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Abstract 

Background:  Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual 
molecular library. Applying docking-based screening to large molecular libraries can be computationally expen-
sive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on 
message passing interface, relying on low failure rate hardware and fast network connection. Google’s MapReduce 
revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud 
resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of 
MapReduce include Apache Hadoop and the more recent Apache Spark.

Results:  We developed a method to run existing docking-based screening software on distributed cloud resources, 
utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking 
a publicly available target receptor against ∼2.2 M compounds. The performance experiments show a good parallel 
efficiency (87%) when running in a public cloud environment.

Conclusion:  Our method enables parallel Structure-based virtual screening on public cloud resources or commodity 
computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small librar-
ies first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open 
source from GitHub (https://github.com/mcapuccini/spark-vs).
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Background
Identification of new drug leads is a key process in drug 
development. In the pharmaceutical industry, a widely 
established approach for this is High-Throughput Screen-
ing (HTS), where large molecular libraries are screened 
against a bioassay in fully automated environments [1]. 
However, HTS is expensive and it has been shown to only 
produce a small number of hits or to have too many false 
positives and false negatives [2]. Structure-based virtual 
screening (SBVS) is a complementary in silico method 
[3] that has been successfully used to generate new drug 
leads [4, 5]. SBVS is cheaper and faster than HTS and it 
can be used in the early stages of drug development to 
predict if a chemical is likely to interact with certain 

targets. Typically, a docking-based SBVS workflow starts 
from a virtual molecular library and a target receptor 
structure. First, a preliminary preprocessing step, which 
is subject to the application scope, is performed. We 
don’t discuss the preprocessing phase in this paper as 
it depends on several parameters and because publicly-
available, ready-to-use libraries exist (e.g., ZINC [6]). 
After the preprocessing step, molecular docking software 
is used to dock each chemical in the library to the target 
receptor. For each molecule in the library, this step will 
produce a pose (which represents the orientation of the 
molecule in the target’s pocket) and a score. The higher 
the score, the more likely the predicted interaction is 
going to happen in reality. Hence, in the last SBVS phase, 
all of the poses are sorted by score and the desired num-
ber of top hits are returned.

In recent decades, methods in high-throughput struc-
tural biology allowed the production of massive virtual 
molecular libraries. ZINC [6] represents an excellent 
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example, as it contains 20M commercially available mol-
ecules in ready-to-dock format. Using large datasets in 
SBVS is challenging, due to the computational cost. How-
ever, SBVS is trivially parallelizable and many tools (e.g., 
Multilevel Parallel Autodock 4.2 [7] and OEDocking [8]) 
parallelize it through message passing interface [9] (MPI). 
Unfortunately, MPI implementations have some disad-
vantages. In fact, MPI just offers software developers an 
Application Programming Interface (API) for message 
passing. This means that, when writing MPI applications, 
the software developer has to write extra code to manage 
locality-aware scheduling, load balance and fault toler-
ance. As a result, many MPI-based applications must rely 
on fast network connections to provide scalability and in 
most cases they are not able to complete the computation 
in the event of a hardware fault. Therefore, to effectively 
run MPI-based applications, organizations need to have 
access to High Performance Computing (HPC) facilities.

Google pioneered Big Data analytics on inexpensive 
hardware with its MapReduce (MR) programming model 
(and implementation) [10]. In MR applications, problems 
like data distribution and locality-aware scheduling are 
managed by the underlying MR implementation, which 
is transparent to the software developer. In addition, 
the MR implementation takes care of possible hardware 
faults, so that the analysis can complete even if some 
cluster nodes die or if the network becomes temporary 
unavailable. These key features of MR make MR appli-
cations ready to be run in the cloud, where the virtual 
infrastructure is somewhat comparable to commodity 
hardware (in terms of performance and reliability), with 
almost no effort. Even if Google’s MapReduce implemen-
tation is not publicly available, some open source imple-
mentations exist (Apache Hadoop [11] is probably the 
most widely used).

Google’s MR has some limitations. MR is based on an 
acyclic data flow model, which penalizes many popular 
applications where the same dataset needs to be accessed 
in multiple iterations (e.g., machine learning and graph 
algorithms) [12]. In fact, the lack of features like data-
set caching, accumulators and broadcast variables, and 
native workflows support, makes it hard to develop scien-
tific applications. Apache Spark is an open source cluster-
computing framework for the processing of large-scale 
datasets, which overcomes the limitations of MR, while 
retaining scalability and fault tolerance [12].

Resilient Distributed Datasets (RDDs) represent the 
core component of Spark [13]. An RDD is an abstrac-
tion of a dataset that is partitioned through the cluster 
and that can therefore be operated on in parallel. RDDs 
offer almost the same primitives of a standard Scala 
[14] collection, adding transparent support for locality-
aware scheduling, fault tolerance and in-memory dataset 

caching. Finally, RDDs can be loaded from any mount-
able distributed file system, Hadoop Distributed File 
System (HDFS) or any other Hadoop-compatible input 
source. However, when data is read from a distributed file 
system, locality-aware scheduling cannot be carried out 
since such file systems do not provide enough informa-
tion to the Spark engine.

The applicability of MR-oriented frameworks to virtual 
screening has already been investigated. For instance, 
Ahmed et  al. [15] implemented ligand-based virtual 
screening in Spark, showing good scalability in a cloud 
environment. Zhao et  al. [16]  described a Hadoop-
based infrastructure aimed to make the storage of mas-
sive molecular libraries and the docking procedure easier 
perform for chemists. AutoDockCloud by Ellingson and 
Baudry [17] is another Hadoop molecular docking imple-
mentation. Nevertheless, in the two SBVS studies, the 
authors show performance metrics running their tools 
against only a few thousand molecules on bare-metal, 
high-performance clusters. Furthermore, the Hadoop 
nature of these projects limits their performance, since 
Spark-based applications are overall faster (as Shi et  al. 
pointed out [18]).

In this paper we introduce a method for large-scale 
SBVS on public cloud resources. This represents an 
advancement over the earlier work by Ellingson and 
Baudry, as they acknowledged that further refinement 
in AutoDockCloud was needed in order to run their 
method on public cloud providers [17]. Furthermore, to 
the best of our knowledge, in this paper we report for 
the first time a success story on scaling SBVS over mil-
lions of molecules, using public cloud resources. This 
achievement is relevant for organizations without access 
to an HPC system, since public cloud resources are read-
ily available with a pay-per-use pricing model, without an 
upfront cost.

Results
We developed a method for parallel SBVS following 
the MR approach, which enables the screening of large 
molecular libraries on public cloud resources or on com-
modity hardware clusters. The method is implemented 
in Apache Spark and it is distributed as an open source 
library, named Spark-VS, along with some example 
ready-to-run SBVS pipelines.

Using Spark-VS, the user can define custom SBVS 
pipelines with a high level API (which is based on the 
Scala programming language [14]). Despite the fact that 
the user needs to be familiar with some basic concepts 
in Spark and Scala, we believe this to be particularly con-
venient as SBVS applies to many use cases and the user 
may want to fine-tune the workflows. Figure 1 shows an 
example pipeline that was defined using Spark-VS. Once 
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the pipeline has being defined, it can be packaged like a 
standard Spark application to be submitted to a Spark 
cluster. When using public cloud resources, the effort of 
starting a Spark cluster boils down to the execution of a 
setup script.

Data input
When loading a text file to an RDD, Spark normally splits 
it line-by-line. Nevertheless, most molecular 3D repre-
sentations consist of multiple lines. The Structure Data 
File (SDF) is a handy, multiline format that can be used to 
store 3D molecular structures along with some metadata 
(e.g., identifier and docking score) [19]. Spark-VS can 
read SDF files and properly split them across the cluster 
thanks to a custom record reader that we defined. Since 
each instance of the docking program takes some time 
to initialize, it is good to feed each docking process with 
multiple molecules. On the other hand, if too many are 
passed together, load balancing becomes harder. For this 
reason, the custom SDF input format takes a chunk size 
parameter (default: 30) that controls the number of mol-
ecules to be loaded into a single RDD record.

Parallel screening
OEDocking TK [20] was used as the underlying docking 
software. Even if this is a commercial software, free aca-
demic licenses are available. OEDocking TK provides a 
C++ API that we used to implement a light-weight dock-
ing executable, which takes a chunk of molecules from 
the standard input, docks them to a particular receptor 
(available on each node through the addFile primitive) 
and produces a chunk of poses (with the relative score) 
in the standard output. Using the standard input and 
the standard output in this way is very convenient. In 
fact, Spark-VS uses the map RDD primitive to pipe each 
RDD record to a docking executable instance via stand-
ard input and takes the results back via standard output. 

This contrasts to the implementations by Zhao et al. [16] 
and by Ellingson and Baudry [17] where the input chunks 
are passed to the docking program and read back to the 
Hadoop framework using local files. This impacts per-
formance, since unlike pipes (that are fully operated in 
memory), files are stored to the disk.

RDDs offer some convenient primitives to do the post 
processing part of SBVS. For instance, Spark-VS uses the 
saveAsTextFile primitive to handle persistence on a distrib-
uted storage. However, the built-in sortBy primitive is not 
suitable for SBVS. The Spark primitive assumes small RDD 
records so shuffling the relatively large SDF representa-
tions through the network would lead to a large overhead. 
Fortunately, we figured out a simple workaround to avoid 
this. Instead of performing distributed sorting, Spark-VS 
collects ID/Score tuples for each pose and efficiently sorts 
them serially. Then, using the RDD filter primitive, Spark-
VS retrieves the top scoring molecules by ID.

With the aim of testing our parallel implementation, 
we ran OEDocking TK serially over 1000 molecules that 
were randomly drawn from the benchmark dataset. We 
observed that the output for the parallel implementa-
tion did not differ from the one that we got in the serial 
execution. We have provided this validation procedure 
along with Spark-VS and it can be easily reproduced by 
running in local mode.

Experiments
Experimental settings
We deployed a standalone Spark cluster, along with 
HDFS, on the CityCloud [21] public cloud provider using 
SparkNow [22] for host cloud and virtual machine pro-
visioning. More specifically, we setup 21 nodes with 4 
virtual CPUs (vCPUs), 8 GB of RAM, 20 GB of ephem-
eral storage and 40 GB of block storage each. This is a 
fully virtualized environment that, in terms of resources, 
resembles a commodity computers cluster. Since in a 
Spark cluster, one node (namely, the master node) acts as 
a controller, the maximum level of parallelism was 80 in 
our case.

Benchmark
We benchmarked our method and the Spark-VS imple-
mentation, screening HIV-1 protease receptor against 
the whole SureChEMBL library [23] downloaded in 
ready-to-dock format from ZINC. The raw SureChEMBL 
dataset contains 17M compounds, retrieved from pat-
ent documentation. However, the ready-to-dock version 
contains only ∼2.2 M molecules, as ZINC applies some 
filtering rules in its preparation protocol. The dataset, in 
SDF format, was made available to the worker nodes via 
HDFS (using block size 64 Mb and block redundance 3). 
It is interesting to observe that this dataset is relatively 

Fig. 1  SBVS pipeline in Spark-VS. This example pipeline reads a 
molecular library in SDF format, docks it against a target receptor and 
returns the 10 top-scoring molecules. The dock primitive takes as 
parameters a receptor structure in the OEDocking TK binary format, 
a scoring method and a search resolution for the underlying docking 
software. In addition, the saveAsTextFile primitive is used to check-
point all of the poses after the docking phase. This is a best practice 
as docking is time consuming
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small in terms of disk space (∼8 GB), if compared to more 
orthodox MR benchmarks. In fact, Google claims to use 
MR for the processing of petabytes of data [10]. Never-
theless, molecular docking is compute intensive, which 
contrasts to traditional MR applications and it justifies 
the applicability of Spark to such use case.

Finally, it is worth mentioning that the target recep-
tor was converted in the OEDocking TK format starting 
from an HIV-1 protease receptor representation available 
in the literature [24].

Performance metrics
First, we studied the scaling efficiency of Spark-VS, point-
ing out the portion of processing units that are actually 
used during the computation. The scaling efficiency is 
a very important matter when using cloud resources 
since they are typically pay-per-use. In order to give a 
resource usage estimation, we repeatedly ran Spark-VS 
over 1/4, 2/4 . . . 4/4 of the benchmark dataset, restrict-
ing the vCPUs usage to 20 in the first run, and allowing 
20 additional vCPUs each time the input increased. Then, 
for each run we computed the Weak Scaling Efficiency 
(WSE), that is the running time for one processing ele-
ment (20 cores in our case) to process one work unit (1/4 
of the dataset), divided by the running time for N pro-
cessing elements to process N work units (N = 1, 2 . . . 4 
in our case). Figure  2 shows the WSE for each run. An 

important finding is that, when using full resources, we 
are able to show a scaling efficiency of 87%.

It took 8.9 h to run the complete analysis on 80 vCPUs. 
The speedup is an interesting metric that compares the 
parallel running time, to the single core running time. 
Given the single core running time T1, and the paral-
lel running time TN , where N is the parallelism level, the 
speedup is defined as T1/TN. In other words, the speedup 
tells us how much faster the computation get completed, 
using a certain level of parallelism. In order to compute 
T1 when running the analysis, we annotated each pose 
with the time that it took to produce it on the assigned 
vCPU. The histogram in Fig. 3 shows the 2.2 M running 
times, in equally spaced bins. The serial running time, for 
each of the molecules in the benchmark, sums up to ∼
635.7 h. Hence, we got a speedup of ∼71 when using 80 
cores.

Discussion
From the experiments, it emerged that our method scales 
well. In fact, we got a scaling efficiency of 87% and a 
speedup of 71, when using 80 vCPUs. These two metrics 
are strictly related, since a good speedup can be obtained 
only when the resources are efficiently exploited. The 
benchmark experiments showed that the WSE levels off 

Fig. 2  Weak Scaling Efficiency plot. Each bar represents a different 
run and it shows how efficiently the respective vCPUs were used. The 
input size was increased by a work unit, along with the number of 
vCPUs, in each consecutive run. The trend curve was computed by 
2nd degree polynomial interpolation

Fig. 3  Docking time per molecule. The histogram shows the serial 
docking time for each molecule in the benchmark dataset (∼2.2M) 
divided into equally spaced bins. Note that in this plot the number of 
molecules is on logarithmic scale
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when increasing from 60 to 80 vCPUs, and the running 
time allows for running the analysis over night. Hence, 
we believe that the costs for more massive runs are not 
justified.

Molecular docking is compute intensive, which con-
trasts to most of the MR applications, where a quick 
operation is applied to each input record. In Fig.  3, we 
observe that the docking time varies between 0.75 and 
1.50 for most of the molecules. This is an important 
remark, as Spark does not have enough information to 
predict how long the processing of each record will take, 
hence it assigns molecules to processing units randomly. 
Therefore, we believe that the scaling efficiency of the 
method can be improved by tuning the Spark cluster 
configuration, for better load balancing. We leave this as 
future work, since it is not the focus of this study.

Ellingson and Baudry reported a speedup of 450 for 
AutoDockCloud, when they ran it on a high-perfor-
mance bare-metal Hadoop installation [17]. Compar-
ing the speedup that we got for Spark-VS is unfair, as we 
ran in a fully virtualized environment with a much lower 
parallelism level. Nowadays, the biggest cloud provid-
ers (e.g., Amazon Web Services [25] and Google Cloud 
Platform [26]) sell their resources as virtual infrastruc-
ture, providing handy tools to deploy Spark and Hadoop 
clusters. This is why we believe that MR applications 
should always be tested on virtual environments. Fortu-
nately, Ellingson and Baudry provide enough information 
to estimate their scaling efficiency. AutoDockCloud was 
tested on 2637 input molecules, with a parallelism level 
of 570. Therefore, we can derive a work unit of ∼5 mol-
ecules. The total serial running time for 2637 molecules 
was ∼69 h. Hence, each molecule was docked in 94 s on 
average, leading to a average work unit time of 470 s. The 
parallel execution of AutoDockCloud took 550 s, there-
fore we can estimate a WSE of 85%, which is slightly 
lower than the one we show for Spark-VS (87%).

Conclusion
Our method provides the means to run SBVS on public 
cloud resources or on commodity computers clusters. 
The performance experiments showed good scalabil-
ity on a virtual environment that resembles an inexpen-
sive hardware cluster. To the best of our knowledge, this 
is the first time that a method has been shown to scale 
SBVS over millions of molecules on a fully virtualized 
environment. This is a very important point, because 
public cloud providers, such as Amazon or Google, only 
sell virtual resources. Public cloud is pay-per-use and it 
can be allocated and deallocated on-demand. Further-
more, cloud providers offer handy tools and interfaces 
that provide the means to setup Hadoop and Spark clus-
ters, relieving the scientists from tedious configurations. 

Hence, being able to scale SBVS in these kinds of envi-
ronments constitutes an important advancement. In fact, 
organizations that want to approach SBVS can now try it 
out on their favorite cloud provider, benchmarking it on 
relatively small libraries (at lower costs), and then scale 
to larger libraries. Furthermore, being relieved form the 
up-front investments, hardware configuration and main-
tenance costs is certainly an advantage too.

The method, along with its source code and unit tests, 
is free to use and publicly available on GitHub [27]. Even 
though our implementation uses a commercial molecu-
lar docking software by default, which is free only for 
academics, any other docking software can be used with 
minor adaption.
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