for each of the three bench-
marks. The mean values of the histograms partition the fin-
gerprints into sets that are better than HashTT, worse than 
HashTT, and those where there is no significant difference. 
HashTT was chosen here as an example because its average 
performance across all of the benchmarks illustrates this 
partitioning. These mean values of the net difference are the 
primary result of the benchmarks and the complete matri-
ces are included in the Additional file  1 as tab-separated 

files. The Additional file 2 includes 2D embeddings of the 
distance matrix created from the absolute values of the net 
differences; this gives an overview of the relative magnitude 
of the differences between fingerprints.  

Which fingerprint best corresponds to the literature‑based 
measures of structural similarity?
As a measure of the relative performance of two finger-
prints A and B on a benchmark, we used the net differ-
ence between the number of times A performed better 
than B minus the number of times it performed worse. 
Combined with multiple repetitions, this enabled us to 
make statistically significant comparisons between the 
majority of the fingerprints tested.

a

b

Fig. 3  Examples of series from a the single-assay benchmark, b the multi-assay benchmark
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Figure 11a and b summarise the relative performance 
of the fingerprints based on the complete set of net dif-
ferences for both the single- and multi-assay benchmark. 
Figure  11c shows the corresponding information for 
Riniker–Landrum benchmark. It should be noted first of 
all that the layout of this graph representation (strictly 
speaking, a Hasse diagram) does not make clear the mag-
nitude of the distances between fingerprints. For exam-
ple, while HashAP is the best performing fingerprint in 

the single-assay benchmark, its distance to TT (six posi-
tions below it in the graph) is 149 which corresponds to 
just 3.3 % of the dataset. On the other hand, given that 
a certain proportion of the dataset will contain series 
where the structures are incorrectly ordered (for exam-
ple, consider that ECFP0 has on average a better correla-
tion with the series order than LECFP4 on ~900 of the 
3629 series in the multi-assay benchmark), a better way 
to calibrate this value may be to consider it as 16 % of the 
distance between the best and worst fingerprints.

Looking at Fig.  11 it is clear that the overall perfor-
mance of the fingerprints is only moderately similar 
between the single- and multi-assay benchmarks, but 
that there is quite good agreement between the results 
from the virtual screen and the multi-assay benchmark. 
These similarities can be quantified by calculating a cor-
relation value between the net difference matrices based 
on the concordance of pairs, that is, whether A and B are 
relatively ordered the same in both matrices. The corre-
lation value (Kendall tau) between the multi-assay and 
virtual screen benchmarks is 0.68 (0.76 if only using sta-
tistically significant values). The corresponding value for 
the single-assay benchmark versus the multi-assay and 
virtual screen are 0.39 and 0.35 respectively (0.40 and 
0.39 for significant values).

Considering first the results from the multi-assay and 
virtual screening benchmarks, the LECFP4 and LECFP6 
fingerprints are consistently among the best tested. In 

Fig. 4  Histogram showing the structural similarity of structures in the 
single-assay benchmark with respect to their corresponding refer-
ence molecules. Similarity was measured with the LECFP6 fingerprint 
and a histogram created using bins of width 0.05. Histograms were 
normalised to 100 % over all bins. The data used here is taken from all 
1000 repetitions of the benchmark

Fig. 5  Histogram showing the structural similarity of structures in the 
multi-assay benchmark with respect to their corresponding reference 
molecules. Similarity was measured with the LECFP6 fingerprint 
and a histogram created using bins of width 0.05. Histograms were 
normalised to 100 % over all bins. The data used here is taken from all 
1000 repetitions of the benchmark

Fig. 6  Histogram of the performance for a subset of the fingerprints 
on the single-assay benchmark. The graph depicts the number of 
times a fingerprint had a particular correlation with the benchmark 
series order. The order of fingerprints in the legend matches the 
counts at correlation 1.0. The colours used correspond to those used 
by Riniker and Landrum [9] in their Fig. 5. The correlation values used 
in the graph cover all the possible rank correlations between two 
ordered series of length 4; intermediate values (due to ties) were 
rounded to the next lowest value for positive values and the next 
largest value for negative values
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fact, among the top fingerprints only the topological tor-
sion (TT) fingerprint is not an extended-connectivity or 
feature-class fingerprint. At the other end of the scale, 
the ECFP0, RDK7, ECFC0 and MACCS fingerprints are 
the poorest performers.

The single-assay benchmark requires the fingerprints 
to correctly order very similar structures, many of which 
are matched pairs or contain minor modifications to 

scaffolds. Compared to the multi-assay benchmark, the 
most notable difference in the results depicted in Fig. 11a 
is that the atom pair fingerprints, AP and HashAP, move 

Fig. 7  Histogram of the performance for a subset of the fingerprints 
on the multi-assay benchmark. See caption for Fig. 6 for more details

Fig. 8  Histograms showing the relative performance of a subset of 
the fingerprints relative to the HashTT fingerprint in the single-assay 
benchmark. Relative performance was measured for each of the 1000 
repetitions by counting the number of times a particular fingerprint 
had higher correlation with the benchmark series compared to the 
HashTT fingerprint and subtracting the number of times it had lower 
correlation. The difference between the performance of the LECFP6 
and HashTT fingerprints was not found to be statistically significant. 
All others fingerprints shown were either better (those to the right) or 
worse (those to the left) than HashTT. A bin width of 10 was used

Fig. 9  Histograms showing the relative performance of a subset of 
the fingerprints relative to the HashTT fingerprint in the multi-assay 
benchmark. Relative performance was measured for each of the 1000 
repetitions by counting the number of times a particular fingerprint 
had higher correlation with the benchmark series compared to the 
HashTT fingerprint and subtracting the number of times it had lower 
correlation. The difference between the performance of the FCFP4 
and HashTT fingerprints was not found to be statistically significant. 
All others fingerprints shown were either better (those to the right) or 
worse (those to the left) than HashTT. A bin width of 10 was used

Fig. 10  Histograms showing the relative performance of a subset 
of the fingerprints relative to the HashTT fingerprint in the Riniker–
Landrum benchmark. Relative performance was measured for each 
of the 50 repetitions by counting the number of times a particular 
fingerprint had a higher BEDROC(20) value compared to the HashTT 
fingerprint and subtracting the number of times it had a lower value. 
The difference between the performance of the ECFC4 and HashTT 
fingerprints was not found to be statistically significant. All others 
fingerprints shown were either better (those to the right) or worse 
(those to the left) than HashTT. A bin width of 5 was used
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a b

c

Fig. 11  Directed graphs summarising the relative performance on a the single-assay benchmark, b the multi-assay benchmark and c the Riniker–
Landrum benchmark. All fingerprints higher in the graph are better than those below if a path between them exists. The numbers indicate the net 
difference (number of times better minus number of times worse) for neighbouring fingerprints. Note that the scales are different as the upper 
values are bounded by the dataset size: 3629 for a, 4563 for b, and 88 for c. Note that the net differences may not obey the triangle inequality. To 
find out the net difference for a non-neighbouring pair, see the tables in the Additional file 1
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from being average and poor (respectively) to being the 
best performers. The atom pair fingerprint [27] encodes 
all pairs of atoms along with the shortest distance 
between them. Note that, unlike a Daylight-type finger-
print such as RDK5, the path itself is not encoded and 
the environment of an atom is only encoded to the extent 
of counting the number of heavy atoms attached. This 
means that structural modifications that only change 
a few atoms (e.g. changing a carbon to a nitrogen, an 
R-group replacement, or moving an R-group around a 
ring) will only have a small effect on the value.

Another notable difference between the benchmarks 
is that the count vector forms of the four circular fin-
gerprints with diameter 4 and 6 improved the results for 
the single-assay benchmark, but were uniformly worse 
for the multi-assay and Riniker–Landrum benchmarks 
(except for a single instance where the value not was 
significantly different). The key difference between the 
xCFC (count vector) and xCFP (bit vector) fingerprints 
is that where the same structural feature is observed 
more than once the count vectors record the number of 
observations while the bit vector forms just record its 
presence. As the count vector is more information-rich, 
one would expect the corresponding similarity measure-
ments to always perform better. Looking at the results for 
the multi-assay benchmark, while the results for LECFP6 
are not (statistically) significantly different than those for 
ECFC6, the net difference for LECFP4 versus ECFC4 is 
23, that for LFCFP4/FCFC4 is 71 and that for LFCFP6/
LFCFC6 is also 71. These differences are unlikely to be 
due to collisions as the count vector as implemented in 
RDKit is a sparse vector of length 4294967296 bits. Hav-
ing inspected a number of series where LECFP4 outper-
forms ECFC4, we are still unsure why this difference is 
observed. It must be that penalising the absence of a sec-
ond (or third, etc.) feature to the same extent as penal-
ising the complete absence of a feature yields a worse 
similarity measure. In other words, that there is a large 
gain in similarity in having a bit (or equivalently a count 
of 1) in common between two fingerprints, but that 
increasing the count in common to 2 does not increase 
the similarity to the same extent.

This still leaves the question of why the performance 
of the count vector forms is better on the single-assay 
benchmark. The explanation may be a molecular weight 
effect. If we include the absolute difference in the molec-
ular weight as a method of ordering the benchmark 
series, in the multi-assay benchmark it had a poorer net 
difference than ECFP0 on 845 of the repetitions. In con-
trast, it slightly outperforms ECFP0 in the single-assay 
benchmark (by a net difference of 33). As the count vec-
tor forms of the circular fingerprints are more sensi-
tive than the bit-vector forms to similarity in molecular 

weight, this may explain their improved performance in 
the single-assay benchmark.

It is to be expected that a shorter fingerprint length will 
introduce collisions thus adding noise to the calculation 
of similarity with a consequent loss of performance. This 
was observed by Sastry et al. [18] for Daylight fingerprints 
with 1024 bits. To investigate this, Riniker and Landrum 
included five pairs of fingerprints as both the default 
length (1024 bits) and a long form (16,384 bits). In their 
analysis, no considerable improvement in performance 
was observed but when re-analysed we find that in each 
case the long form performed better. This was also the case 
for the multi-assay benchmark; the net difference on the 
multi-assay benchmark for the LAvalon fingerprint versus 
the Avalon fingerprint was 132, while that for LECFP6/
ECFP6 was 172, LECFP4/ECFP4 was 99, LFCFP6/FCFP6 
was 96 and LFCFP4/FCFP4 was 57. As a larger number of 
bit collisions would be observed for the xCFP6 fingerprints 
versus xCFP4, the larger performance improvements 
found for the ECFP6 and FCFP6 fingerprints are expected. 
In contrast, the single-assay benchmark did not show a 
clear trend; the Avalon and FCFP6 fingerprints were better 
than their long forms by 28 and 9 respectively, while the 
LECFP6 and LECFP4 fingerprints were better than their 
short forms by 21 and 14 respectively (the LFCFP4/FCFP4 
difference was not statistically significant).

Conclusions
To our knowledge, the concepts behind both of the 
new benchmarks have not previously been explored. 
They present a number of advantages over previous 
benchmarks:

1.	 The new benchmarks achieve a degree of separation 
of different fingerprints that is an order of magnitude 
greater than a virtual screening benchmark. This 
is partly due to their size; each of several thousand 
series has a vote on which of two fingerprints is bet-
ter, compared to fewer than 100 for a large-scale vir-
tual screen.

2.	 The new benchmarks are not prone to the problems 
associated with using the mean score or the mean 
rank to evaluate methods, problems which have 
reduced the statistical power of previous studies. 
Strictly speaking these problems can be avoided even 
for virtual screens, as we show in our re-analysis of 
the Riniker–Landrum study, but they are endemic in 
the field. Instead of taking the means and then com-
paring them, our approach is to do the pairwise com-
parisons first for each target (or series) and then col-
late the results.

3.	 The new benchmarks are intended to measure ability 
to rank structures by similarity, whereas a benchmark 
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for virtual screening only measures this indirectly. 
For example, the use of multiple query structures in a 
virtual screen (as in the Riniker and Landrum study) 
is considered good practice as it improves recall [53, 
54]. However, this is a confounding factor when con-
sidering the ability to measure structural similarity. 
Good performance for one fingerprint might be due 
to structural similarity to one of the query structures, 
but for a different fingerprint good performance 
might be due to similarity to another.

4.	 The issue of which metric to use to evaluate a virtual 
screen has made it difficult to compare and indeed 
assess studies, especially as the majority have not 
made their results available as part of the publication 
or provided a way to reproduce them. A particular 
problem is the continued use of metrics related to 
the average rank of the actives and that, as a result, 
cannot even distinguish between trivial examples of 
methods with good versus poor performance [36]. 
For the single- and multi-assay benchmarks, the eval-
uation metric is the rank correlation.

5.	 Compared to a virtual screen, which assumes that 
actives are more similar to each other than to inac-
tives, the new benchmarks are based upon different 
assumptions: namely, that within an assay molecules 
with similar activity tend to have similar structures, 
and that structural similarity decreases as one moves 
from one paper to another through molecules in 
common between both. Furthermore, the degree of 
similarity varies in each case. Given these differences, 
one can compare the results of the new benchmarks 
with a virtual screen to determine to what extent 
structural similarity is the same in different contexts.

While it is easy to assert that fingerprint performance 
depends on the particular context, it is nonetheless the 
case that certain fingerprints are more likely than others 
to perform well in general.

Here we provide conclusive evidence that extended-
connectivity fingerprints of diameter 4 and 6 are among 
the best performing fingerprints whether separating 
actives from decoys in a virtual screen or ranking diverse 
structures by similarity. The topological torsion finger-
print is also found to perform well at these tasks. For 
the specific case of ranking very similar structures (for 
example, close analogues), the atom pair fingerprint out-
performs the others tested, with the count versions of the 
extended-connectivity fingerprints also performing well. 
Fingerprints to avoid when measuring similarity include 
Daylight-type path-based fingerprints and MACCS keys. 
It also appears that using fingerprints longer than 1024 
bits is worthwhile due to the improved performance. 
Finally, given the sensitivity of the multi-assay benchmark 

and the degree of agreement with the BEDROC(20) 
results for the virtual screen, we believe that the multi-
assay benchmark will prove useful for the development of 
improved fingerprints for virtual screening.
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