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Abstract

Large purchasable screening libraries of small molecules afforded by commercial vendors are indispensable sources for
virtual screening (VS). Selecting an optimal screening library for a specific VS campaign is quite important to improve
the success rates and avoid wasting resources in later experimental phases. Analysis of the structural features and
molecular diversity for different screening libraries can provide valuable information to the decision making process
when selecting screening libraries for VS. In this study, the structural features and scaffold diversity of eleven purchas-
able screening libraries and Traditional Chinese Medicine Compound Database (TCMCD) were analyzed and compared.
Their scaffold diversity represented by the Murcko frameworks and Level 1 scaffolds was characterized by the scaffold
counts and cumulative scaffold frequency plots, and visualized by Tree Maps and SAR Maps. The analysis demonstrates
that, based on the standardized subsets with similar molecular weight distributions, Chembridge, ChemicalBlock,
Mucle, TCMCD and VitasM are more structurally diverse than the others. Compared with all purchasable screening
libraries, TCMCD has the highest structural complexity indeed but more conservative molecular scaffolds. Moreover, we
found that some representative scaffolds were important components of drug candidates against different drug tar-
gets, such as kinases and guanosine-binding protein coupled receptors, and therefore the molecules containing phar-
macologically important scaffolds found in screening libraries might be potential inhibitors against the relevant targets.

This study may provide valuable perspective on which purchasable compound libraries are better for you to screen.
Keywords: Scaffold diversity, TCMCD, Scaffold Tree, Tree Map, SAR Map

Background

Virtual screening (VS) based on a variety of ligand-based
or structure-based drug design approaches, such as prop-
erty-based or drug-likeness rules, quantitative structure—
activity relationship (QSAR) models, pharmacophore
hypotheses, molecular docking, has become a powerful
way to find hits in drug discovery. Certainly, screening
libraries of small molecules with 2-D or 3-D structures
are indispensable sources for VS campaigns. For example,
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the number of purchasable molecules collected in the
ZINC database increases from ~0.73 million in 2005 to
over 100 million in 2015 [1]. For the 176 vendors depos-
ited in ZINC15, 37 offer more than 100,000 compounds
and 9 offer more than 1 million compounds. This high-
lights the progress in synthesis of organic chemistry and
tremendous demand of this market. In most VS applica-
tions, it is more practical and time effective to screen a
compound library provided by a specific vendor rather
than screen all compound libraries collected by ZINC.
Certainly, the distributions of physiochemical proper-
ties, structural features and scaffold diversity of purchas-
able compound libraries afforded by different vendors
should be different [2]. Therefore, an important ques-
tion may be raised: which library should be used for VS?
In order to answer this question, we need to have a deep
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understanding of the intrinsic features of each purchas-
able compound library and the difference among them.

As we know, the properties of a molecule are deter-
mined by its structure, and therefore similar structures
tend to bear similar properties according to the similar-
ity principle [3]. Thus, the chemical space of a compound
library should be examined by molecular structures,
especially chemical scaffolds, which has a huge impact
on the success rate in biological screenings [4]. The scaf-
fold of a molecule can be described by different ways. The
most traditional way to define a scaffold is the Markush
structure proposed by Markush [5]. Markush structures
are usually used in patent applications to define chemi-
cal series [6], but they may be too generic to highlight
the important structural features essential for pharma-
ceutical activity. Another scaffold representation is the
Murcko framework proposed by Bemis and Murcko [7].
This method employs a more systematical way to dissect
a molecule into four parts: ring systems (Fig. 1a), linkers
(Fig. 1b), side chains (Fig. 1c), and the Murcko framework
(Fig. 1d) that is the union of ring systems and linkers in
a molecule. Lewell et al. [8] described a more chemically
meaningful presentation of molecular structures, namely
“RECAP” (retrosynthetic combinatorial analysis pro-
cedure), which cleaves molecules at bonds based on 11
predefined bond cleavage rules derived from common
chemical reactions. As an example shown in Fig. 1h, the
molecule is dissected into two parts at the bond linked
by nitrogen and carbon. Therefore, analysis of compound
libraries by using the RECAP representation may be a
good way to explore the synthetic feasibility of a molecule.

Based on the Murcko framework, Schuffenhauer et al.
[9] proposed a more complicated and systematical meth-
odology, called Scaffold Tree (ST), to describe the ring
systems arranged in a hierarchical tree, which iteratively
prunes rings one by one based on a set of prioritization
rules until only one ring remains. The structural hierar-
chies of each molecule in a Scaffold Tree are numbered
numerically from Level O (the single remaining ring usu-
ally) to Level # (the original molecule) (Fig. 1i), and Level
n — 1 is the Murcko framework. Owing to the systematic
partition of molecular structures, the Scaffold Tree meth-
odology has been employed in many scaffold diversity
studies of compound libraries [10-12].

A number of studies have been reported to analyze
and compare the chemical space and diversity of com-
mercially available compound libraries in the last decade
[13]. Krier et al. [14] evaluated the scaffold diversity of
17 commercially available screening collections with 2.4
million compounds by analyzing the maximum common
substructures (MCS), and they grouped the commercial
collections into different categories with low, medium
and high scaffold diversity. However, the definition of
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MCS is arbitrary and data set dependent, and MCS may
be not a general way to represent a large number of scaf-
folds. Langdon et al. [12] analyzed the structural diver-
sity of 7 commercial compound libraries by using the
Murcko frameworks and Scaffold Trees, and then visual-
ized the scaffold space by using the Tree Maps software
[15]. They found that there were some emblematical scaf-
folds in each library. Nevertheless, the libraries analyzed
by Langdon et al. are rarely used in practical VS and the
numbers of molecules in three libraries are even <10,000,
and therefore the results may not be informative for drug
design/discovery. With the rapid increase of the number
of commercially available small molecules, analysis of the
structural features and scaffold diversity for representa-
tive screening libraries is quite demanding.

In this study, the structural features and scaffold diver-
sity of eleven commercially available screening libraries
and Traditional Chinese Medicine compound database
(TCMCD) were explored by analyzing seven fragment
representations. All the selected commercial libraries
have more than 50,000 compounds and have been widely
used in VS. We aimed to find the difference of the struc-
tural features and scaffold diversity among these librar-
ies. Tree Maps and SAR Maps [16] were used to visualize
the distribution of the scaffolds based on the similarity of
molecular fingerprints. Moreover, the underlying phar-
macological characteristics, that is the potential targets
of the molecules with the representative scaffolds, were
also examined. We believe that our study will help the
decision making process when selecting commercially
available compound libraries for VS.

Methods
Preparation and standardization of libraries
The 11 large compound libraries deposited in ZINC15
were chosen in the analysis, and they are Mcule, Enam-
ine, ChemDiv, VitasM, UORSY, ChemBridge, LifeChem-
icals, Zelinskylnstitute, Specs, ChemicalBlock and
Maybridge. Mcule is the largest library in ZINC15, and it
contains 4,922,295 molecules. The SDF files of the stud-
ied libraries were downloaded from the vendors’ web-
sites (Additional file 1: File S1). TCMCD developed in
our group was also included in this study, and it contains
57,809 molecules with molecular weight (MW) lower
than 800, which are found in more than 5000 herbs used
in traditional Chinese medicines (TCM) [17-19]. The
basic information of the studied libraries is summarized
in Table 1. Then, the molecules in all libraries were pre-
processed by the following Pipeline Pilot protocol: fixing
bad valence, filtering out inorganic molecules, adding
hydrogens and removing duplicated molecules [20].

The MW distributions of the studied libraries are
shown in Fig. 2. It can be observed that ranges of MW
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for these libraries vary greatly. Then, we analyzed the
MW distributions at an interval of 100 and found that
the numbers of molecules in some intervals for differ-
ent libraries are quite different. Molecules in the studied
libraries with MW from 100 to 700 are highly overlapped.
Thus the distributions of MW should be standardized
in order to eliminate the influence of MW on scaffold

analysis [21]. Eventually, based on the least number of
molecules at each interval of 100 MW within the studied
libraries, the same numbers of molecules were randomly
selected at each interval for all libraries and then 12 new
standardized subsets were generated. The standardized
subsets have the equal numbers of molecules (41,071)
and almost identical MW distributions ranging from 100



Shang et al. J Cheminform (2017) 9:25

Table 1 Basic information of the 12 studied libraries

Databases® Number®  Filtered®  Description®

Mcule 4,922,295 4,876,839 Large, individual service
Enamine 1,959,026 1,958,807 Lead-like, diverse
ChemDiv 1,741,807 1,741,603 Selected

VitasM 1,460,248 1,460,009 Novel compounds
UORSY 1,301,092 1,293,353 Original and unique
ChemBridge 1,064,558 1,064,425 Selected, derivatives
LifeChemicals 413,286 412,788 Selected
Zelinskylnstitute 381,214 379,048  No descriptions
Specs 212,404 212,332 Selected
ChemicalBlock 125,791 125,473 Selected, diverse
Maybridge 57,809 57490  Highly diverse
TCMCD 54,206 54,138 Natural product

@ Number of all molecules in each library
b Number of the molecules in each library after processed by different filters
¢ Simple description of the studied libraries

to 700. The following analyses were conducted based on
the 12 standardized subsets.

Generation of fragment presentations

A total of 7 fragment representations were used to char-
acterize the structural features and scaffolds of mol-
ecules, and they are ring assemblies, bridge assemblies,
rings, chain assemblies, Murcko frameworks [7], RECAP
fragments [8], and Scaffold Tree [9].

The first five types of fragment representations were
generated by using the Generate Fragments component
in Pipeline Pilot 8.5 (PP 8.5) [20]. The RECAP fragments
and Scaffold Tree for each molecule were generated by
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using the sdfrag command in MOE [22]. Owing to the
lack of the original molecules in the Scaffold Tree pro-
vided by the sdfrag command, the missing original mol-
ecules were added to the SDF files of the Scaffold Tree
using PP 8.5 (Additional file 1: File S1). The generation of
the Scaffold Tree (from Level 1 to Level n) was accom-
plished in PP 8.5 by defining the fragments at different
levels for each molecule. Eventually, the SDF files of these
fragment representations were obtained (Additional
file 1: File S1).

Analyses of scaffold diversity

The scaffold diversity of each standardized dataset was
characterized by the fragment counts and the cumula-
tive scaffold frequency plots (CSFPs) or so called cyclic
system retrieval (CSR) curves [23, 24]. The duplicated
fragments were removed first, and the numbers of unique
fragments for each dataset were counted for ring assem-
blies, bridge assemblies, rings, chain assemblies, Murcko
frameworks, RECAP fragments and Levels 0-11 of Scaf-
fold Tree, along with the numbers of molecules they rep-
resent (referred to as the scaffold frequency).

Then, the scaffolds were sorted by their scaffold fre-
quency from the most to the least, and the cumulative
percentage of scaffolds was computed as the cumulative
scaffold frequency divided by the total number of mole-
cules [12]. Similarly, percentages of unique fragments can
also be calculated. Then, CSEPs with the number or the
percentage of Murcko frameworks and Level 1 scaffolds,
which may better represent the whole molecules than the
other types of fragments, were generated. In each CSFP,
PC50C was determined for each scaffold representation
to quantify the distribution of molecules over scaffolds.
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PC50C was defined as the percentage of scaffolds that
represent 50% of molecules in a library [14].

Generation of Tree Maps

The Tree Maps methodology was employed to analyze
the structural similarity of the Level 1 scaffolds by using
the TreeMap software, which can highlight both the
structural diversity of scaffolds and the distribution of
compounds over scaffolds. Tree Maps has been used as
a powerful tool to depict structure—activity relationships
(SARs) and analyze scaffold diversity [25]. Different from
traditional tree structure represented by a graph with the
root node and children nodes from the top to the bot-
tom, Tree Maps proposed by Shneiderman uses circles
or rectangles in a 2D space-filling way to delegate a kind
of property for a clustered dataset with clearly intuitive
visualization [15]. Thus, one can visualize a hierarchical
clustering map by organizing those clustered properties
along with other features for a dataset, such as MW.

First, the unique Level 1 scaffolds were clustered by
using the cluster molecules component in PP 8.5 based
on the ECFP_4 (extensive-connectivity fingerprint 4)
fingerprints [26—28]. According to Tian’s study [29] and
our testing, although the clustering method is order
dependent, the order dependency of the cluster molecules
component did not have obvious effect on the cluster-
ing results. So, recentering the cluster center twice in a
clustering protocol is enough. Then, the SDF file of the
clustered scaffolds for each standardized dataset was con-
verted into a text formatted file, which was used as the
input of the TreeMap software [30] (Additional file 1: File
S1). In each Tree Maps, scaffolds are represented by cir-
cles with gray perimeters. The area of each circle is pro-
portional to the scaffold frequency, and the color of each
small circle is related to the DTC (DistanceToClosest, i.e.,
the distance between the fragment and the cluster center)
of fragments in each cluster. The lowest value of DTC
for the Level 1 scaffolds of ChemBridge (DTC = 0) was
colored in red, the highest value (DTC = 0.778) in deep
green and the middle value in white. The highest values
of DTC for the other databases were also around 0.8. The
yellow labels in each Tree Maps were the order numbers
of clusters.

Generation of SAR Maps

SAR Maps generated by the DataMiner 1.6 software
is usually used to organize high throughput screening
(HTS) data into clusters of chemically similar molecules,
which provides a good way for interactive analysis. This
structural clustering allows identification of possible false
negatives and false positives in the data when the colors
in the map represent experimental activity values. The
map can not only display the results effectively, but also
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provide a convenient way to access the chemical series
presented by the maximum common structure (MCS)
scaffolds. Along with SAR (structure—activity relation-
ship) rules, and substructure- and property-based tools
provided in DataMiner, the SAR Map is a powerful
method assisting to make the best possible decision on
which molecules should be studied further.

First, the cluster centers of the top 10 most frequently
occurring clusters of the Level 1 Scaffolds observed in the
Tree Maps for each standardized subset were defined as
the queries to search the dataset by using the Substruc-
ture Filter from File component in PP 8.5. The 4816 iden-
tified records (i.e., original molecules) were saved into a
SDF file (Additional file 1: File S1).

Then, the Generate SAR Map function in DataMiner
1.6 was used to generate the structure similarity maps,
i.e. SAR Maps [16]. The K-dissimilarity Selection or Opti-
Sim method [31-33] was used to select a diverse and
representative samples from the original dataset based
on the Tanimoto similarity distances calculated from
the 2D UNITY structural fingerprints [34]. Because the
SAR Map is not a simple plot of two variables, it does not
have axes. For N compounds, the SAR Map is an optimal
projection of the N-squared similarities within the points
onto a two dimensional plot using the nonlinear mapping
(NLM) projection method [35]. Singleton Radius and
SAR Map Horizon are two critical parameters to control
the map. The Singleton Radius represents a dissimilarity
radius, which was set to 0.3. A singleton is a compound
that does not have any nearest neighbor within a prede-
fined radius, and it is regarded as a point in the hedge of
the map. The SAR Map Horizon was also set to 0.3, which
means that two points will be placed far apart if the dis-
similarity between them is higher than the parameter
value, but their distance is not in scale relative to the oth-
ers’ on the map. Accordingly, molecules gathered on the
map definitely characterizing much more similar com-
pounds are more meaningful than those separated ones.
Therefore, 40 denser areas or so called representative
molecules were selected and shown with black dotted cir-
cles on the SAR Map. The similarity between molecules
in each area and its central molecules were higher than
0.8 (including 0.8), and these representative molecules
in an area were saved as a SDF file (Additional file 1: File
S1). Then selected molecules from each circle were used
as the queries to identify the similar molecules in the
BindingDB database [36]. In similarity search, the struc-
tural similarity threshold for each query was adjusted to
make sure that at least one similar compound could be
found for each query, and the least similarity threshold
was set to 0.6. Finally, the potential targets of 39 queries
were assigned to those of the similar molecules found in
BindingDB.
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Results and discussion

Counts of fragments

For the 12 standardized subsets, the fragments based
on seven types of fragment representations, including
ring assemblies, bridge assemblies, rings, chain assem-
blies, Murcko frameworks, RECAP fragments and Scaf-
fold Tree scaffolds, were generated. The total numbers
of all and unique fragments are listed in Tables 2 and 3.
Because the standardized subsets have the identical num-
bers of molecules (41,071) and approximately the same
MW distributions, the impact of MW on the analysis of
fragments can be eliminated and the counts of the dis-
sected molecules (i.e. fragments) can be compared and
analyzed directly.

Obviously, two kinds of fragments contain side chains,
including chain assemblies (chains) and RECAP frag-
ments. The percentages of molecules that do not have any
ring in the standardized subsets were also calculated, and
they are 0.12, 0.34, 0.51, 0.58, 0.24, 0.56, 0.48, 0.08, 4.71,
0.96, 0.49 and 0.36% for ChemBridge, ChemDiv, Chemi-
calBlock, Enamine, LifeChemicals, Maybridge, Mcule,
Specs, TCMCD, UORSY, VitasM and Zelinskylnstitute,
respectively. Among the studied libraries, TCMCD has
the highest percentage of acyclic molecules (close to
2000), which is consistent with the results reported by
Tian et al. [29]. However, the total number of chains in
TCMCD is the least but one (466,842). More interest-
ingly, TCMCD has 5962 unique chains, which are almost
twice to those in ChemBridge (3450). Considering that
the standardized subset of TCMCD has more acylic com-
pounds, less chains while more unique chains, it appears
that the chains in TCMCD are bigger or more compli-
cated and diverse. Despite Maybridge has the fewest
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number of chains (461,415), which is similar to TCMCD,
its number of unique chains (3543) is at the average level,
which is still higher than those of ChemBridge (3450) and
ChemDiv (3493). However, Chembridge and ChemDiv
bear the top two numbers of chains (>510,000). Thus,
the structures in Maybridge may be more diverse, which
needs to be explored by other types of fragment repre-
sentations. Among the studied libraries, UORSY and
Enamine have more non-duplicated chain assemblies
(6120 and 6002) than the others, suggesting that they
have more diverse chains, which are two times higher
than that of LifeChemicals (2603). Moreover, Mcule
owns relatively high number of unique chains (5368).

Another fragment representation containing side
chains is RECAP fragments, which are the building
blocks for synthesizing molecules. As shown in Table 2,
TCMCD has extremely high number of RECAP frag-
ments (702,520), indicating that, on the average, syn-
thesizing a compound in TCMCD needs more RECAP
fragments than synthesizing a molecule in any other
standardized subset. That is to say, synthesizing these
compounds in TCMCD may be quite difficult. Chem-
Bridge, Enamine and UORSY have relatively high num-
bers of RECAP fragments (~500,000), which are almost
twice comparing with those of ChemicalBlock (250,765)
and Maybridge (264,327). Therefore, it may be eas-
ier to synthesize the molecules in ChemicalBlock and
Maybridge.

In the other five types of fragment presentations, three
of them belong to ring systems, including rings, ring
assemblies and bridge assemblies. The total numbers
of rings for all libraries are quite close, and the biggest
difference is found between Maybridge (110,054) and

Table 2 Numbers of the duplicated and non-duplicated ring assemblies (ra), bridge assemblies (b), rings (r), chain (c),
Murcko framwork (m) and RECAP fragment (RECAP) for the 12 standardized datasets

Databases Total number Non-duplicated number

ra b r c m RECAP ra b r C m RECAP
ChemBridge 105,467 964 125,082 514,422 41,024 493,990 1255 85 543 3450 25,788 107,898
ChemDiv 103,562 440 129,997 512,142 40,933 369,011 2021 69 784 3493 21,875 93,439
ChemicalBlock 96,236 1204 125,442 492,515 40,870 250,765 2355 106 888 3369 17,045 63,061
Enamine 99,387 496 117,219 474,170 40,832 496,594 1130 39 523 6002 26,870 94,869
LifeChemicals 103,421 431 128,421 493,056 40,973 370,651 1063 34 531 2603 20,276 68,912
Maybridge 94,063 577 110,054 461,415 40,841 264,327 1408 68 729 3543 15,242 53,852
Mcule 101,088 538 122,696 492,813 40,874 419,190 2144 75 812 5368 27,247 108,294
Specs 96,202 872 119,323 494,752 41,038 336,076 1889 82 832 3154 15,259 72,454
TCMCD 58,111 5793 127,355 466,842 39,192 702,520 8509 1351 1176 5962 12,941 104,631
UORSY 96,675 454 110,588 471,902 40,678 521,182 829 28 449 6120 21,491 91,776
VitasM 98,063 650 122,978 493,391 40,871 321,898 2132 64 839 3939 20,108 81,702
Zelinskylnstitute 96,430 1128 117,460 481,948 40,927 310,800 1533 72 669 3145 16,666 68,365
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ChemDiv (129,997). Similarly, the total numbers of ring
assemblies of these libraries are not quite different, but
TCMCD is the only exception. The number of all ring
assemblies in TCMCD (58,111) is significantly fewer than
those in the other libraries, but quite interestingly, the
number of the unique ring assemblies in TCMCD (1351)
is quite higher than those in the other libraries. Different
from rings and ring assemblies, bridge assemblies char-
acterize contiguous ring systems sharing two or more
bonds, and therefore they are also ring assemblies but
more complicated. As shown in Table 2, the total num-
ber of the bridge assemblies in TCMCD (5793) is signifi-
cantly higher than those in the other libraries. Although
the total number of the simple ring systems in TCMCD
is not quite high, its unique numbers of the rings and
ring assemblies are much higher than those of the other
libraries. In a word, TCMCD has more complicated and
diverse ring systems. However, commercial libraries gen-
erally contain more simple rings instead of multiple ring
systems, such as bridge assemblies. Herein, as a whole,
ChemicalBlock and Specs have more unique ring sys-
tems, as shown in Table 2. Mcule and VitasM have rela-
tively diverse ring systems, and Mcule also has relatively
diverse chains. Enamine and UORSY have relatively high
numbers of unique chains, but the numbers of their dis-
tinctive ring systems are so low. For LifeChemicals, both
of the numbers of the unique chains and ring systems are
quite low, suggesting that it has relatively low structural
diversity.

The other two types of fragment presentations, Murcko
frameworks and Scaffold Tree, characterize molecular
scaffolds, and they can represent the whole structural
features for compounds in a library. Murcko frameworks,
which are the union of ring systems (Fig. 1a) and link-
ers (Fig. 1b), are usually used as the structural signatures
of molecules. As shown in Table 2, the total numbers of
the Murcko frameworks for all the standardized sub-
sets except TCMCD do not have large difference, which
may result from much more acylic molecules found in
TCMCD, but those of the unique ones are quite different.
The number of the unique Murcko frameworks for Mcule
(27,247) is the highest, while that for TCMCD (12,941)
is the lowest, highlighting the fact that the structures
of natural compounds may be more conservative than
those of the synthesized molecules in commercially avail-
able libraries. Other databases, such as ChemBridge and
Enamine, also possess relatively high numbers of Murcko
frameworks (25,788 and 26,870, respectively). However,
as mentioned above, the diversity of the ring systems for
Enamine is pretty low.

Scaffold Tree is a series of rings by chopping molecules
into smaller pieces. The numbers of the fragments found
at 12 levels of the Scaffold Tree [9] are listed in Table 3.
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The number of the levels for each subset is determined
by the maximum complexity of molecules. Obviously, the
most complicated structures can be found in TCMCD.
To better compare the differences at each level among
the 12 libraries, rose maps were plotted and shown in
Fig. 3. Twelve petals stand for the studied libraries, and
the twelve layers on each petal depict Level 0 to Level
11 of the Scaffold Tree from inside to outside in turn.
Frequencies of molecules can be easily identified and
compared by colors. As shown in Fig. 3a, as the levels
increase higher than Level 1, the numbers of the scaf-
folds decrease sharply. At the levels higher than Level 2,
the numbers of the fragments for Maybridge, UORSY
and ZelinskyInstitute are lower than those for the other
libraries. For TCMCD, the numbers of the fragments
at Levels 0-2 are relatively low, but those at Level 4 or
higher are quite high. That is to say, TCMCD is rich in
more complicated structures. In Fig. 3b, the numbers of
the unique fragments at 12 levels show different trend
comparing with those of all fragments at 12 levels. The
numbers of the unique scaffolds at Level 0 are even much
lower than those at Level 1, and the numbers of the
unique scaffolds at Level 2 or 3 are the highest. It appears
that ChemBridge, Enamine and Mcule have higher diver-
sity at Levels 2 and 3 than the other libraries.

In summary, TCMCD contains much more compli-
cated structures and its whole molecular scaffolds are
more conservative than the commercial libraries. Gener-
ally speaking, at Levels 2 and 3, ChemBridge and Mcule
show high structural diversity. At Level 5 or higher,
ChemicalBlock, Specs and VitasM possess relatively
high structural diversity, suggesting that these libraries
contain more complicated structures. LifeChemicals has
relatively high diversity for the Scaffolds at Levels 3 and
4, but has relatively low diversity for rings, ring assem-
blies and bridge assemblies (Table 2). Certainly, in order
to characterize the structural diversity of the 12 studied
libraries more clearly, further quantitative analyses are
necessary.

Cumulative scaffold frequency plots (CSFPs)

Among the seven types of fragment representations,
which kind of representation is the best choice to charac-
terize the diversity of molecules is a critical problem for
us to solve. According to the result from Langdon et al.
and Tian et al. [12, 29], considering the balance between
structural complexity and diversity, Level 1 scaffolds and
Murcko frameworks may be the best choice to represent
the scaffolds for most molecules. Besides, the scaled dis-
tributions of MW of the fragments for the 12 libraries are
shown in Fig. 4. Noticeably, the distributions of the Level
2 scaffolds and Murcko frameworks are quite similar. As
for the RECAP fragments, many fragments are too small.
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Therefore, the Level 1 scaffolds and Murcko frameworks
are better to represent the whole molecules, and they are
used in the following analyses.

The CSFP is a good way to analyze the diversity for large
compound libraries. Scaffold frequencies are the number
of molecules containing particular scaffolds, which can
also be represented as the percentage of the compounds
in a library. Similarly, the number of fragments can also
be presented as the percentage of the total numbers as
shown in Fig. 5. In Fig. 5a, b, curves were truncated at
the point where the frequency of the fragment turns from
2 to 1 to compare them clearly considering the following
lines are paralleled. By analyzing the CSFPs in these two
figures roughly, we found that the slopes of the curves
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were different and the steeper curves suggested that the
most frequently occurring scaffolds can be found in more
molecules. For instance, the percentages of the molecules
of the top ten frequently occurring Murcko frameworks
are 7.625, 5.174, 7.042, 7.756, 4.540, 11.792, 6.938, 13.332,
11.015, 12.601, 8.710 and 11.005% for ChemBridge,
ChemDiv, ChemicalBlock, Enamine, LifeChemicals,
Maybridge, Mcule, Specs, TCMCD, UORSY, VitasM and
Zelinskylnstitute, respectively.

However, different libraries do not have identical num-
bers of fragments, which may influence the direct com-
parison of the 12 standardized datasets. The information
derived from the CSFPs in Fig. 5¢, d can be roughly quan-
tified by using the PC50C values, which is the percentage
of scaffolds that represent 50% of molecules, as shown in
Table 4. Accordingly, the higher the value of PC50C is,
the more diverse the scaffolds of a database will be. As
shown in Fig. 5¢ and Table 4, TCMCD reaches 50% at the
lowest number of the Murcko frameworks, then Specs,
Maybridge, Zelinsky Institute and ChemicalBlock. On
the contrary, Mcule, Enamine and Chembridge do not
reach 50% even the percentage of the most frequently
occurring scaffolds become about 25% (Fig. 5a). Accord-
ing to the PC50C values of the Murcko frameworks
for the 12 libraries (Table 4), the scaffold diversity of
Mcule, Enamine, ChemBridge, ChemDiv, LifeChemicals,
VitasM, UORSY, ChemicalBlock, Maybridge, ZelinskyIn-
stitute, Specs and TCMCD can be ranked in a descend-
ing order. In Fig. 5d and Table 4, the rank of the Level
1 scaffolds, however, is a little bit different. The scaffold
diversity of ChemDiv, Mcule, Maybridge, LifeChemicals,
ChemBridge, VitasM, ChemicalBlock, Enamine, Zelin-
skylnstitute, UORSY, Specs and TCMCD are ranked in a
descending order.

The scaffold diversity evaluated based on the Level 1
scaffolds and Murcko frameworks deliver similar overall
trends. Three libraries, including ChemDiv, Mcule and
LifeChemicals, are more structurally diverse for whether
the Level 1 scaffolds or Murcko frameworks, and two
libraries, including TCMCD and Specs, are less struc-
turally diverse. But the quantity statistics cannot reveal
similarities among these scaffolds, and the scaffolds of
TCMCD may present more diverse in similarity. Besides,
the exact trends of CSFPs for the Murcko frameworks
and Level 1 scaffolds are also different. The CSFEPs for the
Murcko frameworks are more discriminatory. It is pos-
sible that more granular Murcko frameworks enhance
the apparent scaffold diversity. Moreover, PC50C is also
just a simple index at a certain point in CSFPs. Therefore,
a more comprehensive comparison within the distribu-
tions of the Level 1 scaffolds is necessary to evaluate the
structural features of these libraries.
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Tree Maps

In the previous section, we analyzed the scaffold diversity
of the 12 libraries using the distributions of molecules
over scaffolds. Our analyses show that the studied librar-
ies are not evenly distributed over scaffolds, but we know
little about the structural similarity and distribution of
representative scaffolds. Thus, Tree Maps was used to
visualize the structural similarity and distribution of the
Level 1 scaffolds.

In Fig. 6 and Additional file 2: Fig. S1, colors in these
circles are related to DistanceToClosest (DTC). That is to
say, the deeper the red color is, the more similar the scaf-
fold will be to the cluster center, and on the contrary, the
deeper the green color is, the more dissimilar the frag-
ment will be to the cluster center. As observed in those
12 Tree Maps, green, especially deep green, accounts for

large areas in most of the datasets. To describe it easier,
the deep green coverage ratio is defined as “Forest Cover-
age” (FC). As shown in Fig. 6, the FC values of TCMCD
and LifeChemicals are larger than those of Enamine and
Mcule, indicating that the Level 1 scaffolds in every gray
circle of Enamine and Mcule are more similar to each
other than those of the other two datasets. This is con-
sistent with the results reported by Yongye et al. that
natural products showed low molecule overlap [37]. Nev-
ertheless, in a whole view, the separate gray circles for
TCMCD and LifeChemicals are sparser than those for
Enamine and Mcule, suggesting that the Level 1 scaffolds
of Enamine and Mcule own higher structural diversity
than the others. This is also demonstrated by the cluster
numbers of Enamine, Mcule, TCMCD and LifeChemi-
cals, which are 226, 220, 162 and 131, respectively.
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d

According to the analysis of CSFPs, it is believed that
Enamine and Mcule may be more structurally diverse,
which may result from more clusters not more diversity
in similarities among molecular structures. By contrast,
in LifeChemicals, however, despite some high dissimilar-
ity appears in some clusters, these dissimilarities central-
ize in several kinds of scaffolds, resulting in much less
unique fragments.

In order to compare the difference of the representa-
tive structures identified in the studied libraries, the 10

most frequently occurring scaffolds and the 10 scaffolds
of the cluster centers in the top 10 clusters of each library
were extracted (Additional file 2: Figs. S2, S3) and these
two kinds of extracted scaffolds were merged respec-
tively. Then, the frequencies of the merged scaffolds were
counted and the scaffolds with frequencies >2 are shown
in Fig. 7. Frequencies of these scaffolds for No. 1, 2, 4, 6
and 7 fragments found in different datasets are over 5.
Interestingly, 8 out of the 10 most frequently occurring
scaffolds of TCMCD cannot be found in any of the other
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Table 4 PC50C values of the Murcko frameworks (Murcko)
and Level 1 scaffolds for the 12 standardized datasets

Databases PC50C
Murcko Scaffold Tree

ChemBridge 21.38 1.92
ChemDiv 16.03 2.82
ChemicalBlock 942 1.68
Enamine 2641 1.68
LifeChemicals 12.96 1.99
Maybridge 8.52 2.09
Mcule 27.36 249
Specs 6.15 1.28
TCMCD 592 .11
UORSY 11.10 1.30
VitasM 11.85 1.86
Zelinskylnstitute 7.85 147

11 libraries. They have many non-aromatic rings with less
nitrogen and more oxygen, and are quite different from
the scaffolds found in the other libraries. By contrast,
commercial libraries (except Maybridge) possess many
common frequently occurring scaffolds with frequencies
higher than 5.

In Additional file 2: Fig. S3, these scaffolds acting as the
cluster centers in Tree Maps are obviously more dissimi-
lar between each other. As shown in Fig. 7, there are only
2 scaffolds (26 and 27) with frequencies >2, which can be
found in ChemBridge and LifeChemicals, and ChemDive
and Maybridge, respectively. It seems that the scaffolds
of these cluster centers serving as the representatives for
clusters are more unique than the most frequent ones.

SAR Maps
In the previous two sections, the structural features,
distributions and scaffold diversity of 12 libraries have
been analyzed, but the relationships among the scaf-
folds present in clusters for different libraries have not
been explored. Then, the chemical space of the molecules
identified by the substructure search of the representa-
tive scaffolds, which are the cluster centers from the Tree
Maps for the 12 subsets, was characterized by the SAR
Maps methodology. Besides, high interests in diverse
scaffolds that preferentially interact with important tar-
get families are also taken into consideration [38]. The
underlying pharmacological characteristics of some rep-
resentative scaffolds which are important components
of drug candidates against different drug targets are also
predicted.

As shown in Fig. 8a, each point represents a molecule,
and therefore, there are 4816 molecules in the SAR map.
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As mentioned above, points around the edge of the map
are the molecules whose dissimilarities measured by the
Tanimoto distance with all the others are higher than 0.3.
Two molecules will be placed far apart if their similarity
is < 0.3. It should be noted that it is meaningless to com-
pare the molecules at the hedge with any other points
in the map in terms of the actual similarity. More com-
pounds on the hedge, such as Enamine (green circles),
LifeChemicals (gray circles) and Mcule (the smallest blue
circles), may imply higher structural diversity of the rep-
resentative molecules. It is more meaningful to examine
the points that are put together as the typical molecules
in these libraries.

Therefore, to focus on the gathered molecules, the
original SAR Map is magnified and shown in Fig. 8b.
Compounds in the same library are represented by the
points with the same color, size and shape. As shown in
Fig. 8b, most of the biggest blue circles in TCMCD lie on
the left of the map, and vast of the pink circles of Chemi-
calBlock on the upper right. Similarly, most light blue
circles of Maybridge are at the bottom. As for the other
libraries, such as Mcule represented by the smallest blue
circles, it distributes more sparsely with few dense parts.
But Mcule has 518 representative molecules, roughly
equal to that of Maybridge (513) on the map. More dis-
persive distribution of Mcule suggests that Mcule also
owns a large number of diverse molecules. The gray ones
of LifeChemicals also spread in a wide range, but some
accumulate in certain separated areas. Thus, there must
be some distinct molecules in each library as shown by
the denser areas on the map. Then, 40 selected areas of
representative molecules highlighted by the black dotted
circles on the SAR Map were identified.

To grasp the potential functions and structural proper-
ties of these selected representative molecules, similar-
ity searching and the MCS searching were carried out.
By searching BindingDB based on similarity, similar
inhibitors of the representative molecules and the cor-
responding targets were obtained. Similar molecules in
BindingDB could be found for 39 out of the 40 repre-
sentative molecules, and the 39 corresponding MCSs
are shown in Additional file 2: Fig. S4 and the potential
targets are listed in Additional file 2: Table S1. We found
that many identified potential targets were kinases and
GPCRs with high similarity thresholds, such as Pyru-
vate kinase for ChemDiv, streptokinase A precursor for
ChemicalBlock, Cyclin-Dependent kinase for LifeChemi-
cals, Serine/threonine-protein kinase for Maybridge,
hexokinase and Serine-protein kinase for TCMCD and
Glycogen synthase kinase for LifeChemicals, Maybridge,
Mcule, TCMCD, VitasM and ZelinskyInstitute. Moreo-
ver, GPCRs were also identified as the potential targets
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Fig. 6 Tree Maps of the Level 1 Scaffolds for a LifeChemicals, b Enamine, ¢ Mcule and d TCMCD

for the representative molecules found in ChemBridge,
ChemicalBlock, Maybridge, TCMCD and VitasM. In par-
ticular, three groups of molecules in TCMCD have high
similarity (up to 1) to the inhibitors of GPCRs but MCSs
of the representative structures from these groups are
not that similar. Besides, some ion channels, transport-
ers, etc. can also be found as the potential targets. Our

results suggest that these typical structures found by the
SAR Maps can reveal some important structural and
potential functional features for each dataset. Specifi-
cally, TCMCD, ChemicalBlock and Maybridge occupy-
ing unique area in chemical space, are of great potential
to find drug candidates of those vital druggable targets,
such as kinases and GPCRs.
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Conclusions

In this study, based on seven different fragment repre-
sentations, the structural features, scaffold diversity and
chemical distributions of 12 libraries, including 11 com-
mercially available compound libraries and TCMCD,
were explored and compared. The analyses indicate that
although Chembridge, ChemicalBlock, Mcule, TCMCD
and VitasM are more structurally diverse than the other
databases. TCMCD is actually not quite structurally
diverse for simple molecules, but the most occurring
Level 1 scaffolds of it has tremendous difference to those

of the other libraries. Despite Chembridge, Mcule and
VitasM are rich in different kinds of fragments, their rep-
resentative molecules largely overlap with those of the
other databases, suggesting that the unique compounds
in these libraries may be not so high in fact. Structures
in ChemicalBlock are really diverse and complicated
enough for VS. As for LifeChemicals, it does not have a
variety of fragments but has much dissimilar molecular
structures. Some libraries such as Enamine and UORSY
are not good choice for actual VS considering the struc-
tural complexity and diversity of the molecules. Besides,
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40 groups of representative scaffolds were identified in
these 12 databases through Tree Maps and SAR Maps,
and some molecules with these representative scaffolds
found in certain libraries may be potential inhibitors of
kinases and GPCRs. We believe that our study may pro-
vide valuable information to select proper commercial
libraries in practical VS.

Additional files

Additional file 1: File S1. Studied structures in the SAR map.zip.

Additional file 2: Fig. S1. Tree Maps for the studied datasets; Figure S2.
The most frequent scaffolds served as the representatives of the clusters;
Figure S3. Cluster centers served as the representatives of the clusters;
Figure S4. Maximum Common Substructures (MCS) for 39 out of the 40
representative molecules; Table S1. Potential targets of the 39 similar
molecules found in BindingDB for the 40 representative molecules.
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