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Analysis of drug–endogenous human 
metabolite similarities in terms of their 
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Abstract 

In previous work, we have assessed the structural similarities between marketed drugs (‘drugs’) and endogenous 
natural human metabolites (‘metabolites’ or ‘endogenites’), using ‘fingerprint’ methods in common use, and the 
Tanimoto and Tversky similarity metrics, finding that the fingerprint encoding used had a dramatic effect on the 
apparent similarities observed. By contrast, the maximal common substructure (MCS), when the means of determin-
ing it is fixed, is a means of determining similarities that is largely independent of the fingerprints, and also has a clear 
chemical meaning. We here explored the utility of the MCS and metrics derived therefrom. In many cases, a shared 
scaffold helps cluster drugs and endogenites, and gives insight into enzymes (in particular transporters) that they 
both share. Tanimoto and Tversky similarities based on the MCS tend to be smaller than those based on the MACCS 
fingerprint-type encoding, though the converse is also true for a significant fraction of the comparisons. While no 
single molecular descriptor can account for these differences, a machine learning-based analysis of the nature of the 
differences (MACCS_Tanimoto vs MCS_Tversky) shows that they are indeed deterministic, although the features that 
are used in the model to account for this vary greatly with each individual drug. The extent of its utility and interpret-
ability vary with the drug of interest, implying that while MCS is neither ‘better’ nor ‘worse’ for every drug–endogenite 
comparison, it is sufficiently different to be of value. The overall conclusion is thus that the use of the MCS provides 
an additional and valuable strategy for understanding the structural basis for similarities between synthetic, marketed 
drugs and natural intermediary metabolites.
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Background
It is becoming increasingly clear that the transmem-
brane transport of drugs and xenobiotics via any trans-
phospholipid bilayer diffusion is probably negligible, 
and thus that they have to “hitchhike” on the transport-
ers of intermediary metabolism in order to get into cells 
[1–19]. Consequently, we [2, 20–22] and others (e.g. 
[23–27]) have recognised, on the basis of the principle of 
‘molecular similarity’ [28–30], that successful, marketed 
drugs ought to bear structural similarities to endogenous 

(intermediary) metabolites (that we shall sometimes call 
‘endogenites’ [2]).

Following an earlier sortie [2], we have used the avail-
ability of a carefully curated reconstruction of the human 
metabolic network, Recon2 [31–33], to answer this ques-
tion in a straightforward manner. Now ‘similarity’, as an 
essentially ‘unsupervised’ concept, depends on the met-
rics of similarity used, and arguably is best judged post 
hoc simply in terms of its utility [29, 34]. Most strategies 
for assessing the similarities of small molecules use a 
means of encoding their 2D structures as bitstrings and 
comparing the similarities of those bitstrings (e.g. [29, 30, 
35–41]). Thus, for the drug–endogenite comparison, it 
was clear that even using the common Jaccard/Tanimoto 
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similarity metric the rank and magnitude of the similari-
ties could vary widely between different encodings [20].

However, there are many different similarity coef-
ficients even for (binary) bitstrings (Todeschini and 
colleagues compared 51 [42]), and just using the 
MACSS166 encoding [43] and the Tversky similar-
ity [44, 45] with different α and β coefficients we 
again found an enormous variation (both qualitative 
and quantitative) [22] in the similarities determined 
between two molecules as α and β were varied. A par-
ticular recognition here, however, was the utility of 
interrogating with just sub-fractions of the molecule 
that were effectively exploited when α and β (at a con-
stant α + β) were least similar to each other.

One scoring that is resistant to the detailed encod-
ing used is based on the simple presence or absence of 
a given substructure, and assessing the frequencies and 
presence of some 600 common substructures provided 
a novel and useful metric, even with Tanimoto [21]. 
Again, however, the magnitude of the similarities deter-
mined depended on what fraction of the substructures 
(ranked in terms of their frequency) were used [21], and 
this encoding did not directly favour larger substructures 
over smaller ones.

All of these have been of value in recognising that 
approved, marketed drugs did share structural similari-
ties with endogenous metabolites. A related question 
surrounds the “natural” substrates of particular trans-
porters that transport pharmaceutical drugs, but this 
could not directly be answered from similarity considera-
tions alone.

One structural feature that is largely (but not entirely, 
e.g. [46]) independent of both the encoding and the 
similarity used, at least if represented as a 2D graph of 
linked atom types, is the ‘maximum common substruc-
ture’ between two molecules (variously referred to as 
the MCS or MCSS). It has achieved especial prominence 
because of the frequent use of ‘scaffolds’ in medicinal 
chemistry, where the scaffold is effectively equivalent to 
a large, common substructure (e.g. [47–52]). Although 
its calculation is computationally much more demand-
ing than are many of the other calculations in similarity 
cheminformatics [46, 53–65] (and see below), this essen-
tial independence from both the encoding and the simi-
larity metric means that it is a principled strategy that 
we considered worth exploring for the drug–metabo-
lite similarity problem. It was not necessarily clear that 
MCS would be better, but it was recognised that it would 

provide different information; in particular an MCS 
is a graph of connected atoms, with a clear chemical 
meaning, while a fingerprint is essentially uninterpret-
able without knowledge of how it was generated (and in 
many cases, e.g. for isomers, it is not unique, whereas an 
MCS is an MCS). The results of this analysis are given 
here.

Methods
The list of endogenous metabolites and marketed drugs 
was precisely as used previously [20–22], and we used 
the KNIME workflow environment (e.g. [66–72]) to 
write the appropriate workflows for these analyses. In 
particular, we used the RDKit [73] (http://rdkit.org/) 
MCS nodes for the MCS calculations. To provide a 
metric for the MCS, we followed the recent analyses of 
Bajorath and colleagues [65, 74, 75]. Thus they recog-
nised that a similarity equivalent to the Tanimoto simi-
larity for a molecule A with a total of |A|b heavy atoms 
and another molecule B with |B|b heavy atoms, could be 
written in the form [74]

where |MCS(A, B)|b is the number of heavy atoms in the 
MCS. Elementary inspection of Eq.  (1) shows that the 
value of the TcMCS does, as expected, range between 0 
and 1.

The Tversky similarity coefficient Tv(A, B) coefficient 
[44, 76–78] is defined as:

where a and b are the number of bits that are set to be 
‘on’ (1 bits) only in molecular fingerprints A or B, respec-
tively, and c is the number of on bits shared by both A 
and B. A is an interrogatory molecule while B is the mol-
ecule being interrogated as to its similarity. The smaller 
the value of α, the larger the contribution of B as a sub-
structure of A (and hence to its similarity with A). The 
larger the value of α, the larger the contribution of B as a 
superstructure of A (equivalently A as a substructure of 
B). For α = β = 1 the coefficient is numerically equivalent 
to the Tanimoto similarity.

A similar strategy could be followed [65, 75] (Eq.  3) 
to report a Tversky similarity as per Eq.  2, with α and 
β having their usual meanings as in the previous para-
graph [22, 44, 76–78]. As before, we studied the effect of 
varying α while the sum of α and β was either 1 or 2.

(1)TcMCS(A,B) =
|MCS(A,B)|b

|A|b + |B|b − |MCS(A,B)| b

(2)Tv(A, B) = c/(αa+ βb+ c),

(3)TvMCS(A,B,α,β) =
|MCS(A,B)|b

α(|A|b − |MCS(A,B)|b)+ β(|B|b − |MCS(A,B)|b)+ |MCS(A,B)|b
, α,β ≥ 0

http://rdkit.org/
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Specifically, the MCS algorithm used in this study 
was the fast connected MCS algorithm fMCS, as imple-
mented in RDKit (see http://www.dalkescientific.com/
writings/diary/archive/2012/05/13/fmcs.html and http://
rdkit.org/Python_Docs/rdkit.Chem.fmcs.fmcs%27-pysrc.
html). We used Python 2.7 + the Python RDKit package 
to generate [for all A and B’s] the MCS SMARTS string, 
the a,b, and MCS Atom counts; as well as the Tanimoto-
like MCSS.

Results
One drug versus all drugs plus endogenites
In our previous work [20], where we clustered marketed 
drugs on the basis of their chemical structures, this was 
simply a prelude to comparing them with metabolites 
but we did not dig down into the clusters so formed at 

any level of detail. Here, it was of initial interest to estab-
lish whether the MCS strategy did indeed return as most 
similar drugs containing a particular scaffold. To this end, 
we chose diazepam, as an example of a ‘first generation’ 
antipsychotic. As expected, it showed a shared pedigree 
with other related benzodiazepine molecules (Fig.  1). 
Such molecules were less similar to ‘second generation’ 
molecules such as clozapine and olanzapine [79–81] that 
are themselves part of a (large) family of such molecules 
with a complex pharmacological profile [82]. Figure  1a 
shows the various molecules as a function of the number 
of heavy atoms in the MCS when whole (aromatic) rings 
must be present in the MCS. Only 23 molecules have 9 
or more heavy atoms in the MCS (Fig.  1a). All are well 
known antipsychotic drugs. The metabolites with the 
largest MCS (6 heavy atoms) are salsoline and salsolinol 

Fig. 1  Maximal common substructure (MCS) between diazepam (in red) and other marketed drugs and metabolites. The size of the MCS is plotted 
for various drugs (blue) and endogenous metabolites (green). A KNIME workflow was constructed, including using the RDKit MCS module and 
interrogated with the structure of diazepam. a Distribution of MCS values when the RDKit MCS was set to use only intact rings. b The same without 
that restriction. In both cases, the structures of the closest molecules are shown. c A comparison of the Tanimoto similarity of diazepam and other 
drugs and endogenites using two common fingerprint encodings (ECFP4 and MACCS). The structures of those exceeding 0.5 in each encoding are 
shown.

http://www.dalkescientific.com/writings/diary/archive/2012/05/13/fmcs.html
http://www.dalkescientific.com/writings/diary/archive/2012/05/13/fmcs.html
http://rdkit.org/Python_Docs/rdkit.Chem.fmcs.fmcs%2527-pysrc.html
http://rdkit.org/Python_Docs/rdkit.Chem.fmcs.fmcs%2527-pysrc.html
http://rdkit.org/Python_Docs/rdkit.Chem.fmcs.fmcs%2527-pysrc.html
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(which is not unreasonable, as they are condensation 
products of dopamine and acetaldehyde [83–87]). When 
this ‘whole-ring’ assumption is relaxed (Fig. 1b), a some-
what different pattern emerges, though we mark only 
those molecules with at least 16 heavy atoms in the MCS. 
Now the closest three metabolites (FAD, FMN and ribo-
flavin) have 11 heavy atoms in the MCS, and while this 
strategy retains the main molecules of the ‘rings-only’ 
strategy, it now lets in molecules such as ‘statins’ (fluvas-
tatin, pitastatin), anticancer Vinca alkaloids (vinblastine, 
vincristine, vindesine), and quinolone antibiotics (rosox-
acin) whose basic scaffold is really nothing like that of a 
benzodiazepine. Note that Fig. 1 consists in total of 1112 
metabolites and 1381 marketed drugs, making 2493 mar-
keted drugs plus endogenous metabolites in toto. All 23 
diazepams cluster together, and their lowest TS to diaz-
epam when the encoding is the MCS is 0.667. By con-
trast, many more substances appear similar when some 
of the classical fingerprints are used. Figure  1c shows 
the Tanimoto similarities for diazepam versus all drugs 
(blue) and endogenites (green) for two RDKit encod-
ings (MACCS and ECFP4), where 175 molecules have a 
MACCS-TS  >  0.5, though only 9 molecules show simi-
larities above 0.5 for both encodings. (The closest metab-
olites, which also do, are methylene tetrahydrofolate and 
vitamin D2.) The simplest interpretation is really that the 
MCS is much more discriminating for what it says, i.e. 
the maximum common substructure or scaffold, but that 
this leads to a more natural and useful clustering. Finally, 
here, Fig. 2 and Additional file 1 shows the workflow used 
for Fig. 1a, b, and illustrates how we indicated the MCS in 
the Excel sheet to which the analyses were output. Thus 
we preferred the MCS that required that if rings were 
present they had to be present in their entirety in both 
molecules to contribute to the MCS.

MCS of all drugs and/or metabolites against each other
While this was considerably more demanding in com-
puter time than our previous similarity analyses based 
on various fingerprints coupled to Tanimoto or Tver-
sky similarity [20–22, 88], it proved possible and use-
ful to do. A run of all drugs against all metabolites took 
approximately 3 days on a reasonably modern PC (Intel 
i7-4930K, 6 cores hyperthreaded cpu (12 virtual cores) 
@ 3.4  GHz, 64  GB Ram). We here used MACCS166 as 
the ‘main’ fingerprint. Others such as ECFP (and FCFP 
etc.) were not done since (1) comparison of MCS ver-
sus all possible fingerprints would have been completely 
unwieldy, and (2) we had compared the fingerprints 
with each other in our previous papers. Since MACCS 
gave among the largest similarities [20], we also con-
sidered that it would provide the sternest ‘test’ of the 
utility of MCS. Figure  3 shows heat maps for the three 

comparisons (endogenites–endogenites, drugs–drugs, 
drugs–endogenites), analogous to those performed [20] 
using molecular encodings. Relevant Excel sheets are 
given in the Additional files 3, 4, 5 to allow readers to 
explore further, but these are very rich in information. 
Thus, although (Fig.  1a) they tend to give more ‘sen-
sible’ hits where scaffolds exist, numerically they only 
attain large Tanimoto similarities for rather similar drug 
or endogenite classes. These classes may be seen as blue 
clusters in Fig. 3, some of which are marked therein. As 
before, there are larger endogenite clusters, where CoA 
derivatives (bottom left of Fig.  3a) and sterols (blu-
est cluster nearer the middle) again clearly dominate, in 
contrast to the much ‘bittier’ population of drug space 
(Fig. 3b). The largest clusters of similarity of drugs versus 
endogenites (Fig. 3c) are again sterols (largest blue clus-
ter, towards the top left), with others (marked in Fig. 3c) 
including amphetamines (similar to various neurotrans-
mitters such as (nor)adrenaline), and nucleosides.

While the calculation of the MCS values was quite 
demanding, the calculation of other similarities (see 
“Methods” section) was much simpler, as those used 
depended only on the number of heavy atoms in the mol-
ecules being compared and those in their MCS. Since the 
Tversky similarity metric had proven (at some values of 
α and β) to be much more appropriate than Tanimoto 
for highlighting drug–endogenite similarities, we again 
used it. Comparing drugs (interrogating molecule) versus 
endogenites (interrogated library) it is clear (Fig. 4a) that 
for values of α such as 0.2 (when α + β = 1) the Tversky 
similarity of at least one endogenite for virtually every 
drug exceeds 0.5 when using the MCS as the encoding, 
whereas this is much less true from when the Tanimoto 
similarity (α = β = 1) is used (Fig. 4a). The same is true 
for the converse [where the interrogating molecule is an 
endogenite (Fig. 4b)].

Some examples
It seems that the MCS method of molecular compari-
son, when all rings are included intact, gives much more 
reliable measurements of useful similarity as judged by 
scaffolds. As ever, the different metrics give different indi-
cations of how similar two molecules seem to be. To this 
end, we interrogated the endogenites with a few drugs 
carefully chosen to illustrate the kinds of variation observ-
able, first illustrating their differences with (1) an MCS-
based similarity with Tversky α 0.2 and β 0.8 and (2) a 
MACCS encoding and a Tanimoto similarity as in [20].

Figure  5a shows the very small and hydrophilic met-
formin (MW 129.17), and how the MCS/Tversky encod-
ing shows it to be much more metabolite-like than does 
the MACCS_Tanimoto analysis. Partly this is because its 
small size means that many bits are set low and so the 
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TS is low (see [22, 89–91]). Nevertheless, its structural 
similarity to creatine (most similar via the Tversky met-
ric) and other organic cations is consistent with the fact 
that it is taken up by SLC22 family members (known 
as Organic Cation Transporters in the older literature 
[92–99]). Benzylpenicillin (334.39) illustrates a couple 
of interesting features (Fig.  5b). First is that among the 
drugs (in blue) it clusters most closely with the penicil-
lins and then with the cepahlosporins, as expected. Sec-
ondly, the metabolites to which it is most similar include 
several N-substituted kynurenine derivatives, consistent 

with an anticipation that at least some of them might 
share a similar transporter. This is in fact the case (SLC15 
family, e.g. [100–104]). Pravastatin (MW 424.53) is one 
of the so-called ‘statin’ class of drug that can inhibit 
HMGCoA reductase. As is clear from Fig. 6a, apart from 
the related natural products simvastatin and lovastatin, 
it does not show any obvious similarity or major MCS 
to any other so-called statin (e.g. atorvastatin (Lipitor) 
or rosuvatstain (Crestor)), even though they all share a 
glutarate or related lactone group. Arguably this reflects 
the fact that much of their activity is in fact due to 

Fig. 3  Heat map of the comparison of the Tanimoto similarities of the MCS for a endogenites versus endogenites, b drugs versus drugs, c drugs 
versus endogenites



Page 7 of 17O’Hagan and Kell ﻿J Cheminform  (2017) 9:18 

interactions (of the other parts of the molecule) with 
other targets (e.g. [105–119]), and expression profiling 
demonstrates clearly [120] that they lack a unitary mode 
of action. Consequently it is less surprising that MCS 
performs poorly in this regard, since they really do not 
have much of a common substructure. Verapamil (MW 
454.6) is a Ca++-channel blocker with multiple disease 
indications (implying considerable promiscuity, consist-
ent with a log P value of 3.79 http://www.drugbank.ca/
drugs/DB00661). It is also considered one of the more 
rapidly transported drugs in Caco-2 cells (e.g. [14, 15]). 
According to ChEMBL https://www.ebi.ac.uk/chem-
bldb/index.php/compound/inspect/CHEMBL6966, 
it interacts with some 172 targets, including 11 uptake 
transporters, which presumably accounts for this. The 
central core, consisting of a long, branched and pre-
dominantly carbon-based linker, and the heterogeneous 
nature of the molecules to which it is ‘similar’ (Fig. 6b), 
would also be consistent with this.

Propranolol (Fig.  7a) (MW 259.15), another drug 
enjoying a high rate of transport through Caco-2 cells 
[14, 15], is a classical β-adrenergic receptor blocker. 
Unsurprisingly, the analysis pulls out many analogues 
both as drugs and (for metabolites) among analogues 
of (nor)adrenaline (synonym (nor)epinephrine) such 
as metanephine. As judged by the data deposited in 
ChEMBL https://www.ebi.ac.uk/chembldb/index.php/
compound/inspect/CHEMBL27 it has 166 known tar-
gets, including 9 uptake transporters. Its structural 
similarity to noradrenaline means that unsurprisingly 

these include the very active serotonin, dopamine and 
noradrenaline transporters. Finally, we show a drug that 
is among the least obviously metabolite-like, viz. clo-
zapine (Fig.  7b), and also rather hydrophobic; only two 
endogenites have a Tanimoto similarity exceeding 0.5, 
though its similarity to related drugs is indeed reason-
ably high. (The same phenomena attach to sepantronium 
bromide, a potent drug candidate for which significantly 
more than 99% of uptake flux into cells occurs via a sin-
gle transporter (SLC35F2) [11], and for which any phos-
pholipid bilayer transport is consequently negligible [10, 
13, 17, 121]; data not shown.)

Although the data are implicit in Figs.  5, 6, 7, it is 
worthwhile (Table  1) just tabulating the number of 
molecules for which the difference in the encodings 
(MACCS_TS–MCS_Tv) is positive and negative for the 
six molecules, as this makes it clear how much they can 
differ in either direction.

Accounting for differences in the similarity metrics
Even just with these six drug molecules, it is clear that the 
degree of similarity with endogenites varies both qualita-
tively and quantitatively depending on what is the drug 
and what is the encoding and similarity metric. To this 
end, we have determined the differences in the similarity 
between these drugs and endogenites for each endogenite, 
and sought to understand what in structural or descrip-
tor terms might account for it (in the way that we know 
that low numbers of bits in the bitstring, as occurs more 
for smaller molecules, necessarily makes the MACCS 

Fig. 4  Cumulative Tversky similarities for various values of Tversky α and β of a a drug to its closest endogenite, b an endogenite to its closest drug

http://www.drugbank.ca/drugs/DB00661
http://www.drugbank.ca/drugs/DB00661
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL6966
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL6966
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL27
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL27
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Fig. 5  Relationship between MCS encoded as a Tversky similarity (α, β = 0.2, 0.8) and MACCS-encoded Tanimoto similarity from selected drugs 
with other marketed drugs (blue) and endogenous metabolites (green), highlighted at an arbitrary ‘break’ for each class and where the numbers 
involved were small enough to permit legibility. The straight lines are those of best fit. a Metformin. b Benzylpenicillin
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Fig. 6  Relationship between MCS encoded as a Tversky similarity (α, β = 0.2, 0.8) and MACCS-encoded Tanimoto similarity from selected drugs 
with other marketed drugs (blue) and endogenous metabolites (green), highlighted at an arbitrary ‘break’ for each class and where the numbers 
involved were small enough to permit legibility. The straight lines are those of best fit.  a Pravastatin. b Verapamil
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Fig. 7  Relationship between MCS encoded as a Tversky similarity (α, β = 0.2, 0.8) and MACCS-encoded Tanimoto similarity from selected drugs 
with other marketed drugs (blue) and endogenous metabolites (green), highlighted at an arbitrary ‘break’ for each class and where the numbers 
involved were small enough to permit legibility. The straight lines are those of best fit. a Propranolol. b Clozapine
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Tanimoto similarity appear smaller [21, 36, 77, 89, 122–
126]). To this end, we set up the following strategy:

Read Drugs + Recon2—the ‘A’ molecules. Then select 
the six named ‘B’ molecules, as in Figs. 5, 6, 7 and Table 1. 
Loop over each ‘B’. For each ‘A’ paired with a ‘B’ calcu-
late the MACCS-TS & Tversky-like MCS (alpha =  0.2, 
beta = 0.8), and their difference Delta. Calculate all avail-
able scalar (non-vector) RDKit descriptors of each ‘A’—
these are the input features of the model. Remove any 
constant features (there were none). Remove one of each 
pair of correlated features (r ≥ 0.98); 13 feature columns 
removed. Split into 70:30 train:test set. Use a Random 
Forest regression model (200 trees; see [127, 128]) to 
predict delta as the objective function. Collect the Out-
of-box and Test predictions for each molecule ‘B’. Plot a 
Scatter plot of Actual versus Predicted for each ‘B’ on the 
test predictions [127].

Although trends varied for each of the 6 drugs in 
Figs.  5, 6, 7, no individual descriptor such as S log P 
could, on its own, account for the differences between 
MACCS_Tanimoto and MCS_Tversky. However, a ran-
dom forest model could do so when out-of-bag tests 
were done, with the predictions and contributions of the 
descriptors given for the six drugs in Fig. 8. It is clear (1) 
that the differences are deterministic (Fig.  8a), but (2) 
that the basis for them, i.e. the features that contribute to 
those differences, is bespoke to each drug (Fig. 8b). The 
same was true of 10 other drugs selected at random (data 
not shown).

Discussion
It is clear that, even when using MCS and Tversky similar-
ities where most drugs do manifest a reasonable similarity 
to at least one endogenite, the closeness of that similar-
ity can be quite variable. If the effectiveness of drugs is 
indeed related to their ability to interact with binding 
sites of proteins, including transporters, that also inter-
act with natural metabolites, this bears some explana-
tion. One straightforward explanation, of course, is simply 
that we still have to discover many of the naturally occur-
ring metabolites, and that the excellent Recon2—based 
on metabolic enzymes that are encoded by the genome 

sequence plus a few vitamins—is useful only insofar as 
it knows about them. Several general kinds of argument 
imply that this may indeed be the case. The first is that 
we can detect many more small molecules as mass spec-
tral signals in biological samples than we can presently 
identify [129], possibly as a result of unknown enzyme 
promiscuity [130–132]. Similarly, from the point of view 
of metabolic network reconstructions, the latest version 
of Recon2, Recon2.2 [33], contains 2652 unique chemi-
cal species, some 60% more than in Recon1 [31, 133], 
implying that we are far from discovering them all, and 
some are known still to be absent [9]. Thirdly, many of 
the metabolites may not be entirely the result of the host’s 
biosynthesis, being derived from dietary sources [134, 
135] and including biotransformations in the gut. At an 
elementary level this is clearly true, since essential amino 
acids, fatty acids and vitamins are (by definition) not 
synthesised by the host. However, as known elements of 
human metabolism, these are generally taken into account 
and appear in the metabolic reconstructions, albeit many 
‘known’ metabolites still do not [9]. The ability to trans-
port such compounds may be of relatively recent evolu-
tionary origin, much as is the ability of mammals to digest 
lactose in adulthood [136–138] (which is also highly vari-
able between individuals and indeed races [139, 140]). We 
also note that the experimental serum metabolome listed 
at http://www.serummetabolome.ca/statistics [141] refers 
to 2243 endogenous metabolites but 3363 exogenous 
metabolites, with the corresponding numbers for the 
human urine metabolome [142] being 1665 endogenous 
metabolites and 3363 exogenous metabolites.

At all events, when we compared the differences in the 
magnitude of the similarity between MACCS_Tanimoto 
and MCS_Tversky, it was clear that they could be positive 
or negative, although MACCS was more often the larger, 
but that no individual descriptor could account for these 
differences, even though they were clearly deterministic 
(as are the analyses). Overall, though, it is clear that the 
use of the MCS adds significantly to the armoury of simi-
larity strategies for those seeking to compare the struc-
tural similarities between synthetic drugs and natural 
biomolecules.

http://www.serummetabolome.ca/statistics
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Fig. 8  Random Forest prediction of the differences (Delta) between MACCS_Tanimoto and MCS_Tversky similarities. a Scatterplot with regression 
coefficients for 6 drugs. b Contribution of each of the retained RDKit features for each drug
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Conclusion
The extent to which two molecules are to be seen as ‘sim-
ilar’ in purely (2D) structural terms depends strongly on 
both their encoding and the similarity metric used, and 
this was the case for our drug–endogenite analyses as 
performed previously [20–22]. In the absence of ‘activity’ 
or ‘functional’ data, the only comparators for ‘closeness’ 
rely on purely unsupervised methods of analysis. It is 
clear that not all of a drug will typically bind to its ‘target’ 
(not least since some molecular features will have been 
designed in for other purposes, e.g. ADME). However, 
the extent of this is normally not known, and probably 
not knowable, and that necessarily underpins part of the 
functional variation in similarity.

One strategy to ensure that we pick up pertinent simi-
larities is to use as many methods as possible for encoding 
them, and we here sought to assess the maximal com-
mon substructure (MCS) as an additional useful similarity 

measure. MCS also has the advantage of having a clear 
chemical meaning in terms of a linked set of atoms. 
Although, again, the extent to which the MCS showed up 
similarities observable via the MACCS fingerprint varied 
significantly between drugs, the corresponding conclu-
sion was precisely that, as a consequence of this, the MCS 
was valuable as an additional method in such compari-
sons. To reiterate, we do not imply that MCS is ‘better’ 
or ‘worse’ than other methods, but we do think that the 
evidence shows that it is different and correspondingly 
valuable, and should thus be used in parallel with finger-
printing methods, whether separately or (as often done to 
advantage, e.g. [63, 143, 144]), via fusion methods. Finally, 
a referee wondered whether there might be a correlation 
between MCS-similarity to the nearest endogenite and 
bioavailability. The present analysis now opens up the 
possibility of answering precisely these and other such 
questions.

Table 1  Variation in sign

Molecule Positive difference MACCS_TS–MCS_Tv Negative difference MACCS_TS–MCS_Tv % with a positive difference

Clozapine 1366 379 78.3

Metformin 1034 711 59.3

Benzylpenicillin 1282 463 73.5

Pravastatin 1575 170 90.3

Propranolol 1172 573 67.2

Verapamil 1496 249 85.7
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