
Capuccini et al. J Cheminform (2017) 9:15
DOI 10.1186/s13321-017-0204-4

METHODOLOGY

Large‑scale virtual screening on public
cloud resources with Apache Spark
Marco Capuccini1,2*  , Laeeq Ahmed3, Wesley Schaal2, Erwin Laure3 and Ola Spjuth2

Abstract 

Background:  Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual
molecular library. Applying docking-based screening to large molecular libraries can be computationally expen-
sive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on
message passing interface, relying on low failure rate hardware and fast network connection. Google’s MapReduce
revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud
resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of
MapReduce include Apache Hadoop and the more recent Apache Spark.

Results:  We developed a method to run existing docking-based screening software on distributed cloud resources,
utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking
a publicly available target receptor against ∼2.2 M compounds. The performance experiments show a good parallel
efficiency (87%) when running in a public cloud environment.

Conclusion:  Our method enables parallel Structure-based virtual screening on public cloud resources or commodity
computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small librar-
ies first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open
source from GitHub (https://github.com/mcapuccini/spark-vs).

Keywords:  Virtual screening, Docking, Cloud computing, Apache Spark

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Identification of new drug leads is a key process in drug
development. In the pharmaceutical industry, a widely
established approach for this is High-Throughput Screen-
ing (HTS), where large molecular libraries are screened
against a bioassay in fully automated environments [1].
However, HTS is expensive and it has been shown to only
produce a small number of hits or to have too many false
positives and false negatives [2]. Structure-based virtual
screening (SBVS) is a complementary in silico method
[3] that has been successfully used to generate new drug
leads [4, 5]. SBVS is cheaper and faster than HTS and it
can be used in the early stages of drug development to
predict if a chemical is likely to interact with certain

targets. Typically, a docking-based SBVS workflow starts
from a virtual molecular library and a target receptor
structure. First, a preliminary preprocessing step, which
is subject to the application scope, is performed. We
don’t discuss the preprocessing phase in this paper as
it depends on several parameters and because publicly-
available, ready-to-use libraries exist (e.g., ZINC [6]).
After the preprocessing step, molecular docking software
is used to dock each chemical in the library to the target
receptor. For each molecule in the library, this step will
produce a pose (which represents the orientation of the
molecule in the target’s pocket) and a score. The higher
the score, the more likely the predicted interaction is
going to happen in reality. Hence, in the last SBVS phase,
all of the poses are sorted by score and the desired num-
ber of top hits are returned.

In recent decades, methods in high-throughput struc-
tural biology allowed the production of massive virtual
molecular libraries. ZINC [6] represents an excellent

Open Access

*Correspondence: marco.capuccini@it.uu.se
1 Department of Information Technology, Uppsala University, Box 337,
75105 Uppsala, Sweden
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4851-759X
https://github.com/mcapuccini/spark-vs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0204-4&domain=pdf

Page 2 of 6Capuccini et al. J Cheminform (2017) 9:15

example, as it contains 20M commercially available mol-
ecules in ready-to-dock format. Using large datasets in
SBVS is challenging, due to the computational cost. How-
ever, SBVS is trivially parallelizable and many tools (e.g.,
Multilevel Parallel Autodock 4.2 [7] and OEDocking [8])
parallelize it through message passing interface [9] (MPI).
Unfortunately, MPI implementations have some disad-
vantages. In fact, MPI just offers software developers an
Application Programming Interface (API) for message
passing. This means that, when writing MPI applications,
the software developer has to write extra code to manage
locality-aware scheduling, load balance and fault toler-
ance. As a result, many MPI-based applications must rely
on fast network connections to provide scalability and in
most cases they are not able to complete the computation
in the event of a hardware fault. Therefore, to effectively
run MPI-based applications, organizations need to have
access to High Performance Computing (HPC) facilities.

Google pioneered Big Data analytics on inexpensive
hardware with its MapReduce (MR) programming model
(and implementation) [10]. In MR applications, problems
like data distribution and locality-aware scheduling are
managed by the underlying MR implementation, which
is transparent to the software developer. In addition,
the MR implementation takes care of possible hardware
faults, so that the analysis can complete even if some
cluster nodes die or if the network becomes temporary
unavailable. These key features of MR make MR appli-
cations ready to be run in the cloud, where the virtual
infrastructure is somewhat comparable to commodity
hardware (in terms of performance and reliability), with
almost no effort. Even if Google’s MapReduce implemen-
tation is not publicly available, some open source imple-
mentations exist (Apache Hadoop [11] is probably the
most widely used).

Google’s MR has some limitations. MR is based on an
acyclic data flow model, which penalizes many popular
applications where the same dataset needs to be accessed
in multiple iterations (e.g., machine learning and graph
algorithms) [12]. In fact, the lack of features like data-
set caching, accumulators and broadcast variables, and
native workflows support, makes it hard to develop scien-
tific applications. Apache Spark is an open source cluster-
computing framework for the processing of large-scale
datasets, which overcomes the limitations of MR, while
retaining scalability and fault tolerance [12].

Resilient Distributed Datasets (RDDs) represent the
core component of Spark [13]. An RDD is an abstrac-
tion of a dataset that is partitioned through the cluster
and that can therefore be operated on in parallel. RDDs
offer almost the same primitives of a standard Scala
[14] collection, adding transparent support for locality-
aware scheduling, fault tolerance and in-memory dataset

caching. Finally, RDDs can be loaded from any mount-
able distributed file system, Hadoop Distributed File
System (HDFS) or any other Hadoop-compatible input
source. However, when data is read from a distributed file
system, locality-aware scheduling cannot be carried out
since such file systems do not provide enough informa-
tion to the Spark engine.

The applicability of MR-oriented frameworks to virtual
screening has already been investigated. For instance,
Ahmed et al. [15] implemented ligand-based virtual
screening in Spark, showing good scalability in a cloud
environment. Zhao et al. [16] described a Hadoop-
based infrastructure aimed to make the storage of mas-
sive molecular libraries and the docking procedure easier
perform for chemists. AutoDockCloud by Ellingson and
Baudry [17] is another Hadoop molecular docking imple-
mentation. Nevertheless, in the two SBVS studies, the
authors show performance metrics running their tools
against only a few thousand molecules on bare-metal,
high-performance clusters. Furthermore, the Hadoop
nature of these projects limits their performance, since
Spark-based applications are overall faster (as Shi et al.
pointed out [18]).

In this paper we introduce a method for large-scale
SBVS on public cloud resources. This represents an
advancement over the earlier work by Ellingson and
Baudry, as they acknowledged that further refinement
in AutoDockCloud was needed in order to run their
method on public cloud providers [17]. Furthermore, to
the best of our knowledge, in this paper we report for
the first time a success story on scaling SBVS over mil-
lions of molecules, using public cloud resources. This
achievement is relevant for organizations without access
to an HPC system, since public cloud resources are read-
ily available with a pay-per-use pricing model, without an
upfront cost.

Results
We developed a method for parallel SBVS following
the MR approach, which enables the screening of large
molecular libraries on public cloud resources or on com-
modity hardware clusters. The method is implemented
in Apache Spark and it is distributed as an open source
library, named Spark-VS, along with some example
ready-to-run SBVS pipelines.

Using Spark-VS, the user can define custom SBVS
pipelines with a high level API (which is based on the
Scala programming language [14]). Despite the fact that
the user needs to be familiar with some basic concepts
in Spark and Scala, we believe this to be particularly con-
venient as SBVS applies to many use cases and the user
may want to fine-tune the workflows. Figure 1 shows an
example pipeline that was defined using Spark-VS. Once

Page 3 of 6Capuccini et al. J Cheminform (2017) 9:15

the pipeline has being defined, it can be packaged like a
standard Spark application to be submitted to a Spark
cluster. When using public cloud resources, the effort of
starting a Spark cluster boils down to the execution of a
setup script.

Data input
When loading a text file to an RDD, Spark normally splits
it line-by-line. Nevertheless, most molecular 3D repre-
sentations consist of multiple lines. The Structure Data
File (SDF) is a handy, multiline format that can be used to
store 3D molecular structures along with some metadata
(e.g., identifier and docking score) [19]. Spark-VS can
read SDF files and properly split them across the cluster
thanks to a custom record reader that we defined. Since
each instance of the docking program takes some time
to initialize, it is good to feed each docking process with
multiple molecules. On the other hand, if too many are
passed together, load balancing becomes harder. For this
reason, the custom SDF input format takes a chunk size
parameter (default: 30) that controls the number of mol-
ecules to be loaded into a single RDD record.

Parallel screening
OEDocking TK [20] was used as the underlying docking
software. Even if this is a commercial software, free aca-
demic licenses are available. OEDocking TK provides a
C++ API that we used to implement a light-weight dock-
ing executable, which takes a chunk of molecules from
the standard input, docks them to a particular receptor
(available on each node through the addFile primitive)
and produces a chunk of poses (with the relative score)
in the standard output. Using the standard input and
the standard output in this way is very convenient. In
fact, Spark-VS uses the map RDD primitive to pipe each
RDD record to a docking executable instance via stand-
ard input and takes the results back via standard output.

This contrasts to the implementations by Zhao et al. [16]
and by Ellingson and Baudry [17] where the input chunks
are passed to the docking program and read back to the
Hadoop framework using local files. This impacts per-
formance, since unlike pipes (that are fully operated in
memory), files are stored to the disk.

RDDs offer some convenient primitives to do the post
processing part of SBVS. For instance, Spark-VS uses the
saveAsTextFile primitive to handle persistence on a distrib-
uted storage. However, the built-in sortBy primitive is not
suitable for SBVS. The Spark primitive assumes small RDD
records so shuffling the relatively large SDF representa-
tions through the network would lead to a large overhead.
Fortunately, we figured out a simple workaround to avoid
this. Instead of performing distributed sorting, Spark-VS
collects ID/Score tuples for each pose and efficiently sorts
them serially. Then, using the RDD filter primitive, Spark-
VS retrieves the top scoring molecules by ID.

With the aim of testing our parallel implementation,
we ran OEDocking TK serially over 1000 molecules that
were randomly drawn from the benchmark dataset. We
observed that the output for the parallel implementa-
tion did not differ from the one that we got in the serial
execution. We have provided this validation procedure
along with Spark-VS and it can be easily reproduced by
running in local mode.

Experiments
Experimental settings
We deployed a standalone Spark cluster, along with
HDFS, on the CityCloud [21] public cloud provider using
SparkNow [22] for host cloud and virtual machine pro-
visioning. More specifically, we setup 21 nodes with 4
virtual CPUs (vCPUs), 8 GB of RAM, 20 GB of ephem-
eral storage and 40 GB of block storage each. This is a
fully virtualized environment that, in terms of resources,
resembles a commodity computers cluster. Since in a
Spark cluster, one node (namely, the master node) acts as
a controller, the maximum level of parallelism was 80 in
our case.

Benchmark
We benchmarked our method and the Spark-VS imple-
mentation, screening HIV-1 protease receptor against
the whole SureChEMBL library [23] downloaded in
ready-to-dock format from ZINC. The raw SureChEMBL
dataset contains 17M compounds, retrieved from pat-
ent documentation. However, the ready-to-dock version
contains only ∼2.2 M molecules, as ZINC applies some
filtering rules in its preparation protocol. The dataset, in
SDF format, was made available to the worker nodes via
HDFS (using block size 64 Mb and block redundance 3).
It is interesting to observe that this dataset is relatively

Fig. 1  SBVS pipeline in Spark-VS. This example pipeline reads a
molecular library in SDF format, docks it against a target receptor and
returns the 10 top-scoring molecules. The dock primitive takes as
parameters a receptor structure in the OEDocking TK binary format,
a scoring method and a search resolution for the underlying docking
software. In addition, the saveAsTextFile primitive is used to check-
point all of the poses after the docking phase. This is a best practice
as docking is time consuming

Page 4 of 6Capuccini et al. J Cheminform (2017) 9:15

small in terms of disk space (∼8 GB), if compared to more
orthodox MR benchmarks. In fact, Google claims to use
MR for the processing of petabytes of data [10]. Never-
theless, molecular docking is compute intensive, which
contrasts to traditional MR applications and it justifies
the applicability of Spark to such use case.

Finally, it is worth mentioning that the target recep-
tor was converted in the OEDocking TK format starting
from an HIV-1 protease receptor representation available
in the literature [24].

Performance metrics
First, we studied the scaling efficiency of Spark-VS, point-
ing out the portion of processing units that are actually
used during the computation. The scaling efficiency is
a very important matter when using cloud resources
since they are typically pay-per-use. In order to give a
resource usage estimation, we repeatedly ran Spark-VS
over 1/4, 2/4 . . . 4/4 of the benchmark dataset, restrict-
ing the vCPUs usage to 20 in the first run, and allowing
20 additional vCPUs each time the input increased. Then,
for each run we computed the Weak Scaling Efficiency
(WSE), that is the running time for one processing ele-
ment (20 cores in our case) to process one work unit (1/4
of the dataset), divided by the running time for N pro-
cessing elements to process N work units (N = 1, 2 . . . 4
in our case). Figure 2 shows the WSE for each run. An

important finding is that, when using full resources, we
are able to show a scaling efficiency of 87%.

It took 8.9 h to run the complete analysis on 80 vCPUs.
The speedup is an interesting metric that compares the
parallel running time, to the single core running time.
Given the single core running time T1, and the paral-
lel running time TN , where N is the parallelism level, the
speedup is defined as T1/TN. In other words, the speedup
tells us how much faster the computation get completed,
using a certain level of parallelism. In order to compute
T1 when running the analysis, we annotated each pose
with the time that it took to produce it on the assigned
vCPU. The histogram in Fig. 3 shows the 2.2 M running
times, in equally spaced bins. The serial running time, for
each of the molecules in the benchmark, sums up to ∼
635.7 h. Hence, we got a speedup of ∼71 when using 80
cores.

Discussion
From the experiments, it emerged that our method scales
well. In fact, we got a scaling efficiency of 87% and a
speedup of 71, when using 80 vCPUs. These two metrics
are strictly related, since a good speedup can be obtained
only when the resources are efficiently exploited. The
benchmark experiments showed that the WSE levels off

Fig. 2  Weak Scaling Efficiency plot. Each bar represents a different
run and it shows how efficiently the respective vCPUs were used. The
input size was increased by a work unit, along with the number of
vCPUs, in each consecutive run. The trend curve was computed by
2nd degree polynomial interpolation

Fig. 3  Docking time per molecule. The histogram shows the serial
docking time for each molecule in the benchmark dataset (∼2.2M)
divided into equally spaced bins. Note that in this plot the number of
molecules is on logarithmic scale

Page 5 of 6Capuccini et al. J Cheminform (2017) 9:15

when increasing from 60 to 80 vCPUs, and the running
time allows for running the analysis over night. Hence,
we believe that the costs for more massive runs are not
justified.

Molecular docking is compute intensive, which con-
trasts to most of the MR applications, where a quick
operation is applied to each input record. In Fig. 3, we
observe that the docking time varies between 0.75 and
1.50 for most of the molecules. This is an important
remark, as Spark does not have enough information to
predict how long the processing of each record will take,
hence it assigns molecules to processing units randomly.
Therefore, we believe that the scaling efficiency of the
method can be improved by tuning the Spark cluster
configuration, for better load balancing. We leave this as
future work, since it is not the focus of this study.

Ellingson and Baudry reported a speedup of 450 for
AutoDockCloud, when they ran it on a high-perfor-
mance bare-metal Hadoop installation [17]. Compar-
ing the speedup that we got for Spark-VS is unfair, as we
ran in a fully virtualized environment with a much lower
parallelism level. Nowadays, the biggest cloud provid-
ers (e.g., Amazon Web Services [25] and Google Cloud
Platform [26]) sell their resources as virtual infrastruc-
ture, providing handy tools to deploy Spark and Hadoop
clusters. This is why we believe that MR applications
should always be tested on virtual environments. Fortu-
nately, Ellingson and Baudry provide enough information
to estimate their scaling efficiency. AutoDockCloud was
tested on 2637 input molecules, with a parallelism level
of 570. Therefore, we can derive a work unit of ∼5 mol-
ecules. The total serial running time for 2637 molecules
was ∼69 h. Hence, each molecule was docked in 94 s on
average, leading to a average work unit time of 470 s. The
parallel execution of AutoDockCloud took 550 s, there-
fore we can estimate a WSE of 85%, which is slightly
lower than the one we show for Spark-VS (87%).

Conclusion
Our method provides the means to run SBVS on public
cloud resources or on commodity computers clusters.
The performance experiments showed good scalabil-
ity on a virtual environment that resembles an inexpen-
sive hardware cluster. To the best of our knowledge, this
is the first time that a method has been shown to scale
SBVS over millions of molecules on a fully virtualized
environment. This is a very important point, because
public cloud providers, such as Amazon or Google, only
sell virtual resources. Public cloud is pay-per-use and it
can be allocated and deallocated on-demand. Further-
more, cloud providers offer handy tools and interfaces
that provide the means to setup Hadoop and Spark clus-
ters, relieving the scientists from tedious configurations.

Hence, being able to scale SBVS in these kinds of envi-
ronments constitutes an important advancement. In fact,
organizations that want to approach SBVS can now try it
out on their favorite cloud provider, benchmarking it on
relatively small libraries (at lower costs), and then scale
to larger libraries. Furthermore, being relieved form the
up-front investments, hardware configuration and main-
tenance costs is certainly an advantage too.

The method, along with its source code and unit tests,
is free to use and publicly available on GitHub [27]. Even
though our implementation uses a commercial molecu-
lar docking software by default, which is free only for
academics, any other docking software can be used with
minor adaption.

Authors’ contributions
MC and OS conceived the project. MC and LA implemented the method
and carried out experiments. WS contributed with expertise in modeling. EL
contributed with expertise in HPC. All authors read and approved the final
manuscript.

Author details
1 Department of Information Technology, Uppsala University, Box 337,
75105 Uppsala, Sweden. 2 Department of Pharmaceutical Biosciences, Uppsala
University, Box 591, 75124 Uppsala, Sweden. 3 Department of Computational
Science and Technology, Royal Institute of Technology (KTH), Lindstedtsvägen
5, 10044 Stockholm, Sweden.

Acknowledgements
This project was supported by the Swedish strategic research programs
eSSENCE and Swedish e-Science Research Center (SeRC). Cloud resources
were kindly provided by CityCloud [21].

Competing interests
The authors declare that they have no competing interests.

Received: 1 November 2016 Accepted: 28 February 2017

References
	1.	 Fox S, Farr-Jones S, Sopchak L, Boggs A, Nicely HW, Khoury R, Biros M

(2006) High-throughput screening: update on practices and success. J
Biomol Screen 11(7):864–869

	2.	 Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug
discovery. Br J Pharmacol 162(6):1239–1249

	3.	 Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based
virtual screening for drug discovery: a problem-centric review. AAPS J
14(1):133–141

	4.	 Seifert MH, Lang M (2008) Essential factors for successful virtual screen-
ing. Mini Rev Med Chem 8(1):63–72

	5.	 Villoutreix BO, Eudes R, Miteva MA (2009) Structure-based virtual ligand
screening: recent success stories. Comb Chem High Throughput Screen
12(10):1000–1016

	6.	 Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012)
ZINC: a free tool to discover chemistry for biology. J Chem Inf Model
52(7):1757–1768

	7.	 Norgan AP, Coffman PK, Kocher JP, Katzmann DJ, Sosa CP (2011) Multi-
level parallelization of Auto Dock 4.2. J Cheminform 3(1):12

	8.	 OEDocking. http://www.eyesopen.com/oedocking-v3.2-released.
Accessed 13 July 2016

	9.	 Forum MPI (1994) MPI: a message-passing interface standard. Int J Super-
comput Appl 8(3/4):165–414

http://www.eyesopen.com/oedocking-v3.2-released

Page 6 of 6Capuccini et al. J Cheminform (2017) 9:15

	10.	 Dean J, Ghemawat S (2008) MapReduce: simplified data processing on
large clusters. Commun ACM 51(1):107–113

	11.	 Apache Hadoop. https://hadoop.apache.org. Accessed 13 July 2016
	12.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark:

cluster computing with working sets. In: Proceedings of the 2Nd USENIX
conference on hot topics in cloud computing., HotCloud’10USENIX
Association, Berkeley, CA, USA, pp 10–10

	13.	 Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ,
Shenker S, Stoica I (2012) Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: Proceedings of the 9th
USENIX conference on networked systems design and implementation.,
NSDI’12USENIX Association, Berkeley, CA, USA, pp 2–2

	14.	 Scala. http://scala-lang.org. Accessed 13 July 2016
	15.	 Ahmed L, Edlund Å, Laure E, Spjuth O (2013) Using iterative MapReduce

for parallel virtual screening. In: IEEE 5th international conference on
cloud computing technology and science, CloudCom 2013, Bristol,
United Kingdom, vol 2, pp 27–32

	16.	 Zhao J, Zhang R, Zhao Z, Chen D, Hou L (2012) Hadoop mapreduce
framework to implement molecular docking of large-scale virtual screen-
ing. In: Proceedings of the 2012 IEEE Asia-Pacific services computing
conference)., APSCC ’12IEEE Computer Society, Washington, DC, USA, pp
350–353

	17.	 Ellingson SR, Baudry J (2011) High-throughput virtual molecular docking:
Hadoop implementation of autodock4 on a private cloud. In: Proceed-
ings of the second international workshop on emerging computational
methods for the life sciences., ECMLS ’11ACM, New York, NY, USA, pp
33–38

	18.	 Shi J, Qiu Y, Minhas UF, Jiao L, Wang C, Reinwald B, Özcan F (2015) Clash of
the titans: mapreduce vs. spark for large scale data analytics. Proc. VLDB
Endow. 8(13):2110–2121

	19.	 Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA,
Laufer J (1992) Description of several chemical structure file formats used
by computer programs developed at molecular design limited. J Chem
Inf Comput Sci 32(3):244–255

	20.	 OEDocking TK. http://www.eyesopen.com/oedocking-tk. Accessed 13
July 2016

	21.	 City Cloud. https://www.citycloud.com. Accessed 13 July 2016
	22.	 SparkNow. https://github.com/mcapuccini/SparkNow. Accessed 13 July

2016
	23.	 Papadatos G, Davies M, Dedman N, Chambers J, Gaulton A, Siddle J, Koks

R, Irvine SA, Pettersson J, Goncharoff N, Hersey A, Overington JP (2016)
SureChEMBL: a large-scale, chemically annotated patent document
database. Nucleic Acids Res. 44(D1):1220–1228

	24.	 Bäckbro K, Löwgren S, Österlund K, Atepo J, Unge T, Hultén J, Bonham
NM, Schaal W, Karlén A, Hallberg A (1997) Unexpected binding mode of a
cyclic sulfamide HIV-1 protease inhibitor. J Med Chem 40(6):898–902

	25.	 Amazon Web Services. https://aws.amazon.com. Accessed 13 July 2016
	26.	 Google Cloud Platform. https://cloud.google.com. Accessed 13 July 2016
	27.	 Spark-VS GitHub Page. https://github.com/mcapuccini/spark-vs.

Accessed 13 July 2016

https://hadoop.apache.org
http://scala-lang.org
http://www.eyesopen.com/oedocking-tk
https://www.citycloud.com
https://github.com/mcapuccini/SparkNow
https://aws.amazon.com
https://cloud.google.com
https://github.com/mcapuccini/spark-vs

	Large-scale virtual screening on public cloud resources with Apache Spark
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Results
	Data input
	Parallel screening
	Experiments
	Experimental settings
	Benchmark
	Performance metrics

	Discussion
	Conclusion
	Authors’ contributions
	References

