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Abstract 

Background:  Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug 
repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable 
and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of 
databases, methods and solutions proposed to-date, did not completely overcome these challenges. This study is 
based on a multi-label classification (MLC) technique for modeling correlations between several HTS assays, mean‑
ing that a single prediction represents a subset of assigned correlated labels instead of one label. Thus, the devised 
method provides an increased probability for more accurate predictions of compounds that were not tested in 
particular assays.

Results:  Here we present DRABAL, a novel MLC solution that incorporates structure learning of a Bayesian network 
as a step to model dependency between the HTS assays. In this study, DRABAL was used to process more than 
1.4 million interactions of over 400,000 compounds and analyze the existing relationships between five large HTS 
assays from the PubChem BioAssay Database. Compared to different MLC methods, DRABAL significantly improves 
the F1Score by about 22%, on average. We further illustrated usefulness and utility of DRABAL through screening 
FDA approved drugs and reported ones that have a high probability to interact with several targets, thus enabling 
drug-multi-target repositioning. Specifically DRABAL suggests the Thiabendazole drug as a common activator of the 
NCP1 and Rab-9A proteins, both of which are designed to identify treatment modalities for the Niemann–Pick type C 
disease.

Conclusion:  We developed a novel MLC solution based on a Bayesian active learning framework to overcome the 
challenge of lacking fully labeled training data and exploit actual dependencies between the HTS assays. The solu‑
tion is motivated by the need to model dependencies between existing experimental confirmatory HTS assays and 
improve prediction performance. We have pursued extensive experiments over several HTS assays and have shown 
the advantages of DRABAL. The datasets and programs can be downloaded from https://figshare.com/articles/
DRABAL/3309562.

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
An unprecedented growth in biomedical data has surged 
in recent years. The ability to analyze big amounts of this 
data shall enable many opportunities that will, in turn, 

impact the future of healthcare [1]. It appears that, an era 
where personalized medicine, diagnostics and treatments 
are being adapted to everyday life, is on the horizon [2]. 
Yet, such growth opens challenges for developing data 
driven solutions that can effectively enhance decision-
making in this foreseen healthcare environment.

Mining high-throughput screening (HTS) assays, for 
example, can provide highly valuable findings for novel 
uses of existing drugs or proposing new drugs with 

Open Access

*Correspondence:  vladimir.bajic@kaust.edu.sa 
1 Computational Bioscience Research Center (CBRC), King Abdullah 
University of Science and Technology (KAUST), Thuwal 23955‑6900, Saudi 
Arabia
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5435-4750
https://figshare.com/articles/DRABAL/3309562
https://figshare.com/articles/DRABAL/3309562
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-016-0177-8&domain=pdf


Page 2 of 14Soufan et al. J Cheminform  (2016) 8:64 

specific biological effects [3]. Revealing such previously 
unknown patterns may possibly significantly reduce 
costs [4] and speed up the drug development process. 
Yet many challenges, hinder the development of suitable 
methods for extracting useful information [5].

A wide variety of databases, methods and solutions 
were proposed towards handling the challenges that 
accompany the process of drug discovery by means of 
virtual screening. Virtual screening is a process based on 
using computational methods to identify chemical com-
pounds that have high chance to interact with a specific 
biological target [6]. One common class of solutions to 
perform virtual screening is based on target prediction 
approaches that have been addressed by several studies 
[7–10]. Based on existing bioactivity information, target 
prediction helps in inferring novel molecular targets for 
known drugs [10]. Recently, 3D chemical similarity met-
rics and network algorithms were combined to achieve 
structure-based target prediction and reveal the binding 
mode of certain small molecules [11].

Several data mining models have been developed for 
chemical-target interactions [12–15]. These approaches 
differ from virtual screening, which rely on ligand–
protein docking [16], as they do not require any prior 
knowledge of 3D structures of the target and its ligand. 
In addition, when these models are trained, they can be 
used for screening the biological activity status of a set of 
chemicals faster than ligand–protein docking approaches 
[17]. Also, several web tools have been developed [18–21] 
that predict chemical-protein interactions.

Towards handling larger HTS assays and exploiting 
the set of common active interactions as a factor for 
improving classification performance, we explore formu-
lating the problem as a multi-label classification (MLC) 
instead of the conventional binary classification setup. In 
data mining, MLC is receiving a noticeable attention in 
recent years, since good impact has been achieved in sev-
eral studies [22–24]. MLC classification as compared to 
binary classification or multi-class classification attempts 
to take advantage of any possible dependency between 
the target classes in order to improve the prediction 
accuracy [25, 26]. Recently, there have been a number of 
studies showing advantage of using MLC classification in 
several problems related to biology [27–29]. MLC clas-
sification was used for modeling cross-resistance infor-
mation between a set of drugs in order to enhance the 
prediction of a particular drug resistance in the human 
immunodeficiency virus (HIV-1) [29]. In order to real-
ize a better understanding of the function of chloroplast 
proteins, a proposed MLC algorithm was applied in pre-
diction of protein subchloroplast locations in chloroplast 
organelle [27]. It was also shown that when the MLC 
approach is compared to a single label classification, it 

coherently reflects the actual metabolism information 
when applied over a collection of CYP450 substrates 
[30]. Multi-label Naïve Bayes classification models were 
constructed to improve target prediction for relevant 
target proteins over a wide set of chemical compounds 
[31]. Other works, as well, have shown successful usage 
of MLC to predict how molecules interact and analyze 
their biological activities [32, 33]. A popular solution for 
MLC classification problems is known as the binary rele-
vance (BR), where a binary classifier is trained separately 
for each target class label. While BR fails to take advan-
tage of any dependency between the labels in a data-
set, it is known to be generally quite accurate [34, 35]. 
Another state-of-the-art extension for BR that takes into 
account the dependency between the labels are classifier 
chains (CC) [36]. The lack of completely labeled train-
ing instances, imposes substantial challenges for MLC 
classification, especially in that most of the proposed 
relevant solutions do not deal with this problem [37]. In 
our confirmatory HTS BioAssay datasets extracted from 
the PubChem BioAssay Database [38], we have positive 
and negative assigned interactions. Having both types 
of interactions is common in MLC problems. Yet, in our 
case, we have many missing interaction cases where the 
activity of a compound is not tested in a particular assay. 
Missing labels among the target classes (i.e. BioAssays) 
makes the MLC problem more challenging.

In this study, we developed DRABAL as a novel MLC 
solution based on Bayesian active learning. In DRABAL, 
we incorporate structure learning of a Bayesian network 
(BN) as a step to model dependency between the HTS 
assays. This structure can then be used to guide propaga-
tion of feedback between classifiers (also known as active 
learning), and to enhance prediction accuracy over indi-
vidual binary classifiers. We used DRABAL to process 
more than 1.4 million interactions of 400,000 compounds 
and analyze the existing relationships between five large 
HTS assays from the PubChem BioAssay Database. We 
enabled drug-multi-target repositioning to show the util-
ity of our method by screening against several targets all 
drugs from the DrugBank database [39] approved by U.S. 
Food and Drug Administration (FDA).

Results and discussion
Performance evaluation
F1Score is a performance evaluation measure. It com-
putes the weighted average of sensitivity and precision 
[40]. It can be also referred to as balanced F-Score. In 
the context of HTS, a novel prediction relates to a sug-
gested positive interaction whose confirmation requires 
experimental validation. In such a scenario precision is 
very important since a higher precision score reflects a 
lower number of false positives and thus, experimental 
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validation costs are minimized. Therefore, we use 
F0.5Score as another summary measure that weighs pre-
cision twice as much as sensitivity [41, 42]. Finally, we 
use the geometric mean of sensitivity and specificity 
(GMean), to summarize prediction accuracy over both 
the true positive as well as the true negative rates.

Since a prediction in the case of MLC classification 
problems represents a subset of labels, different types 
of performance metrics are suggested [29]. Given indi-
ces of samples with actual positive assigned labels A+

j  
for the j-th class label and corresponding set of indices 
with predicted positive labels Y+

j  for a total of M samples, 
we define performance metrics using Eqs.  (1)–(6). A−

j  , 
and Y−

j  corresponding to the negative labels (i.e. nega-
tive interactions, see below) case and Aj and Yj without 
superscripts denote indices of all relevant samples with 
positive and negative interactions, respectively. Negative 
labels mostly relate to inactive outcomes of the tested 
compounds in relation to the setup of a particular BioAs-
say, but since they may indicate an opposite phenotype 
of interaction (e.g. inhibition vs. activation) in the same 
assay, we call them negative interactions. These measures 
are based on computing the performance metric of inter-
est for each target class label, and then averaging them 
for the N  class labels. This is a common performance 
evaluation approach for MLC classification problems [25, 
29].

Fivefold cross-validation is used in our computational 
experiments. Fivefold cross-validation is considered suit-
able for computing a non-biased score estimate [43] and 
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we chose it due to the large number of interactions in 
our HTS assay datasets (as shown in Table 4). In order to 
test the significance of difference between the examined 
methods, we used the pair-wise t test at the 5% signifi-
cance level.

Performance comparison
Here, we describe results of our experimental stud-
ies over five large HTS assays composed of more than 
1.4 million interactions and more than 400,000 chemi-
cal compounds from the PubChem BioAssay Database 
[38]. The experiments are designed to specifically test 
the advantage of employing dependencies between these 
assays for improved prediction accuracy. In order to 
achieve this, we have considered several comparisons. 
We compared our solution with BR, the most widely 
used for MLC classification [44]. BR is known also as a 
very hard baseline to beat, especially when the number of 
target labels is considerably small [36]. For BR, we have 
selected support vector machines (SVM), random forest 
(RF) and K-nearest neighbors (KNN) as base classifiers 
for training models for each label. We call these bench-
mark methods BR-SVM, BR-RF and BR-KNN, respec-
tively. BR methods do not handle samples with missing 
labels. They just ignore any such case and exclude it from 
the data.

Another MLC solution that exploits dependencies 
between target classes for multi-label prediction is based 
on classifier chains (CC) [36]. In CC, once a classifier is 
built for one target label, this label is added to the feature 
and used for training of the next classifier in a chain order 
and so on. CC does not deal directly with missing labels 
that characterize the multi-label HTS assay datasets we 
have. In order to apply CC over the datasets, we assume 
all compounds that did not have any reported interaction 
for a specific assay, to have a negative label in the train-
ing set. Treating missing labels as negative labels is one of 
the approaches of handling missing labels in MLC clas-
sification [45]. It should be noted that this step is taken 
only for CC, but in our method we handle missing labels 
differently using active learning, which helps in quan-
tifying a probability score of interaction for each miss-
ing case instead of assuming it to be negative. Using this 
approach, we extend CC to handle missing labels and call 
it ‘classifier chains with missing labels extension’ (CC-
MLE). As a base classifier, we choose RF for CC-MLE and 
DRABAL since RF outperformed the classification per-
formance of SVM and KNN classifiers.

Table 1 shows a summary of the fivefold cross-valida-
tion comparison results for the five HTS assays. Using a 
typical fivefold cross-validation, the HTS assays data is 
partitioned into five approximately equally sized mutu-
ally distinct subgroups such that a single subgroup 
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representing 20% of the data is retained for testing only 
and is not used in any way for developing the model. For 
each partition (fold) of the data, the model is developed 
on the training portion and evaluated on the testing 
portion. The results from the testing folds are averaged 
to produce an estimation of performance. Based on all 
summary evaluation metrics, DRABAL significantly 
outperformed other state-of-the-art methods. DRABAL 
improved the F1Score by about 22% on average when 
compared to other methods. For the F0.5Score that gives 
more preference to precision, DRABAL achieved the 
highest score with an average improvement of 23%. This 
confirms that DRABAL maintains enhancing both sensi-
tivity and precision. For GMean, DRABAL also achieves 
the highest performance. Similar improvements were 
achieved by DRABAL when tested on a larger number 
of datasets (see Additional file 1: Table S1 and Table S2). 
Additional file  2 provides extensive comparisons using 
other validation methods. Using holdout validation, 
when training splits ranging from 80% to only 20% of 
the original data are used, DRABAL achieved the high-
est results in all cases. On average, DRABAL improved 
F1Score in absolute measures by 6.8 and 22.24% when 
compared to BR-RF and CC-MLE, respectively. These 
result in the relative improvements of DRABAL’s F1Score 
over BR-RF and CC-MLE of 19.1 and 108.28%, respec-
tively. Also, using plots of performance over distance, for 
each of different 20 distance ranges DRABAL attained 
the highest F1Score.

In order to recognize the specific effect of exploiting 
dependency between the HTS assays over having a sin-
gle binary classifier for each dataset, we consider more 
closely the comparison with BR-RF. It is worth mention-
ing that RF was the base classifier used for BR-RF and 
DRABAL with exactly the same parameters and initiali-
zations. Moreover, using a Bayesian network to define 
proper dependencies between the assays, DRABAL only 
expands the set of original features by two new features, 

on average for each dataset. Out of 1064 original fea-
tures, this change is only equivalent to 0.1%. In other 
words, there is no extreme difference between the con-
ditions of the input data as well as the parameters of RF 
classifier in BR-RF and DRABAL methods. Nevertheless, 
DRABAL significantly (based on t-test) outperformed 
BR-RF increasing performance in absolute measures by 
about 5.5, 6 and 3.3% for GMean, F1Score and F0.5Score, 
respectively. This makes relative improvement of DRA-
BAL’s performance over BR-RF of 9.88, 12.7 and 5.3% for 
GMean, F1Score and F0.5Score, respectively. This clearly 
confirms the contribution of considering common active 
interactions between the HTS assays as a dependency 
factor towards enhancing classification performance.

Figure 1 illustrates the performance in terms of preci-
sion for every individual dataset when sensitivity is fixed 
at the same level the second best solution achieves (i.e. 
BR-RF). This indicates the gain we reach by reducing the 
number of false positives and thus, total experimental 
validation costs are minimized. As the orange color high-
lights, DRABAL improved precision largely in three out 
of five cases and achieves the same precision in one case.

Another experiment we perform is based on running 
different random initializations for ordering depend-
encies of targets in CC method and, follow the step 
proposed by DRABAL for handling missing labels. 
Thus, when running CC method, missing labels are not 
assumed negatives as in CC-MLE, but rather, a probabil-
ity score of interaction is assigned the same way DRA-
BAL does. This helps in measuring the advantage of, in 
particular, employing BNs into our algorithm. As Table 2 
shows, based on t-test, DRABAL significantly outper-
formed average performance of ten random initializa-
tion of CC method. On average, DRABAL improved in 
absolute measures GMean, F1Score and F0.5Score by 9.91, 
14.27 and 18.08%, respectively. This produces relative 
improvements of DRABAL’s performance (compared to 
the average performance of 10 random initialization of 
CC method) of 19.4, 38.7 and 38.9% for GMean, F1Score 
and F0.5Score, respectively.

In Fig. 2, we analyze the effect of applying these meth-
ods over several datasets to see how many real positive 
interactions can be predicted correctly by the methods 
as absolute numbers. These absolute numbers trans-
late to the number of actual positive experiments in the 
lab, which if predicted correctly means that the method 
is doing well in capturing the true nature of the positive 
interactions in these datasets. As shown in Fig.  2, we 
compared the absolute number of actual positive interac-
tions (average size of 21,885 over fivefolds) to the num-
ber of positive predictions made by DRABAL, RF-BR 
(Second best preforming method), and CC-MLE (other 
variant of MLC solutions), which when applied to these 

Table 1  Comparison of methods across five different data-
sets using the fivefold cross validation

The HTS assays data is partitioned into five approximately equally sized mutually 
distinct subgroups such that a single subgroup representing 20% of the data 
is retained for testing only. For each partition (fold) of the data, the model 
is developed on the training portion and evaluated on the testing portion. 
The results from the testing folds are averaged to produce an estimation of 
performance. Statistically significant difference when compared with all other 
methods over fivefolds using t-test at the 5% significance level is denoted by a

Method GMean (%) F1Score (%) F0.5Score (%)

BR-SVM 46.04 28.84 34.39

BR-KNN 24.59 14.91 23.26

BR-RF 55.56 45.35 61.26

CC-MLE 40.79 28.59 46.86

DRABAL 61.05a 51.11a 64.52a
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datasets, averaged over a 5-cross validation setup. DRA-
BAL predicted 10,566 real positive interactions correctly 
of which 1143 were uniquely identified by DRABAL. 
On the other hand, RF-BR predicted 9772 real positive 
interactions of which only 338 were unique to RF-BR, 
and CC-MLE correctly predicted 5354 of which only 10 
were unique. Combined with previous summary results, 
we can conclude that DRABAL has identified the largest 
unique set while performing better in terms of GMean, 
F1Score and F0.5Score.

In this subsection, we evaluated the performance of 
DRABAL over five challenging large HTS assay datasets. 
In order to show that DRABAL is not limited to a specific 

Fig. 1  Precision comparison of DRABAL and BR-RF over five HTS assays. Precision is evaluated at the sensitivity levels of BR-RF (the second best 
method) in order to highlight achieved gain using DRABAL

Table 2  Comparison of methods across five different data-
sets using fivefold cross validation

The HTS assays data is partitioned into five approximately equally sized mutually 
distinct subgroups such that a single subgroup representing 20% of the data 
is retained for testing only. For each partition (fold) of the data, the model 
is developed on the training portion and evaluated on the testing portion. 
The results from the testing folds are averaged to produce an estimation of 
performance. Statistically significant difference when compared with all other 
methods over fivefolds using t-test at the 5% significance level is denoted by a

Method GMean (%) F1Score (%) F0.5Score (%)

RandomOrder-10 51.14 36.84 46.44

DRABAL 61.05a 51.11a 64.52a

Fig. 2  Venn diagram of correct predictions for four selected meth‑
ods. The diagram includes average number of counts (i.e. average of 
fivefold cross-validation) of correct predictions using four methods 
and counts matching with actual ground truth
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number of datasets, we consider also an extended selec-
tion of ten BioAssays, and report a performance evalu-
ation of over about 3 million interactions for 431,478 
unique compounds (see Additional file  1: Table S1 and 
Table S2).

Suggested drug‑multi‑target repositioning
In order to show the utility of DRABAL, we screened 
all the approved drugs from DrugBank database against 
assays used in this study. Table 3 shows the top five novel 
predictions for each assay. Interestingly, both Omepra-
zole (DB00338) and Thiabendazole (DB00730) are pre-
dictions for BioAssays AID 485297 and AID 485313. 
These BioAssays are two high-throughput assays for 
screening activators of Ras-related protein (Rab-9A) 
and a Niemann-Pick C1 protein (NPC1), respectively 
[46, 47]. However, DRABAL prediction scores show that 
Thiabendazole is the more likely activator of the Rab-9A 
and NPC1 proteins (see Table 3). When activators over-
express Rab-9A and NPC1, it was experimentally shown 
that the symptoms of the Niemann-Pick type C (NPC) 

disease are reduced [46, 47]. Thus, we will focus on the 
repurposing of Thiabendazole as a plausible treatment of 
the NPC disease.

NPC disease is a rare neurodegenerative lipidosis asso-
ciated with mutations that inactivate either NPC1 (95% 
of cases) or NPC2 proteins [48]. In healthy individuals, 
these proteins cooperate to aid the movement of unest-
erified cholesterol through the lysosome, to the cytosolic 
compartment of cells through the body [49]. Mutations 
that inactivate the NPC proteins cause endosomal/lyso-
somal accumulation of cholesterol, progressive neuro-
degeneration, and robust glial cell activation [50]. In 
NPC disease pathogenesis, glial cells such as astrocytes 
and microglia are activated and characterized with high 
concentrations of interleukin-6 (IL-6), cathepsin D, 
interferon-beta and interleukin-8 (IL-8), as well as sig-
nal transducers and activators of transcription (STATs) 
and TLR4 [51]. NPC disease is additionally character-
ized by increased Beclin-1 levels and elevated autophagy 
[52]. Taken together, impaired trafficking of cholesterol 
was further shown to mediate toxicity and increased 

Fig. 3  Chemical-Protein interactions graph generated using STITCH tool. STITCH tool was queried using NPC1 and Rab-9A concepts and then 
produced this graph. Nodes, which show concepts not directly related to this generated graph, were removed in order to highlight most relevant 
concepts to the repositioned drug

Table 4  Summary of datasets used

Dataset PubChem ID Target name Type of interacting 
compounds

Active  
class size

Inactive  
class size

Active to inactive ratio 
(imbalance ratio)

AID 1458 Survival of motor neuron 2 Enhancers 5854 193,105 1:33

AID 485297 Ras-related protein Rab-9A Activators 9143 301,951 1:33

AID 485313 Niemann-Pick C1 protein precursor Activators 7586 304,846 1:40

AID 588342 Luciferase transcriptional reporter Inhibitors 25,159 304,600 1:12

AID 686978 Tyrosyl-DNA phosphodiesterase 1 Inhibitors 64,212 243,136 1:4

Total interactions 1,459,592
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cathepsin D levels that induce neurotoxicity by activating 
the autophagic pathway [53].

Our predicted activator, Thiabendazole is the drug of 
choice for strongyloidiasis and is originally used against 
a variety of nematodes [54]. It is an aryl hydrocarbon 
receptor ligand which has been shown to reduce lev-
els of cathepsin D [55], overexpression of which is one 
of the characteristics of NPC disease. Also, it has been 
demonstrated that Thiabendazole is a potent inhibitor 
of cytochrome P450 1A2 (CYP1A2) [56], a major CYPs 
that metabolize drugs in the liver [57]. Additionally, 
cytochrome P450 proteins in general, have been shown 
to play different roles in the brain such as neuroprotec-
tion, neurotrophic support, temperature control, control 
of cerebral blood flow, maintenance of brain cholesterol 
homoeostasis, neuropeptide release, regulation of neuro-
transmitter levels, elimination of retinoids from CNS and 
other roles important in brain development, physiology 
and disease [58]. It has been reported that an ‘overdosage’ 
of Thiabendazole may be associated with psychic altera-
tions and temporary vision disturbance [59]. With Thia-
bendazole therapy, the more common side effects include 
nausea, anorexia, diarrhea, dizziness, increased blood 
sugar levels and erythema multiforme [60]. These well-
known reported side effects show that Thiabendazole has 
been extensively used in various therapies.

Thiabendazole, that we predict to activate both Rab-9A 
and NPC1 proteins, belongs to the Benzenoid superclass. 
We note that Benzoic Acid (DB03793) [61], an approved 
drug in DrugBank database belonging to the same Ben-
zenoid superclass, was reported to target the Rab-9A 
protein. Also, note that the Ezetimibe drug (DB00973), 
having Benzenoid as one of its substituents, is reported 
to target the NPC1 protein leading to lowering choles-
terol levels [62].

We used the STITCH database [63] to further query 
the relevant connections between Rab-9A and NPC1 
and generated the graph in Fig. 3. When considering the 
interaction list connecting the two proteins, cholesterol 
and Benzoate, we find that Benzoate shares the same 
Benzenoid superclass as Thiabendazole, and is directly 
connected to Rab-9A. It is also interesting that calcium 
is the connecting hub because it has been demonstrated 
that for lysosomal exocytosis, VAMP7 (vesicle-associated 
membrane protein 7) on the surface of lysosomes, pulls 
and docks the lysosomes on the cytoplasmic side of the 
plasma membrane to form a trans-SNARE complex with 
syntaxin-4 and SNAP23 (synaptosome-associated pro-
tein of 23 kDa) on the plasma membrane [64], an action 
that is triggered by a rise in intracellular calcium levels 
[65, 66]. It should be noted that the VAMP7 is used by 
both NPC1 and Rab-9A associated lysosomal exocyto-
sis. Additionally, even though the relationship between 

calcium and Thiabendazole has not been shown in 
humans, an increase in the fruit calcium content is used 
in the management of pear trees, as increased calcium 
content has been shown to reduce the severity of the 
decay and increase the efficacy of Thiabendazole when 
it is used as the postharvest fungicide [67]. Although 
the network does not show the character of interactions, 
STITCH listed concepts (benzoate, RAB9A, NPC1, cal-
cium) which can in principle be linked to Thiabendazole. 
These findings add confidence to our suggestion that Thi-
abendazole may be an activator of both the Rab-9A and 
NPC1 protein, and thus suggest the repurposing of Thia-
bendazole to treat Niemann-Pick type C (NPC) disease.

Conclusions
With the expansion and emergence of biomedical data 
and computational resources, there is a growing opportu-
nity for impacting the process of drug repositioning and 
drug discovery. Many laboratory experiments have been 
developed to screen activities of chemical compounds 
over some biological targets. The ability to exploit feed-
back from these experiments can greatly enhance our 
decisions about cases, which were not tested for a par-
ticular biological target. Correlating feedback from dif-
ferent HTS assays, can improve our understanding 
about pathways of interactions. Motivated by these facts, 
we formulated the problem of virtual screening from 
high-throughput screening assays as a multi-label clas-
sification problem. This formulation allows us to model 
correlations and dependencies between the examined 
HTS assays and enhance prediction performance. The 
main challenge we face is that these assays do not report 
interactions for all compounds and thus, we have to han-
dle the issue of missing labels. We developed a novel solu-
tion based on a Bayesian active learning framework to 
overcome this challenge and exploit actual dependencies 
between the HTS assays. Compared to the other state-of-
the-art MLC methods, our proposed solution DRABAL 
improves the F1Score significantly by about 22% in abso-
lute measures, on average. We also enable drug-multi-
target repositioning and suggest the Thiabendazole drug 
as both a NCP1 and RAB-9A promoter activator, making 
it a possible treatment modality for Niemann–Pick type 
C disease.

Methods
Experimental data
PubChem BioAssay Database
We used confirmatory HTS assays from the PubChem 
BioAssay Database following recommendations of [68]. 
A BioAssay dataset is a report of a laboratory experi-
ment, where the activity status of selected chemical 
compounds, with regard to a specific biological target, is 
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listed. We chose five BioAssays that share a larger num-
ber of common active compounds in order to test the 
applicability of multi-label learning. For retrieving such 
related BioAssays, we first downloaded the largest high-
throughput screening assay from the PubChem BioAs-
say Database [38]. The examined datasets belong to the 
confirmatory experiments over protein targets that were 
deposited by the NIH Molecular Libraries Program. 
Some BioAssays hold a very large number of interac-
tions but with only an extremely small set of active cases. 
For example, the BioAssay record for AID 602332 holds 
a total of 424,929 interactions with only 77 active cases 
(active/inactive imbalance ratio is 77/424,929 = 0.01%). 
These BioAssays were excluded from the initial selec-
tion list. After selecting the largest HTS assay (i.e. AID 
588342), based on these conditions, we retrieved the 
four other mostly related BioAssays to this one in terms 
of common active compounds. Finally, we ended up 
with a total of five datasets as summarized in Table 4. In 
another set of experiments, we consider ten datasets to 
show that DRABAL is not limited by a certain number of 
assigned target labels (see Additional file 1: Table S1 and 
Table S2).

Among the five selected HTS assays, the percentage of 
common active interactions is around 37% on average. 
For each BioAssay dataset, a positive label ‘+1’ indicates 
that the compound is active in the assay, while a negative 
‘−1’ relates to inactive compounds. An inactive com-
pound, although indicates a negative outcome under the 
examined assay setup, may relate to another phenotype of 
interaction with the biological target. For the MLC setup, 
assays are integrated such that a single record about a 
chemical compound would hold all its relevant interac-
tions in the examined BioAssays. Given this setup, a 
missing label with a value of ‘0’ is assigned for each com-
pound that does not have a reported activity status in a 
particular assay. While compiling and extracting features 
for compounds, a Cheminformatics toolkit used failed to 
generate part of the features in few cases. This happens 
when the compound’s input file did not contain sufficient 
details needed by the Cheminformatics toolkit to com-
pile and produce all required information. We excluded 
such compounds. After the data-cleaning step, we ended 
up with 411,112 unique chemical compounds for all the 
datasets. These five datasets hold 1,448,403 interactions 
with only around an 8% hit rate indicating positive inter-
action cases with the targets. Our target matrix is sparse 
with around 30% missing labels, providing the chance 
for about 600,000 potential novel interactions. To the 
best of our knowledge, this is the largest compiled data-
set for a virtual screening study on HTS assays from the 
PubChem BioAssay Database. Table 4 summarizes basic 
information of the datasets we used.

DrugBank
We downloaded DrugBank database data in February, 
2016 from http://www.drugbank.ca/ [69]. The data-
base contained 7097 drug entries including 1826 FDA-
approved drugs. We only used FDA-approved drugs to 
screen by models we developed for the HTS assays.

Feature generation and selection
The generation and selection of a representative subset 
of features is critical for developing an accurate classi-
fication model [70]. A wide variety of chemical features 
have been proposed for models used for virtual screening 
[68, 71]. For our study, we combined fingerprint features 
generated by OpenBabel [72] and RDKit [73], includ-
ing PubChem fingerprints [74]. We computed several 
types of features such as the number of H-acceptors and 
donors, molecular weight, and Log-P, etc. The final set 
contained 2940 features. With such a large set of com-
piled features, there is a higher chance of different lev-
els of information redundancy, and it may contain also 
features not related to the types of biological activity of 
chemicals, as observed in particular HTS assays. Thus, 
we follow a feature selection (FS) procedure, similar to 
the one we have suggested in an earlier work [12]. For 
optimizing the selection of a subset of relevant features, 
the DWFS tool was used [75]. A detailed description of 
1064 features selected and used in the study is provided 
in Additional file 3.

Classifiers
To compare alternative MLC solutions for activity 
screening in PubChem HTS assays we used three types of 
classifiers. These include support vector machines (SVM) 
[76] with radial basis function (RBF) kernels, K-nearest 
neighbors (KNN; K = 3) [77], and Random Forests (RF; 
trees  =  500) [78]. The RBF kernel widths and default 
value of the cost parameter were used for SVM. Calling 
the algorithms was done using the Scikit-learn machine 
learning package [79, 80]. We used a cluster of Linux 
based machines with 64 cores and 256 GB RAM per node 
for processing the data and running the experiments.

Bayesian network structure learning
For learning the corresponding BN structure for the gen-
erated data, we used the BN structure learning, from the 
discrete data algorithm that was implemented in the lib-
PGM package [81].

Methods
Existing multi‑label classification (MLC) methods for virtual 
screening
HTS assays report experimental outcomes of testing 
different biological activities of chemical compounds. 

http://www.drugbank.ca/
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Shared common activities between these assays can 
enhance our understanding of the pathways of interac-
tions especially when it is difficult to infer an explicit 
relationship between the biological targets (e.g. lacking 
protein–protein interaction or lacking sequence simi-
larity). MLC methods directly address this motivation 
through exploiting existing dependencies between the 
examined HTS assays. Many modern applications in fact, 
also require this formulation such as classification of pro-
tein functions and semantic scenes [26].

Traditional single-label classification learns from a set 
of cases, each associated with a single unique label from 
a set L, |L| > 1 [22]. When |L| = 2, it refers to a binary 
classification, and if |L| > 2, it refers to a multi-class clas-
sification. However, the MLC classification task refers to 
a set of cases each associated with a set of labels Y ⊆ L 
and not a unique label. Thus, instead of assigning a sca-
lar output for a sample, MLC assigns a vector indicat-
ing the corresponding group of assigned labels. MLC 
classification methods can be grouped into: (a) problem 
transformation methods, and (b) algorithm adaptation 
methods [25]. The methods in the first group are inde-
pendent of the learning algorithm and suggest transfor-
mation of MLC learning task into simpler tasks that any 
classifier can deal with. The other group represents a 
class of methods based on extending learning algorithms 
for MLC data, like multi-label artificial neural networks 
[82]. Given our interest in exploring the novel application 
of MLC with flexibly any type of classifier, we focus on 
problem transformation methods.

A conventional MLC transformation solution is based 
on independently training a single binary classifier for 
each target label. For each new instance, the trained mod-
els are used to assign a set of labels where the instance is 
predicted as a positive. This baseline approach is known 
as binary relevance (BR), and in general, it is quite an 
accurate approach [34, 35]. In order to model label cor-
relations with a chain of binary classifiers, the classifier 
chains (CC) approach was introduced [36]. This method, 
which showed performance improvements in particular 
scenarios, is based on training classifiers such that the 
training data for each classifier is extended by including 
the target labels of the previous one, which would in a 
way resemble a chain order [36, 83]. The order of classi-
fiers is initialized randomly. In the context of HTS assays, 
the target label set of a particular assay is just considered 
as an extra-added feature for another assay that follows 
the chain order. Given this formulation, the labels of a 
particular dataset cannot be added as a feature to another 
one if there is a difference in terms of the number of 
training samples of each. In other words, missing labels 
for one dataset needs to be addressed before including it 

as a new feature for another different size dataset. Thus, 
we replace missing labels with negative labels and extend 
CC to classifier chains with a missing labels extension 
(CC-MLE). Treating missing labels as negative labels is 
one of the approaches to handle missing labels in MLC 
problems [45], as well as because negative labels in many 
cases reflect the majority of all target labels for the exam-
ined HTS assays that happen to be inactive in the assay. 
For DRABAL, however, we handle missing labels differ-
ently using active learning which helps in quantifying a 
probability score of interaction for each missing case 
instead of assuming it negative. In general, once trained, 
classifiers return probabilities of input samples to be 
members of the positive or negative classes. For example, 
a sample that has two positive nearest neighbors out of 
three neighbors, KNN (K = 3) classifier returns a prob-
ability score of 0.67. In this way, the returned value can 
be used to quantify the score (i.e. the probability score for 
a sample to be a member of the positive class). For sam-
ples with missing target labels, these scores can be used 
to replace the missing values. Since we train the model 
and then use its feedback for other samples with miss-
ing labels, we consider the setup to follow active learning 
approach.

Other than how DRABAL handles missing labels, there 
are two more differences relative to CC-MLE. CC-MLE 
will generate different outcomes depending on the order 
of the labels used to extend the feature sets. DRABAL, on 
the other hand, using the Bayesian network determines a 
specific order of labels to extend feature sets, while sat-
isfying existing dependencies between the target labels. 
Also, CC-MLE adds one feature to the second model, two 
features to the third model, and continues until |L| − 1 
features are added to the final model, where |L| is the total 
number of target labels. DRABAL adds features based on 
dependency and thus, for any model, any number of fea-
tures can be added and, for example, it is not necessary 
that the last model will have |L| − 1 added features. In 
addition to differences of DRABAL and CC, we point out 
that the main differences between DRABAL and BR-RF. 
BR-RF does not address potential correlation between 
target class labels in any manner. Instead, DRABAL 
exploits existing relationships between the labels and 
incorporate them as part of the training of the classifiers.

While on one hand we seek to model correlation or 
dependency between the HTS assays, we lack a considera-
ble amount of information about activities of compounds 
that were not reported in a particular assay. Some com-
pounds that were reported as either active or inactive in 
a specific HTS assay were not tested in other ones. This 
type of missing information imposes a challenge for the 
MLC classification task. Although in recent years MLC 
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has gained a noticeable amount of interest, most of the 
existing approaches do not adequately address the abil-
ity to handle data with missing labels [34]. Very recently, 
there have been several studies on proposing MLC algo-
rithms that can directly deal with missing label problems 
[34, 45, 84, 85]. These methods are not necessarily prob-
lem transformation methods, where state-of-the-art exist-
ing classifiers can be used and sometimes require extra 
information a domain-expert may need to provide, as in 
[85]. In our work, we present a novel problem transforma-
tion method (i.e. one suitable for a wide variety of clas-
sifiers) that can handle missing labels for MLC problems.

DRABAL: our proposed solution
DRABAL is a novel problem transformation MLC solu-
tion, based on inferring dependencies and handling 
missing labels. As illustrated in Fig. 4, DRABAL has two 
learning phases including a Bayesian learning phase and 
an active learning phase for building the MLC models.

Bayesian learning phase: learning conditional dependencies 
between HTS assays
For the first phase, we learn the full structure of a Bayes-
ian network (BN) that models dependencies between the 
discrete target labels of the HTS assays. BN is a probabil-
istic graphical model that represents a set of random var-
iables and conditional dependencies, among them using 
a directed acyclic graph (DAG). Instead of randomly 
assuming the relationships between the target classes in 
the MLC setup like in CC, BN properly defines all rel-
evant conditional dependencies. For learning the struc-
ture of the BN, the pairwise conditional independencies 
between the target labels are tested. For two target labels 
yi and yj, they are considered conditionally independent 
if Eq. (7) holds.

Once conditional independence is computed between 
every pair of HTS assays, a DAG is built using a Build-
PDAG algorithm [86]. Given this representation, nodes 
represent target labels of HTS assays and edges corre-
spond to the direct influence that assays would have on one 
another. Figure  5 illustrates the BN structure we learned 
for the examined HTS assays, from the PubChem BioAs-
say Database. Given a classifier Cl learned for an assay l and 
pa(Cl) as the set of parents of the classifier Cl as inferred 
by the BN, the probability for a chemical compound xk to 
be active (i.e. label value is ‘1’) is defined as in Equation [8].

As an example, for AID 1458 HTS assay (see Fig.  5), 
p(CAID1458 = 1|xk) is expressed as in Equation [9].

(7)P
(

yi, yj|Ȳ
)

= P
(

yi|Ȳ
)

× P
(

yj|Ȳ
)

; Ȳ = Y −
{

yi, yj
}

(8)p(Cl = 1|xk) = p(Cl = 1|pa(Cl) = 1, xk)

Intuitively, a chemical compound that is active in both 
AID 485313 and AID 588342 assays, affects the decision 
of whether it is active or not in AID 1458.

(9)

p(CAID1458 = 1|xk)

= p(CAID1458 = 1|CAID485313 = 1,CAID588342 = 1, xk)

Fig. 4  Illustration of our proposed method DRABAL. DRABAL has two 
learning phases including a Bayesian learning phase and an active 
learning phase for building the multi-label classification models

Fig. 5  Bayesian network for five used HTS assays. Size of the node 
indicates the number of positive interactions reported in the cor‑
responding HTS assay
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Active learning phase: employing classifier feedback 
as dependency features
After learning the BN structure, we topologically sort the 
nodes of the graph and then, start building a classifier 
for each node in this order (see Fig.  4). Active learning 
(AL), is based on the idea of establishing a feedback loop 
between the training set and the classifier to improve 
prediction performance [87]. Motivated by this idea, we 
use the actual output scores of the learning algorithms 
(or classifiers) as a type of new feature to be shared based 
on the dependency structure inferred in the first phase. 
For the previously given example, classifiers are trained 
for assays AID 485313 and AID 588342. The probability 
scores for compounds to be active based on these clas-
sifiers are then shared (i.e. added as extra features to 
training set) with AID 1458. There upon, a classifier for 
AID 1458 can be trained based on this feedback infor-
mation, propagated from its parents in the BN. This type 
of shared information between every classifier and its 
parents in the BN structure, emulates an active learning 
step. An intrinsic advantage of this type of learning for 
MLC, is that it can alleviate the problem of a poor classi-
fier which will make erratic predictions and consequently 
affect the subsequent classifiers [88]. Since we also utilize 
this feedback from the classifiers, we can easily replace 
missing labels with probability scores a classifier assigns 
after training.

Once all models are trained based on the DRABAL 
framework, for each new testing instance, all classifiers 
should be applied following the topological order of the 
BN. For any new instance, after the classifier gives a deci-
sion on its type of activity, its probability of being positive 
is propagated to children nodes (i.e. dependent classifi-
ers) of the network. Finally, every classifier will predict 
the decision over this new instance given the shared 
knowledge from other classifiers. Pseudocode of DRA-
BAL is given in Additional file 4.
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