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Abstract 

With the move toward global, Internet enabled science there is an inherent need to capture, store, aggregate and 
search scientific data across a large corpus of heterogeneous data silos. As a result, standards development is needed 
to create an infrastructure capable of representing the diverse nature of scientific data. This paper describes a funda-
mental data model for scientific data that can be applied to data currently stored in any format, and an associated 
ontology that affords semantic representation of the structure of scientific data (and its metadata), upon which disci-
pline specific semantics can be applied. Application of this data model to experimental and computational chemistry 
data are presented, implemented using JavaScript Object Notation for Linked Data. Full examples are available at the 
project website (Chalk in SciData: a scientific data model. http://stuchalk.github.io/scidata/, 2016).
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Background
For almost 40  years, scientists have been storing scien-
tific data on computers. With the advent of the Internet, 
research data could be shared between scientists, first via 
email and later using web pages, FTP sites, and online 
databases. With the advancement of Internet technolo-
gies and online and local storage capabilities, the options 
for collecting and stored scientific information have 
become unlimited.

Yet, with all these advancements science faces an 
increasingly important issue of interoperability. Data are 
commonly stored in different formats, organized in dif-
ferent ways, and available via different tools/services 
severely impacting curation [2]. In addition, data is often 
without context (no metadata describing it), and if there 
is metadata it is minimal and often not based on stand-
ards. Though the Internet has promoted the creation of 
open standards in many areas, scientific data has, in a 
sense, been left behind because of its inherent complex-
ity. The strange part about this scenario is that scientific 
data itself is not the biggest problem. The problem is the 
contextualization of the scientific data—the metadata 

that describes system that it applies to, the way it was 
investigated, the scientists that determined it, and the 
quality of the measurements.

So, what is scientific data and where is the metadata? 
Peter Murray-Rust grappled with these questions in 
2010 and concluded that it is “factual data that shows up 
in research papers” [3]. When writing scientific articles, 
researchers add most (in most cases not all) of the valu-
able metadata in the description of the research they have 
performed. The motivation of course is open sharing of 
knowledge for the advancement of science, with appro-
priate attribution and provenance of research work. As 
we move toward the fourth paradigm [4], where large 
aggregations of data are the key to discovery, it is impera-
tive that the context of the data are articulated completely 
(or as completely as possible), not only to identify it’s ori-
gin and authenticity, but more importantly to allow the 
data to be located correctly on the “scientific data map”.

To address these issue, this paper describes a generic 
scientific data model (SDM)/framework for scientific 
data derived from (1) the common structure of scientific 
articles, (2) the needs of electronic notebooks to cap-
ture scientific research data and metadata, and (3) the 
clear need to organize scientific data and its contextual 
descriptors (metadata). The SDM is intended to be data 
format/software agnostic and extremely flexible, so that 
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it can be implemented as the scientific research dictates. 
While the SDM is abstract in nature, it defines a concrete 
framework that can be easily implemented in any data-
base and does not constrain the data and metadata that 
can be stored. It therefore serves as a backbone upon 
which data and its associated metadata can be ‘attached’.

In addition, this paper describes an ontology that 
defines the terms in the SDM, which can be used to 
semantically annotate the structure of the data reported. 
In this way, scientific data can be integrated together by 
storage in Resource Description Framework (RDF) [5] 
triple stores and searched using SPARQL Protocol and 
RDF Query Language (SPARQL) queries [6].

The use of the ontology in the generation of RDF is 
demonstrated in examples of scientific data saved in 
JavaScript Object Notation (JSON) for Linked Data 
(JSON-LD) [7] format using the framework described 
by the SDM. From these examples it is shown how use-
ful a hybrid structured (relational)/graph (unstructured) 
approach is to the representation of scientific data.

JSON-LD is a recent solution to allow transfer of any 
type of data via the web’s architecture—Representational 
State Transfer (REST) [8]—using a simple text-based for-
mat—JSON. [9] JSON-LD allows data to be transmitted 
with meaning, that is, the “@context” section of a JSON-
LD document is used to provide aliases to the names of 
data reported and link them to ontological definitions 
using a Uniform Resource Identifier (URI)—often a Uni-
form Resource Locator (URL). In addition, the structure/
data of the JSON-LD file can be automatically be seri-
alized to Resource Description Format (RDF) using a 
JSON-LD processor, e.g. the JSON-LD Playground [10]. 
This capability makes JSON-LD files not only useful as 
a data format but also a compact representation of the 
meaning of the data.

Methods
Aim, design and setting of the study
The aim of this work was to develop a serialization of sci-
entific data and its contextual metadata. The design was 
encoded using the JSON-LD specification [7] because it is 
both a human readable and editable format and can easily 
be converted to RDF [5] triples for ingestion into a triple 
store and subsequent SPARQL searching [6]. The intent was 
that the data model, developed to afford the serialization, 
would be able to structure any scientific data (see examples).

Description of materials
Data were taken from different data sources and encoded 
in the proposed serialization. Items 5, 6, and 7 were cre-
ated using XSLT files.

1.	 laboratory notebook data
2.	 research article data
3.	 spectral data (NMR)
4.	 computational chemistry data
5.	 PubChem download as XML
6.	 Dortmund Data Bank webpage as HTML
7.	 Crystallographic Information Framework (CIF) file 

as text

Description of all processes and methodologies employed
In this work different pieces of scientific data were selected 
and an analysis performed of the required metadata that 
was necessary to completely describe the context of how 
the data were obtained. After looking at the data and its 
context, reading a number of research articles on what 
scientific data is, and reviewing journal guidelines for sub-
mission of research, a preliminary generic structure of 
scientific data and metadata was developed. This was itera-
tively improved by encoding the data of higher and higher 
complexity into the framework and adding/deleting/adjust-
ing as necessary to make the model fit the needs of the data.

Statistical analysis
Statistical analyses were not performed.

Results and discussion
Considerations for a scientific data model
What is scientific data?
In order to appreciate what scientific data is we took a 
step back and looked at the scientific process to abstract 
the important aspects that underpin the framework of 
what scientists do and how they do it. When we teach 
students to think and act like scientists we start with the 
general scientific method [11]:

• • Define a research question What is the scope of the 
work? What area of science is the investigation in? 
What phenomena are we investigating?

• • Formulate a hypothesis What parameters/conditions 
do we control or monitor in order to evaluate the 
effect on our system?
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• • Design experiments What instrumentation/equip-
ment do we use? What are the settings and/or condi-
tions? What procedures are used?

• • Make observations What are the values of the con-
trolled parameters, experimental variables, measured 
data, and/or observations?

• • Generate results How is data aggregated? What cal-
culations are used? What statistical analysis is done?

• • Make conclusions/decisions What are the outcomes? 
Is the data good quality? Do they help answer the 
question(s) asked? How does the data influence/
impact subsequent experiments?

The process above defines the types of information sci-
entists collect as they perform science and once a project 
is complete they aggregate all of the important details 
(data, metadata, and results) from the process and syn-
thesize one or more research papers to inform the world 
of their work. Thus, scientific papers can be considered 
a pseudo data model for science. Yet, this format has 
significant flaws as, in general, it is not typically setup 
uniformly, often has only a subset of all the metadata of 
the research process, and is influenced by the biases of 
authors and the constraints of publication guidelines.

How is scientific data structured?
Scientists have grappled with structuring scientific data 
since its inception. Communication of scientific informa-
tion in easy to understand formats is extremely impor-
tant for comprehension and hypothesis development, 
especially as the size and complexity of data grows. Its 
representation is also highly dependent on the research 
area both in terms of size/complexity of captured data 
and common practices of the discipline.

In chemistry the best example of data representation is 
the periodic table [12], the fundamental organization of 
data about elemental properties, structure and reactivity, 
and it is impossible to be chemist without appreciating 
the depth of knowledge it represents. The same is true in 
biology about the classification of species [13, 14], or in 
physics the data model underlying the grand unification 
of forces [15].

Data representation/standardization in chemistry has 
since evolved primarily in two areas: Chemical structure 
representation and analytical instrument data capture 
[16].

Chemical structure representation
Communication of chemical structure has been an area 
of significant development since John Dalton introduced 
the idea that matter was composed of atoms in 1808, 
and developed circular symbols to represent known 
atoms [17]. It wasn’t long before Berzelius wrote the first 
text based chemical formula, H2SO4, showing the rela-
tive number of atoms of each element. Since these early 
steps chemists have found need to create representations 
of molecular structure for many different applications. 
In the  Twentieth century this has brought us text string 
notations such as Wiswesser Line Notation (WLN) [18], 
simplified molecular-input line-entry system (SMILES) 
[19], and most recently the International Chemical Iden-
tifier (InChI) [20] in addition to the classical condensed 
molecular formula. Both SMILES and InChI are elegant 
solutions to encoding structural information in text where 
the string to structure conversion (and vice versa) can be 
done accurately by computer for small molecules. Solu-
tions for large molecules, crystals and polymers are still 
needed, as are definitive representation of stereocenters.

Chemical structure representation on computers, using 
standard file formats, has been a challenge many have 
attempted to solve. Currently, there are over 40 differ-
ent file formats (see [21]) for 2D, 3D, and reaction repre-
sentation. Of these, the.mol file (MOL) V2000 [22] is the 
most widely available even though the V3000 format has 
been out for many years. The MOL file, like many others 
contains a connection table that defines the positions of, 
and bonds between, the atoms (Fig. 1).

In addition to MOL files, the Chemical Markup Lan-
guage (CML) [23], an Extensible Markup Language 
(XML) [24] format, is a more recent development allows 
the content and structure of the file (through use of an 
XML schema) to be validated. This is an important fea-
ture for reliable storage and transmission of chemi-
cal structural information and provides a mechanism, 
through digital signatures, to ensure integrity of the files. 
Figure  2 shows the equivalent, valid CML file for the 
MOL file in Fig. 1. While the CML is larger (1931 vs. 721 
bytes) it is easier to read by humans (and computers) and 
contains information about the hydrogen atoms where 
the MOL file does not.

Finally, the exemplar chemical structure representa-
tion standard for data reporting is the Crystallographic 
Information Framework (CIF) developed in 1991 
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Fig. 1  Example MOL file format for benzene

Fig. 2  Example CML file format for benzene
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[25–27] as an implementation of the Self-defining Text 
Archive and Retrieval (STAR) format [28]. The CIF/
STAR format uses a similar approach to JCAMP-DX 
(see below) in that a number of text strings are defined 
to identify specific metadata/data items. The use of well-
defined labels is not only more extensive in CIF but the 
format also includes the option to create pseudo tables 
of any size using the loop_ instruction, whereas JCAMP 
is limited to two columns (XY data or peak tables). The 
format has evolved significantly from its inception due 
to community input and support and is now integrated 
into the publishing of crystallographic data in journal 
articles through the Cambridge Crystallographic Data 
Centre (CCDC). Figure 3 shows an example CIF file for 
NaCl.

Analytical instrument data capture
Since the introduction of microcomputers in the early 
1970’s, chemists have used a number of formats to 
deal with the large amounts of data produce by sci-
entific instruments. The significant initial limitation, 
that of available storage space, resulted in two differ-
ent approaches (1) the use of a ASCII text file format 
(JCAMP-DX) [29] with options for text based compres-
sion of data and (2) binary file format (netCDF) [30] 
where the file structure is inherently more space efficient. 
Both the Analytical Data Interchange (ANDI) format [31, 
32] (built using netCDF) and JCAMP-DX are still in use 
today with the JCAMP-DX specification more prevalent 
because of its text-based format.

The Joint Committee on Atomic and Molecular Physi-
cal Data (JCAMP) under the International Union of 
Pure and Applied Chemistry (IUPAC) has published a 
number of versions of the data exchange (DX) stand-
ard for near-infrared, infrared, and ultraviolet–visible 
spectrophotometry, mass spectrometry, and nuclear 
magnetic resonance. JCAMP-DX is a file specification 
consisting of a number of LABELLED-DATA-RECORDs 
or LDRs. These are defined to allow reporting of spec-
tral metadata and raw/processed instrument data. Fig-
ure 4 shows an example mass spectrum in JCAMP-DX 
format.

Although the JCAMP-DX file format is widely used 
for export and sharing of spectral data, the specification 
has not been updated for over 10  years and as a result 
has limitations in terms general metadata support (static 
set of LDRs), technique coverage, and is prone to errors/
alteration for unintended uses—which breaks compat-
ibility with readers. As a result, an effort was started in 
2001 to develop an XML format to replace the suite of 
JCAMP-DX specifications. The Analytical Information 
Markup Language (AnIML) [33] is an effort to ‘develop 
a data standard that can be used to store data from any 
analytical instrument’. This lofty goal has led to a long 
development process that will be completed in 2016, and 
result in a formal standard through the American Society 
for Testing and Materials (ASTM).

AnIML defines a core XML schema for basic elements 
that will contain data and then uses an additional meta-
data dictionary, and AnIML Technique Definition Doc-
ument (ATDD) to prescribe the content of an AnIML 
file for a particular instrumental technique [33]. This 
approach makes the format flexible so that it can be used 
to represent data of all types, from a single datapoint, to 
a complex array of three-dimensional data. In addition, 
information about samples, sample location (relative to 
introduction into an instrument), analytes and instru-
mental parameters are stored with the raw instrument 
data. Figure 5 shows an example AnIML file.

How is scientific data stored?
In addition to knowing what scientific data is and how 
it is represented, it is important to consider how it is 
stored (and hopefully annotated). Outside of scientific 
articles, scientific data is published in many databases 
where the data can be compared with other like data in 
order to show trends/patterns and afford a higher-level 
of knowledge mining. Commonly, these are implemented 
using Structured Query Language (SQL) based relational 
databases such as MySQL [34], MS SQL Server [35], or 
Oracle [36]. These software store data in tables and link 
them together via fields that are unique keys. SQL based 
software is very good for well-structured information 
that can be represented in a tree format (rigid schema). 
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Fig. 3  Example CIF file for NaCl
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However, large sets of research data do not fit rigid data 
models, as by its very nature scientific data is high vari-
able in structure.

Advances in the area of big data have attempted to 
address the non-uniformity in aggregate datasets by 
using different data models. Recently, there has been 

a major shift toward graph databases in support of big 
data applications across a variety of disciplines. Stor-
ing and searching large, often heterogeneous, datasets 
in relational databases creates problems with speed and 
scale up [37]. As a result, many companies with large 
amounts of data have turned to graph databases (one of 

Fig. 4  JCAMP-DX format mass spectrum file for 2 chlorophenol
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many NoSQL type databases where ‘NoSQL’ stands for 
‘Not only SQL’) where data is stored as RDF subject-
object-predicate ‘triples’. In comparison to relational 

databases, graph databases are considered schema-less 
where the organization of the data is more natural and 
not defined by a rigid data model. Essentially, any set 

Fig. 5  Example AnIML file—a single reading of absorbance
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of RDF subject-predicate-object triples can be thought 
of as a three-column table in a relational database. 
Software used to store RDF data is called triple stores 
[38]—or quad stores [39] if an additional column for 
a named graph identifier is added. Data in these data-
bases can be searched using the World Wide Web con-
sortium (W3C) defined SPARQL query language [6].

In chemistry there are many websites that show the 
power of using a database to store large amounts chemi-
cal data made available for free or via paid access. Increas-
ingly these sites are being used for basic research and 
industrial applications as they provide a way to; identify 
property trends; search for the existence of compounds; 
show property-structure relationships; and create data-
sets to build system models. Some highlights are:

• • PubChem [40]—chemical, substance, and assay data 
available with over 91 million compounds. Has user 
API to downloading data and RDF querying.

• • ChemSpider [41]—chemicals, instrument data, and 
property data for over 56 million compounds. Links 
to suppliers, literature articles, patents. Has limited 
API and RDF/XML download

• • Dortmund Data Bank [42]—curated property data for 
over 53,000 compounds. Limited set can be searched 
for free.

• • Cambridge Crystallographic Data Centre [43]—over 
833,000 crystal structures (CIF files). Limited set can 
be searched for free.

What is the best way to communicate context?
Given that the global aggregation of research data is the 
goal, an important component that is needed relative to 
any type of framework is a formal definition of the mean-
ing of the data and metadata (contextual data). As men-
tioned above, current scientific practices are lacking in 
the generation/reporting of contextual data as research-
ers are only considering their audience to be human 
(where meaning is either implicit or can be inferred). If 
data/metadata is migrated to computers systems, some 

mechanism to articulate the meaning of the data and 
metadata is required as storing text in a database is just 
that—text—to a computer. Through the development of 
the semantic web this can be achieved through the use 
of an ontology, or a suite of ontologies. Ontologies are 
the ‘formal explicit description of concepts in a domain 
of discourse’ [44], or an agreed standard for describing 
the concepts within a field of study. In the recent move 
toward the semantic web, the importance of ontologies 
and their unified representation cannot be understated. 
In 2004 (and updated in 2009) the W3C released the Web 
Ontology Language (OWL) [45] as a standard way to rep-
resent ontologies in RDF.

How best to save, organize, archive, and share data?
Even with all the developments mentioned above there 
are still challenges that have not been solved. In a nut-
shell, the problem is that the solutions currently avail-
able have been built in isolation (by necessity limiting 
the scope makes projects more tractable), have little/no 
machine actionable semantic meaning, are too rigid, are 
not easy to extend (without breaking existing systems), 
and are tied heavily to their implementation. As a result, 
although data is available from many sources it is difficult 
and time consuming to integrate that data. It is also diffi-
cult to search across this heterogeneous pool of informa-
tion as everyone identifies things differently—there is no 
broad use of agreed ontological definitions of terms.

A solution to these problem requires abstracting the 
scenario to a higher level where the structure of the data 
is normalized in the broadest sense such that any data/
metadata can be placed in that structure. This is the 
essence of the SDM. It does not try to define the data/
metadata needed to accurately record and contextualize 
the scientific data, rather it defines its metaframework, 
and via an ontology its meaning.

The task of defining the meaning of data and metadata 
that is placed in any metaframework is the purview of the 
discipline, where standard ontologies should be devel-
oped/refined and implemented. Although this might 



Page 10 of 24Chalk ﻿J Cheminform  (2016) 8:54 

Fig. 6  STRENDA Data Categories [52] mapped into the SDM structure
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seem a significant challenge, previous work to standard-
ize the reporting of chemical data can be repurposed to 
fit this need. For instance, metadata on safety would logi-
cally come the new Globally Harmonizes System (GHS) 
of Classification and Labeling [46], metadata for func-
tional groups of organic compounds would come from 
the IUPAC Blue book on organic compound nomencla-
ture [47], or for inorganic naming from the IUPAC Red 
Book [48]. In the biosciences existing work on ‘minimal 
information standards’ such as the Minimal Information 
About a Microarray Experiment (MIAME) [49], Mini-
mal Information Required for a Glycomics Experiment 
(MIRAGE) [50], and Standards for Reporting Enzymol-
ogy Data (STRENDA) [51] could be reused in the SDM 
without much alteration. Figure  6 shows an example of 
how categories of STRENDA data/metadata could logi-
cally be mapped to the SDM.

In order to reinvent how science saves, searches, and 
re-uses data the implemented solution must have a low 
barrier to adoption by scientists. While the individual 
researcher may be excited to use a globally search-
able dataset(s), they do not want to be burdened with 
IT related issues in order to access or implement it. 
Although the SDM is designed to be format/implementa-
tion agnostic, the JSON-LD standard is perfect for rep-
resentation of the data model as it is a simple text-based 
encoding, that can handle the types of data needed for 
the model, and is built to translate to RDF. Examples 
below that use the SDM are formatted in JSON-LD.

The goal of science is to share research data such that 
the community can search and use it to advance sci-
ence. Based on the discussion above, initially one might 
think that a system for this should be based on a graph 
database because of its inherent flexibility (anything can 
be linked to anything) as opposed to relational databases 
(where data is in tables and linked via unique keys). How-
ever, implementing a graph database without any kind of 
structure would be equivalent to trying to search the cur-
rent heterogeneous landscape of research data—impos-
sible because nothing is standardized (for example, think 

about how many ways a scientist could indicate that they 
used spectrophotometry in their work). What is needed 
is a hybrid model where a framework for the data and 
metadata from scientific experiments is used to provide 
organization (separate from the scientific data/metadata), 
yet allows flexibility in the types of data put on the frame-
work via creation of discipline specific descriptions and/
or ontologies. This is the premise behind the development 
of the SDM.

Description of the SciData scientific data model
Detailed below is an initial attempt to create a frame-
work upon which to organize scientific data and its 
metadata. It is by no means a definitive or complete 
framework and serves only as a starting point to dem-
onstrate the potential of this idea, and act as a cata-
lyst to encourage other scientists to contribute to its 
development. None of the elements described below 
are required, other elements can be added (as long as 
they have a semantic definition and logically fit the 
scope), and all elements are open to revision (readers 
are encouraged to provide feedback). Readers are also 
encouraged to visit the project website [1] for the cur-
rent version of the data model.

Figure  7 shows a JSON-LD file that outlines the data 
model framework. The root level of the structure (eve-
rything other than ‘scidata’) contains general metadata 
to describe the “data packet”, i.e. attribution and prov-
enance. The ‘toc’ attribute is use to articulate the kinds 
of methodology ‘aspects’, system ‘facets’, and ‘dataset’ ele-
ments the report contains. This is an important feature 
relative to the federated search of data as mechanisms 
to limit the size/scope of searches will be important if a 
global search of such data is to be realized.

The generic container for the data and metadata in the 
model is ‘scidata’. This contains metadata descriptors for 
the types and formats of data, as well a list of the proper-
ties for the data that is being reported. What follows are 
the three main sections that describe the research under-
taken: ‘methodology’, ‘system’, and ‘dataset’.

(See figure on previous page.) 
Fig. 7  The top-level structure of the SciData Data Model (information in [] indicates the number of lines of hidden code, “dc” stands for “Dublin 
Core”)
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Fig. 8  The dataset structure of the SciData Data Model
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Methodology
 Similar to the ‘Experimental’ section in a research paper 
the ‘methodology’ section contains metadata about 
how laboratory experiments, computer calculations, or 
theoretical analysis was done to arrive at the data in the 
packet. The ‘evaluation’ term indicates which of these 
approaches was used to obtain the data. Each of the dif-
ferent ‘aspects’ of the methodology is reported as a sep-
arate section (JSON object) and any/all metadata that 
are relevant to the methodology of the research can and 
should be included. Although in the diagram  above the 
aspects of ‘measurement’, ‘procedure’, ‘resource’, ‘calcu-
lation’, ‘basisset’, and ‘software’ are shown, these are just 
examples of aspects that might be reported here. The 
SDM defines only ‘methodology’, ‘evaluation’ and ‘aspects’ 
here with metadata under ‘aspects’ included as needed/
available, be it semantically annotated or not. It is envi-
sioned that both general and discipline specific ‘aspects’ 
will be developed based on domain specific agreement on 
best practices for inclusion of minimal metadata and/or 
default ontological definitions (as discussed above).

System
 The ‘system‘section contains data that is normally 
reported in different places in a research article. For any 
scientific research that is performed there is a system 
that the research is working with/on. A description of the 
compound(s), organism(s), or material(s) that the data is 
about needs to be articulated so that the scope of what 
the data describes can be characterized. It is also impor-
tant to be able to report the condition(s) under which 
the data was recorded, the time-point or timeframe at 
or over which it was performed, etc. Several example 
facets are listed in the schema below, but again none are 
required and others can be included as needed to char-
acterize the data. Just like the ‘methodology’ sections’ 
‘aspects’, the ‘system’ sections’ ‘facets’ is a flexible part of 
the framework that can hold metadata about one to many 
‘facets’ in addition to general descriptive terms about the 
discipline that the data is nominally from. Again the data 
model defines only ‘system’, ‘discipline’, ‘subdiscipline’, 
and ‘facets’ here with metadata under ‘facets’ included as 
needed/available, be it semantically annotated or not.

Fig. 9  Metadata for units in the SciData data model
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Dataset
 The final section of ‘scidata’, the ‘dataset’, is of course the 
most important (Fig.  8). Dataset is used as a descriptor 
here to indicate that it is a generic container for data that 
can logically be reported as a set. The level and scope of 
the aggregation for a ‘dataset’ can be at any scale (and 
is at the discretion of the researcher) and thus it can be 
used to report a single piece of data or all of the data 
from a large research study. Within ‘dataset’ data can be 
organized/reported in multiple ways. Individual pieces of 
data are added to the ‘datapoint’ section and it is implied 
that there is no relationship between values included. 
Data that is logically related to other data, either as a time 
or property series or correlated data such as a spectrum 
(multiple correlated arrays) are stored in the ‘dataser-
ies’ section, either directly under ‘dataset’ or as part of a 

‘datagroup’. Here the array of data that is recorded can be 
reported as a JSON array, or as a JSON array of internal 
links (IRI’s) to ‘datapoint’ data. This allows logical arrays 
of data to be efficiently stored while also allowing series 
of datapoints that are collected at different times to also 
be represented.

A ‘datagroup’ section is used where there is a need to 
aggregate data together based on a higher-level struc-
ture, and the ability to nest a ‘datagroup’ inside another 
‘datagroup’ makes for hierarchical organization of data 
that fits the researcher need. It is also important to point 
out here that the use of ‘datagroup’, ‘dataseries’, and ‘data-
point’ on their own do not provide a semantic meaning 
of how the data relates to anything else, rather they are a 
way to compartmentalize data so that it can be related to 
other things through the use of the ‘source’ (methodology 

Fig. 10  Terms defined in the Scientific Data Model Ontology (SDMO)
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‘aspect’) and ‘scope’ (system ‘facet’) metadata elements. 
In reports that contain large datasets, across many exper-
iments, this structure provides the maximum flexibility 

to report data yet still affords the structure that the data 
model provides.

Also, in the dataset sub-framework there are references 
to ‘parameter’ types for certain elements. The ‘param-
eter’ object is a generic structure that is used as the 
basis for metadata in ‘datapoints’, ‘attributes’, ‘conditions’ 
(under ‘system’), ‘settings’ (within ‘methodology’) and 
many more. A parameter is a report of a property (with/
without its quantity) and its value and thus can be used 
to describe a wide variety of data/metadata in the data 
model. Parameter values may either be numeric (‘value’) 
or textual (‘textstring’), single values or arrays of values. 
Numeric values are described by metadata that indicates 
its type (decimal, integer, float, etc.), significant figures, 
error, and if the value is an exact number or not (useful 
for calculations). Text values are described by their type 
(plain, JSON, Extensible Markup Language (XML), etc.) 

Fig. 11  SPARQL query of scientific data

Fig. 12  Metadata for calculated parameter value

Fig. 13  Addition of a JSON-LD context element to the parameter value
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and language. Implementers of the SDM can use the 
‘parameter’ type in the definition of ‘aspects’ or ‘facets’ 
instead of having to invent their own data structures. This 
makes implementation easier and more consist and other 
parts of the SDM can be re-used in the same manner.

The final, and most fundamental piece of the data 
model is the representation of units of measure (Fig. 9). 
Unit metadata is designed to accurately represent any 
unit likely to be used in the context of scientific research 

as well as reference other representations of units (via 
‘unitref ’). The user can report a unit without defining 
it (using ‘unitstr’), define it in place using the metadata 
shown in Fig. 9 (‘unit’), or reference a unit defined else-
where (internally or externally) in the report via ‘unitref ’. 
The specification has been written to integrate online 
representations of units, quantities, prefixes and unit 
conversion factors, such as those currently available in 
the QUDT ontologies [53].

Fig. 14  Adding all JSON-LD “term definition” declarations to the context
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Fig. 15  Cleaning up the URI term definitions in the context

Fig. 16  Using an external context file and adding document references to parameter data (“@base” and “@id”)
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Fig. 17  RDF triples corresponding to the linked data in the JSON-LD parameter file in Fig. 10

Fig. 18  SciData JSON-LD representation of numeric and textual data points



Page 20 of 24Chalk ﻿J Cheminform  (2016) 8:54 

A scientific data model ontology
In order to give semantic meaning to the framework 
created by the SciData scientific data model an associ-
ated scientific data model ontology (SDMO) has been 
developed [54]. Each of the metadata elements that are 
specific to the framework is included in the ontology 
(over 60) along with reproduction of common meta-
data terminology (e.g. from Dublin Core [55]). Terms 
have been grouped into classes (see Fig.  10): metadata, 
context, dataset, methodology, scientific data, and unit 
of measure. The semantic annotation of the framework 
provides the structure that allows SPARQL [6] searches 
to be constructed that can mine data from multiple 
sources. Figure  11 shows an example SPARQL query to 
find all scientific data reports where a refractive index is 
reported using hydrochloric acid (via InChI Key) in the 
area of chemistry. 

Encoding data in the data model
A full discussion of the use of JSON-LD to encode all of 
the metadata terms described above is beyond the scope 
of this paper, however, readers interested in viewing/
using JSON-LD to explore this approach can go to the 
project website [1] where the full set of context files can 

be accessed along with example data documents. In addi-
tion, taking example files [56] and loading them into the 
JSON-LD playground [10] allows readers to see the RDF 
generated from JSON-LD encoded data.

To illustrate the use of JSON-LD to represent scientific 
data and what it means consider the JSON text below 
for a ‘parameter’ (Fig. 12). The JSON object represented 
in the figure is a collection of metadata strings and an 
embedded JSON object that represents the value of the 
parameter. Although a human can relatively easily under-
stand the meaning of information presented, a com-
puter sees the structure as strings and a numeric value. 
In order to add the meaning to this information so that a 
computer can represent it a JSON-LD context [57] needs 
to be included to reference the meanings of each of the 
JSON name-value pairs.

JSON-LD contexts [57] are indicated in a JSON 
file by the addition of a “@context” JSON object (see 
Fig.  13). In this example, the “ontological term defi-
nition” for “quantity” is added as a shortcut called 
“quantity” using a Uniform Resource Identifier (URI) 
(indicated by “@id”) where a definition of the term is 
reported, and the value “magnetic field strength” is 
indicated by “@type” as being of type “string”. Adding 

Fig. 19  SciData JSON-LD representation of the refractive index of hydrochloric acid from a research paper
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term definitions for all name-value pairs gives the 
JSON-LD file in Fig. 14.

It can be seen that providing term definitions for all the 
elements and including all the full URIs makes the file 
much larger and complicated. Luckily, there are short-
cuts that can be implemented to tidy things up quite a 
bit, i.e. the inclusion of a namespace abbreviation for 
the ontology URI (“sci”) and the definition of a “@vocab” 
assignment to shorten the references to the data types. 
Figure 15 shows the cleaned up context array.

Finally, to ensure that this context specification can be 
used across many documents it can be extracted from 
the data file and saved as a stand-alone context file that 
is referenced in the parameter file (Fig.  16). Also note 
in Fig. 10 that an “@id” field is added to the root of each 
JSON object. This allows (along with the definition of the 
“@base” attribute) the generation of a unique URI for the 
parameter and separately its value. Copying and pasting 
this document into the JSON-LD playground [10] results 
in the triples shown in Fig. 17.

Application of the data model
The following portions of four examples show the 
application of the data model to different data needs. 
Each of these examples can be found in full on the 
example page of the project website 1. Additional 
examples showing the conversion of example data from 
PubChem, the Dortmund Data Bank, and a CIF file are 
also included on this page along with XML Stylesheet 
Language Transformation (XSLT) [58] files used to 
convert them.

The pH of a solution
This is an example of the most generic type of data—that 
of individual data points. In of itself a data point is the 
reporting of a numeric (or textual) value with or without 
a unit. In this case pH is measured along with an obser-
vation of a solution (Fig. 18). Included with the data are 
references to other parts of the file that contain the data 
about the measurement, substance, and condition under 
which the measurement was made (see [56] for complete 
file).

A measured property extracted from the literature
In order to make use of data reported previously in this 
linked-data age it is necessary to go to an original arti-
cle and extract the reported value and its metadata into 
the data model. Below, in Fig.  19, is the data and origi-
nal paper reporting the refractive index of a hydrochloric 
acid solution. Although not shown, the file also contains 
information about the measurement and conditions 
equivalent to that shown in Fig. 18 (see [56] for complete 
file).

NMR spectrum of a sample of R‑(+)‑Limonene
The majority of scientific data is measured using analyti-
cal instrumentation that produces data as spectra, chro-
matograms (2D and 3D data), kinetic traces, fiagrams, 
and many more. The collection and storage of this data 
can be readily done in ‘dataseries’ but some mechanism is 
needed to aggregate related ‘dataseries’. This can be done 

Fig. 20  SciData JSON-LD representation of an NMR spectrum of 
R-(+)-Limonene
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using a generic data group structure where its contents 
are two ‘dataseries’ plus additional metadata to describe 
what type of data group it is. Below (Fig. 20) is an exam-
ple for storing a Nuclear Magnetic Resonance (NMR) 
spectrum (see [56] for complete file).

Computational chemistry calculation of electronic properties 
of glucose
The last example shows how results from computational 
chemistry calculations can be captured in the SciData 
format (Fig. 21). A large amount of data is generated from 

Fig. 21  SciData JSON-LD representation (partial) of the results from a glucose SCF calculation
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the calculations (the JSON-LD file is over 17,000 lines 
long) yet the use of nested ‘datagroup’s allows straight-
forward organization of the spectrum data (see [56] for 
complete file).

Conclusion
With the current interest in big data and the movement 
toward open science there is a need for approaches to 
allow science data to be made available in an open and 
easily searchable format. This format needs to be flex-
ible enough to accommodate data from scientific experi-
ments of all kinds and the SciData data model and its 
implementation in JSON-LD fits that need. Assuming 
that this, or another framework, is accepted by the scien-
tific community to collect, store, and disseminate seman-
tically annotated scientific data, we can move to the next 
phase of tool development and data integration to move 
us toward the utopia of open, accessible and reliable 
semantically annotated scientific data.
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