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Abstract 

Background:  In recent years, predictive models based on machine learning techniques have proven to be feasible 
and effective in drug discovery. However, to develop such a model, researchers usually have to combine multiple 
tools and undergo several different steps (e.g., RDKit or ChemoPy package for molecular descriptor calculation, 
ChemAxon Standardizer for structure preprocessing, scikit-learn package for model building, and ggplot2 package for 
statistical analysis and visualization, etc.). In addition, it may require strong programming skills to accomplish these 
jobs, which poses severe challenges for users without advanced training in computer programming. Therefore, an 
online pipelining platform that integrates a number of selected tools is a valuable and efficient solution that can meet 
the needs of related researchers.

Results:  This work presents a web-based pipelining platform, called ChemSAR, for generating SAR classification mod‑
els of small molecules. The capabilities of ChemSAR include the validation and standardization of chemical structure 
representation, the computation of 783 1D/2D molecular descriptors and ten types of widely-used fingerprints for 
small molecules, the filtering methods for feature selection, the generation of predictive models via a step-by-step 
job submission process, model interpretation in terms of feature importance and tree visualization, as well as a helpful 
report generation system. The results can be visualized as high-quality plots and downloaded as local files.

Conclusion:  ChemSAR provides an integrated web-based platform for generating SAR classification models that will 
benefit cheminformatics and other biomedical users. It is freely available at: http://chemsar.scbdd.com.
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Background
The increasing availability of data on characteristics 
and functions of biomolecules and small chemical com-
pounds enables researchers to better understand various 
chemical, physical and biological processes or activities 
with the use of machine learning methods [1–7]. Par-
ticularly in the drug discovery field, machine learning 
methods are frequently applied to build in silico predic-
tive models in studies of structure–activity relation-
ships (SAR) and structure–property relationships (SPR) 
to assess or predict various drug activities [8, 9], and 

ADME/T properties [10–16]. Nowadays, with the devel-
opment of various public data sources (e.g., ChEMBL 
[17], PubChem [18], and DrugBank [19]), more and more 
scientific studies are utilizing predictive SAR/SPR models 
to perform virtual screening [20], study drug side effects 
[21–24], predict drug–drug interactions [25] or drug–
target interactions [26–28], and investigate drug reposi-
tioning [29, 30]. Undoubtedly, robust and predictive SAR 
models built upon machine learning techniques provide 
a powerful and effective way for pharmaceutical scien-
tists to tackle the aforementioned problems; however, 
there still exist two major barriers to overcome.

First, owing to the fusion of different scientific dis-
ciplines, a higher level of background knowledge and 
professional skills is required to solve many existing bio-
logical problems. For example, to reliably predict drug 
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ADME/T properties, a researcher must be familiar with 
both pharmacokinetics and a modern programming lan-
guage [14]; however, in many cases, researchers from 
the pharmaceutical or biomedical fields may lack formal 
training in computing skills. It may thus become neces-
sary to save these investigators from tedious program-
ming or deployment work such that they can focus on 
solving scientific problems.

Second, even if a researcher acquired the related back-
ground knowledge and computing skills, it is very time-
consuming to build a predictive model as a number of 
steps are needed, including molecule representation, 
feature filtering, selection of a suitable machine learn-
ing method, prediction of new molecules, and relevant 
statistical analysis. In particular, the researcher needs to 
select and combine different tools to accomplish these 
steps; for example, using RDKit [31] to calculate molecu-
lar descriptors, using libSVM [32] or scikit-learn [33] to 
establish a model, using ggplot2 [34] to plot or visualize 
the results. However, the selection and integration of 
such tools involve lots of programming issues and efforts.

For molecular representation, tools like RDKit, CDK 
[35], Chemopy [36], OpenBabel [37], PaDEL [38], Cin-
fony [39], PyDPI [40], Rcpi [41], have been developed to 
provide thousands of molecular descriptors. For building 
SAR/SPR models based on machine learning algorithms, 
a series of package have been implemented, including 
scikit-learn in Python, and pls [42], earth, caret [43], 
randomFroest [44], kernlab [45], and RRegrs [46] in R. 
Visualization packages like matplotlib [47], ggplot2 and 
seaborn [48] are also freely available to produce high-
quality statistical graphics. In addition, several online 
web services such as ChemDes [49], BioTriangle [50], 
E-DRAGON [51], QSAR4U [52] and OpenTox [53] are 
also available for drug discovery purpose. However, these 
tools are developed independently using different pro-
gramming languages and APIs such that a unified and 
comprehensive platform is desirable to release biomedi-
cal investigators from such tedious and repeated efforts.

Toward this goal, a few previous studies made attempts 
to integrate one or two of the steps into a single pack-
age. For instance, the VCCLAB group [51, 54] developed 
E-DRAGON, an online platform for DRAGON software, 
to calculate various molecular descriptors, and also pro-
vided several online machine learning tools like PLSR and 
ASNN for model building. However, these tools are inde-
pendent of each other and cannot be further integrated 
together to accomplish the entire modeling process. 
The OCHEM platform [55] was developed to provide a 
practical online chemical database. Also, this platform 
provides a modelling environment that enables users to 
standardize molecules, calculate molecular descriptors 
and build QSAR models. However, the OCHEM database 

is not specialized for SAR modelling and thus still lacks 
some essential functionalities like feature selection and 
advanced statistical analysis. Its modeling function is 
solely based on small molecules and thus cannot be used 
to analyze other independent biomedical dataset. More 
recently, Murrell et  al. [56] developed a relatively well-
integrated R package, named camb, for QSAR modeling. 
However, it does require users to have sufficient pro-
gramming skills in R. In 2010, Chembench [57, 58] was 
developed and make progress in the simplicity of the use 
of QSAR modelling for analyzing experimental chemical 
structure–activity data. Other software applications that 
should be mentioned include eTOXlab [59], AZOrange 
[60], QSARINS [61], OECD QSAR Toolbox [62], Build-
QSAR [63], Molecular Operating Environment (MOE) 
[64] and Discovery Studio (DS) [65]; however, these soft-
ware are either commercial or difficult for users to deploy 
by themselves.

In view of these limitations, we implemented a web-
based platform, called ChemSAR, as an online pipelin-
ing for SAR model development. ChemSAR integrates a 
set of carefully selected tools and provides a user-friendly 
web interface and allows users to complete the entire 
workflow via a step-by-step submission process without 
involving any programming effort. Currently, Chem-
SAR is mainly designed for molecular SAR analysis and 
is capable of accomplishing seven modeling steps: (1) 
structure preprocessing, (2) molecular descriptor calcu-
lation, (3) data preprocessing, (4) feature selection, (5) 
model building and prediction, (6) Model interpretation 
(7) statistical analysis. These seven steps together with 
several ancillary tools are implemented in six modules: 
(1) User space, (2) Structure preprocessing, (3) Data pre-
processing, (4) Modeling process, (5) Model interpretation 
(6) Tools. The six modules form an integrated pipeline for 
modeling, but each of these modules can also be used as 
a standalone tool. The whole workflow is shown in Fig. 1.

Methods
Implementation
The whole project runs on an elastic compute ser-
vice (ECS) server of Aliyun. The number of CPU cores 
and memory are automatically allocated to the run-
ning instances on demand, which ensures the elasti-
cally stretchable computing capability. Python/Django 
and MySQL are used for server-side programming, and 
HTML, CSS, JavaScript are employed for front side web 
interfaces. The realization of functionality should go 
through three main components (MCV short for Model-
Control-View model). To illustrate the implementation of 
the ChemSAR  architecture, we consider the functional-
ity of “Feature Calculation” as an example and the corre-
sponding diagram is shown in Fig. 2 (see also Additional 
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Fig. 1  The pipelining of ChemSAR. It contains six main modules: (1) User space, (2) Structure preprocessing, (3) Data preprocessing, (4) Modelling 
process, (5) Model interpretation (6) Tools. Each of them not only could be utilized as one part of the whole pipelining but also could be used as an 
independent tool
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file 1). This module consists of four *.py files and a tem-
plate folder: models.py acts as “M” to access the database; 
views.py acts as “C” to realize the functionality; the func-
tions.py acts as a library to store the key calculation pro-
cedures which could be called into views.py; the forms.
py stores input forms that can be used in templates; The 
HTML pages in the template folder act as “V” to visualize 
the results. Firstly, users go to the index page of “Feature 
Calculation” and submit the request. Then, the function: 
fingerprint_list (from views.py) executes as the back-end 
calculation program. In this function, (1) the input data 
from users is handled; (2) the input data is saved into 
database; (3) the key calculation function is called and 
executed; (4) the calculation result is stored into database 
and provided as file for download; (5) all the related vari-
ables are rendered into content for view. Among them, 
UserData and FeatureData are called from models.py to 
store users’ data and result data; handle_uploaded_file 
and calcChemopyFingerprints_list are imported from 
functions.py to store the uploaded file and calculate 
specified fingerprints. At last, the calculated fingerprints 
values will be rendered to static contents displayed in 
fingerprint_result3.html. As an easy-to-use web service, 
ChemSAR supports commonly-used file formats for data 
exchange between the server-side and the client-side. 

Specifically, simplified molecular input line entry speci-
fication (SMILES) and Structure Data Format (SDF) are 
acceptable molecular file formats (or users can convert 
their files into these two formats using OpenBable [37] 
or ChemCONV [49]). The modeling results will be pre-
sented as HTML web pages, but users can download the 
results in SDF, CSV, PNG or PDF format (see Table 1 for 
details). 

User interface
To accomplish the complex modelling steps by using a 
web-based tool, a user-friendly interface is very neces-
sary. In ChemSAR, database and session technologies 
are utilized to help develop a complete job submission 
and user space system. The AJAX technology is used in 
those processes that usually take a long time to finish, 
which makes it possible to check the status of different 
jobs at a convenient time. Besides, a logging system is 
developed to make sure that every step or wrong opera-
tion will trigger user-friendly tips or messages. The user 
interface consists of three main parts: the “Model” sec-
tion, “Manual” section and “Help” section. The “Model” 
section is the main entrance for structure preprocess-
ing, data preprocessing, modelling process and tools. The 
“Manual” section describes theories and requirements 

Fig. 2  The process of calculating molecular fingerprints—an example to explain the development methods of ChemSAR



Page 5 of 13Dong et al. J Cheminform  (2017) 9:27 

for each module. The “Help” section gives detailed expla-
nations of each module and a standard example of each 
step of building an SAR classification model.

Module functionality
User space
In general, to build a model, there is a need of storage space 
for user’s data and computing results. In this project, the 
“User space” module is developed to enable users to view, 
download and reuse all related files or models at any time.

Structure preprocessing
It is very difficult for SAR practitioners to collect and 
integrate chemical structures from multiple sources 
due to the use of different structural representations, 
diverse file formats, distinct drawing conventions and 
the existence of labeling mistakes in such sources [66]. 

Therefore, preprocessing and standardizing these struc-
tures are very important tasks that will ensure the cor-
rectness of graphical representation and the consistence 
of molecular property calculation. Hence, we developed 
the “Structure preprocessing” module for molecule struc-
ture standardization based on the RDKit package. This 
module consists of three sub-modules, called Validation 
of molecules, Standardization of molecules, and Custom 
preprocessing, respectively. The “Validation of molecules” 
sub-module can check and visualize molecular struc-
tures. A warning message will be triggered if any anomaly 
is detected (e.g., a molecule has zero atoms, or has multi-
ple fragments, or is not an overall neutral system, or con-
tains isotopes), and both the molecular structure and the 
validation result will be displayed in an interactive table. 
The “Standardization of molecules” sub-module con-
sists of the following steps: removing any hydrogen from 

Table 1  The valid file formats and requirements for each module

Module name Input Output Description

Feature calculation *.smi; *.sdf *.csv The standard version of molfile in SDF must be V2000; 2D or 
3D information are both valid; the first row of *.csv file is the 
descriptor names; the first column is the SMILES of molecules

Model selection *.csv Data table in the page The first column of X_train file can be molecular identifiers like 
molecular names or IDs; the first row of X_train file must be 
descriptor names; the first column of y_train file must be the 
same with X_train file; the second column must be experimen‑
tal values of the sample (different presentation styles of classes 
must be converted into 0 or 1)

Model building *.csv Data table in the page; *.png The same with “Model selection”

Prediction *.csv Data table in the page; *.csv The requirements of X_test file are the same with X_train file

Validation of molecules *.sdf *.csv The standard version of molfile in SDF must be V2000

Standardization of molecules *.sdf *.sdf The same with “Validation of molecules”

Custom preprocessing *.sdf *.sdf The same with “Validation of molecules”

Imputation of missing values *.csv *.csv The first row of input file must be header like descriptor names; 
each column including the first one must be feature values like 
descriptor values

Removing low variance features *.csv *.csv The same with “Imputation of missing values”

Removing high correlation features *.csv *.csv The same with “Imputation of missing values”

Univariate feature selection *.csv *.csv The first row of input file must be header like descriptor names; 
each column from the first one to the penultimate one must be 
feature values like descriptor values; The last column must be 
experimental values of the sample (different presentation styles 
of classes must be converted into 0 or 1)

Tree-based feature selection *.csv Data table in the page; *.csv The same with “Univariate feature selection”

RFE feature selection *.csv Data table in the page; *.csv; 
*.png

The same with “Univariate feature selection”

Statistical analysis *.csv Data table in the page; *.png The four columns of input file must be in order: molecular identi‑
fier, predict label, predict probability, experimental value; the 
label name can be defined by users

Random training set split *.csv *.csv The same with “Model selection”

Diverse training set split *.sdf *.sdf The de facto standard version of molfile in SDF must be V2000; 2D 
or 3D information are both valid

Feature importance *.csv *.csv The same with “Univariate feature selection”
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the molecule, sanitizing the molecule, breaking certain 
covalent bonds between metals and organic atoms, cor-
recting functional groups and recombining charges, re-
ionizing a molecule such that the strongest acids ionize 
firstly, discarding tautomeric information and retaining a 
canonical tautomer. Different from the one-click process 
implemented in “Standardization of molecules”, the “Cus-
tom preprocessing” sub-module provides flexible options 
for users to construct customized standardization pro-
cess according to their own preferences of operations and 
execution orders.

Data preprocessing
Feature selection is one of the focuses of many SAR-
based researches, for which datasets with tens (or hun-
dreds) of thousands of variables need to be analyzed and 
interpreted. The variables from the descriptor calcula-
tion step usually need to be selected for the following 
reasons: removing unneeded, irrelevant or redundant 
features, simplifying models for easiness of interpreta-
tion, and shortening training time [67]. This module is 
built upon the scikit-learn package and consists of six 
sub-modules, including imputation of missing values 
(imputer), removal of low variance features (rm_var), 
removal of highly correlated features (rm_corr), uni-
variate feature selection (select_univariate), tree-based 
feature selection (select_tree_based) and recursive fea-
ture elimination (select_RFE). The imputer module can 
impute missing values (e.g., nan) in the data. The rm_var 
and rm_corr modules remove features by a predefined 
threshold of variance or correlation coefficient without 
incurring a significant loss of information. The select_
univariate module works by selecting k best features 
based on univariate statistical tests (e.g., Chi square or 
F tests). The select_tree_based module discards trivial 
features according to the importance computed using 
an estimator of randomized decision trees. The select_
RFE module performs recursive feature elimination in a 
cross-validation loop to find the optimal number of fea-
tures. Here, an estimator of support vector classification 
with a linear kernel is invoked to compute a cross-vali-
dated score for each recursive calculation. After the cal-
culation, a figure is displayed on the result page to show 
the relationship between the number of features and the 
cross-validation scores. A table that contains the optimal 
number of features, the feature ranking and the cross-
validation scores is also presented there.

Modeling process
The core steps of building an SAR model are imple-
mented in the “Modeling process” module. It contains 
four sub-modules: feature calculation, model selection, 
model building, and prediction.

Feature calculation
In this project, we developed the feature calculation sub-
module as an online tool [36], which allows users to cal-
culate 783 molecular descriptors from 12 feature groups 
(see Table  2). These features cover a relatively broad 
range of molecular properties and are carefully selected 
based on our experience. In recent years, molecular fin-
gerprints are widely used in drug discovery area, espe-
cially for similarity search, virtual screening and QSAR/
SAR analysis due to their computational efficiency when 
handling and comparing chemical structures. In this sub-
module, ten types of molecular fingerprint algorithms are 
implemented (see Table 2). These molecular fingerprints 
have been shown to have a good performance in charac-
terizing molecular structures.

Model selection
The model selection sub-module is developed to select a 
proper learning algorithm and computing parameter set 
based on user’s dataset via comparing/validating models 
and tuning parameters. Five learning algorithms [68–72] 
from the scikit-learn package are implemented. These 

Table 2  The list of  molecular descriptors computed 
by ChemSAR

Feature group Features Number 
of descriptors

Constitution Molecular constitutional descriptors 30

Topology Topological descriptors 35

Connectivity Molecular connectivity indices 44

E-state E-state descriptors 245

Kappa Kappa shape descriptors 7

Basak Basak descriptors 21

Burden Burden descriptors 64

Autocorrelation Moreau-Broto autocorrelation 32

Moran autocorrelation 32

Geary autocorrelation 32

Charge Charge descriptors 25

Property Molecular property 6

MOE-type MOE-type descriptors 60

CATS CATS descriptors 150

Fingerprints Topological-Torsion fingerprints 1024

MACCS keys 167

FP4 fingerprints 307

FP2 fingerprints 1024

FP3 fingerprints 210

E-state fingerprints 79

Daylight-type fingerprints 1024

ECFP2 fingerprints 1024

ECFP4 fingerprints 1024

ECFP6 fingerprints 1024
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algorithms, along with their parameters and the rec-
ommended defaults, are listed in Table  3. The detailed 
description of each algorithm and how to choose proper 
algorithms for different datasets are described in the 
“Manual” section of the website. After the calculation, a 
table is created to display the classifier, parameter, best 
parameter, number of positive samples, number of nega-
tive samples and score_means (the mean score of cross-
validation for each parameter combination).

Model building
In the previous sub-module, a proper learning algo-
rithm and the corresponding parameter set have been 
obtained. In this sub-module, a predictive classification 
model based on the selected method and parameters 
can be established. Here the same training dataset as 
that in the model selection sub-module should be chosen 
(or uploaded manually). The result table generated from 
this sub-module will give detailed information about the 
model, including classifier, parameter, number of positive 
samples, number of negative samples, AUC score, accu-
racy, MCC (Matthews correlation coefficient), F1 score, 
sensitivity, specificity and ROC curve. The built model will 
be stored in my model and can be employed to predict 
new samples next time.

Prediction
This sub-module is used to predict the samples from the 
test set or new samples from virtual chemical libraries, 
which is the ultimate goal of building an SAR model. In 
the submitting page, users can check the detailed infor-
mation about the model including the classifier, param-
eter, accuracy, cross-validation fold, features in X (i.e., 

selected features used in training set), X train, y train. 
When the file of the test set matrix is uploaded, the 
model will calculate the predict_prob and predict_label 
for submitted samples. In the result page, an interactive 
table containing prediction results will be displayed and 
can also be downloaded.

Model interpretation and application domain
It is very necessary to have a reasonable interpretation 
of machine learning models and to define its applica-
tion domain [66, 73, 74]. Here, we developed two related 
sub-modules to help researchers to interpret their mod-
els. The feature importance module enables researchers 
to interpret models in terms of feature importance. The 
forests of trees are used to evaluate the importance of 
features. By using this module, researchers can obtain a 
figure displaying the feature importances of the forest, 
along with their inter-trees variability. Another module is 
tree visualization which enables one to observe how the 
features classify the samples step by step in the decision 
tree model. By using this, the model will be displayed as 
a clear tree along with class names and explicit variables.

Moreover, we define an S index in the prediction mod-
ule to help users to estimate which ones are considered 
reliable. It only works for chemical datasets. The S indi-
ces represent the mean similarity between each molecule 
from external samples and all molecules from training set 
using Tanimoto similarity metrics based on MACCS fin-
gerprints. The higher the S index for a new molecule, the 
closer the molecule is to the main body of the training 
set, and thus we could conclude that a more reliable pre-
diction for this molecule should be obtained by our con-
structed predictive model.

Table 3  The supported algorithms and related parameters

Algorithms Parameters Recommended parameters

RandomForest n_estimators: The number of trees in the forest;
max_features: The number of features to consider  

when looking for the best split; (start_feature, end_feature  
and step make up the attempts of max_features)

cv: cross-validation fold

n_estimators:500;
max_features: sqrt(N);
N stands for number of features;
cv: 5

SVM kernel type: rbf, sigmoid, poly, linear;
C: penalty parameter C of the error term.;
gamma: kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’;
degree: degree of the polynomial kernel function;
cv: cross validation fold

C: 2^−5, 2^15, 2^2; (format: start, end, step)
gamma: 2^(−15), 2^3, 2^2;
degree: 1, 7, 2
cv: 5

Naïve Bayes Bayes classifier type;
cv: cross validation fold

BernoulliNB for binary-valued variable;
GaussianNB for continuous variable;
cv: 5

K Neighbors n_neighbors: number of neighbors to use;
cv: cross validation fold

n_neighbors: 1–10;
cv: 5

DecisionTree Algorithm: algorithm used to compute the nearest  
neighbors (‘ball_tree’, ‘kd_tree’, ‘brute’);

cv: cross validation fold

Automatic decision;
cv: 5
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Report system
One of the striking features of ChemSAR is that it pro-
vides a complete report generation system. It retrieves 
the results of each calculation step and re-arrange them 
into an organized HTML page and a PDF file for users. 
After finishing the whole modelling pipeline, the user 
can go to the “My Report” module to obtain the report. 
At the index page of this module, all job IDs that the user 
has created will be listed there. A “Get a PDF” button 
allows the user to generate a PDF file for off-line usage. 
A “Query” button is available to query the information 
about models created in other jobs. This is very help-
ful when a user attempts to construct multiple models 
using different machine learning methods and computing 
parameters, or when the user wants to build more than 
one model by the same client at the same time.

Useful tools
In addition to main modules mentioned above, Chem-
SAR offers three useful and convenient auxiliary tools. 
The first tool, statistical analysis, can be used to ana-
lyze the model performance. This tool is separate from 
the prediction module because the test set may have no 
real response values. The “attach to current job or not” 
option allows the user to predict different test sets and 
get a complete report each time. After the calculation, 
commonly used statistical indicators related to classifica-
tion are displayed, including number of positive samples, 
number of negative samples, AUC score, accuracy, MCC, 
F1 score, sensitivity, specificity and ROC curve. The sec-
ond tool, random training set split, can be used to split 
training set and test set by picking a subset of mole-
cules randomly. The third tool, diverse training set split, 
can be used to split training set and test set by picking 
a subset of diverse molecules [75]. First, the similarity 
of ECFP4 fingerprints based on Dice similarity metric 
[31] is employed to calculate distances between molecu-
lar objects and then the MinMax algorithm is applied to 
select a subset of diverse molecules based on the afore-
mentioned distances. This is usually a good strategy to 
avoid the unsuitable training/test data split problem.

Results and discussion
The most important strategy of pharmaceutical industry 
to overcome its productivity crisis in drug discovery is to 
focus on the molecular properties of absorption, distri-
bution, metabolism and excretion (ADME). Nowadays, 
machine learning based approaches have been becom-
ing a very popular choice to predict ADME properties 
of drug molecules. Here, in order to demonstrate the 
practicability and reliability of ChemSAR, we studied the 
Caco-2 Cell permeability using dataset from our previous 
publication [12] . All the compounds were divided into 

two classes according to the Caco-2 permeability cutoff 
value [12]. Then, we obtain a dataset of 1561 molecules 
containing 528 positive samples and 1033 negative sam-
ples. A detailed workflow of building the permeability 
models is shown in Fig. 3.

Firstly, through the structure preprocessing step 
(Standardization of molecules) using the default param-
eters, 1561 molecules were left. The random training set 
split tool (set test size for the data: 0.2) was then used to 
split the training set and test set. After this, a training set 
of 1249 samples (423 positive samples and 826 negative 
samples) and a test set of 312 samples (105 positive sam-
ples and 207 negative samples) were obtained.

In the feature calculation step, 203 descriptor were cal-
culated including 30 constitution descriptors, 44 connec-
tivity indices, 7 kappa indices, 32 Moran auto-correction 
descriptors, 5 molecular properties, 25 charge descrip-
tors and 60 MOE-Type descriptors. Four filtering steps 
in data preprocessing were then performed: (1) missing 
values were imputed with the default parameters, and (2) 
descriptors with zero variance or near zero variance were 
removed with a cut-off value of 0.05, and (3) one of two 
highly correlated descriptors were randomly removed 
with a cut-off value of 0.95, and (4) perform the tree-
based feature selection (n_estimators: 500, max_features: 
auto, threshold: mean). After these steps, 43 features 
were selected to build the model.

To test every module of ChemSAR and to build a model 
with high prediction performance, we employed five 
methods (RF, SVM, k-NN, NB, DT) to build classifica-
tion models. In model selection, the parameters for each 
learning method were optimized using grid search strategy 
(The best parameters set for RF: {‘cv’: 5, ‘max_features’: 9, 
‘n_estimators’: 500}; SVM: {‘kernel’: ‘rbf ’, ‘C’: 2, ‘gamma’: 
0.125}; k-NN: {n_neighbors: 5}; NB: {‘classifier’: ‘Gaussi-
anNB’}.) Then, a robust model was established with a 
5-fold cross validation again. Each of the modelling pro-
cesses will be repeated 10 times and then the statistical 
results will be reported as “mean ± variance”. Additionally, 
to test the fingerprints module and to make a further com-
parison, we also calculated five kinds of fingerprints and 
then built corresponding models. The model performance 
was displayed in Additional file 2: Fig. S1 and Additional 
file 2: Table S1. From the results, we can find that RF using 
2D descriptors performs best: {Accuracy: 87.3±0.3, Sen-
sitivity: 80±0.6, Specificity: 91.1 ± 0.3, MCC: 71.5 ± 0.6, 
AUC: 92.9  ±  0.3} for training set and {Accuracy: 85.3, 
Sensitivity: 77.1, Specificity: 89.4, MCC: 66.8, AUC: 89.9} 
for test set. Consequently, the RF method is more suitable 
for building a classification model for this dataset and the 
2D descriptors can characterize molecules of this dataset 
more adequately. Clearly, by using the modelling module 
in ChemSAR, one could conveniently construct different 
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Fig. 3  The workflow of building Caco-2 Cell permeability models
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algorithm models for one dataset and then makes a com-
prehensive comparison and further analysis to identify the 
best prediction model for the current problem.

To further evaluate the prediction ability of our mod-
els, we compared our prediction results with the pub-
lished models in recent papers. The latest report was in 
2013 [76], the authors built a model using DT method 
with 1289 compounds which could accurately predict 
78.4/76.1/79.1% of H/M/L compounds on the train-
ing set and 78.6/71.1/77.6% on the test set. In 2011 [77], 
Pham et al. built a model using linear discriminant analy-
sis (LDA) method with 674 molecules which reported 
results: MCC =  0.62, Accuracy =  81.56% (training set), 
Accuracy  =  83.94% (test set). Compared with the two 
models above, our model has an almost comparative or 
better performance. Obviously, ChemSAR has the capac-
ity to obtain the reliable and robust classification model 
for the evaluation of Caco-2 Cell permeability.

Comparison with other related tool sources
For the purpose of further comparison, we have studied 
related publications as much as we can, and searched on 
Google to collect related tools that possess SAR model-
ling functionality. Then, a comparison based on applica-
tion scenarios and functionality was performed, which 
was summarized in Table  4. In this table, we compared 
and then marked several aspects of each tool, including 
“type”, “structure preprocessing”, “data preprocessing”, 
“molecular representation”, “feature selection”, “model 
selection”, “algorithm type”, “charge or free” and “cou-
pling”. The results suggest that ChemSAR is strongly 
recommended for multiple advantages of it as shown in 
the table. Note that we cannot absolutely guarantee the 
accuracy of the description for each tool because we get 
all the available information mainly from the correspond-
ing publications or its documentations but some tools are 
not accessible or commercial. Also, the features of each 
tool evaluated here are from this tool’s main framework, 
not the plugins provided by its user community.

Conclusion
In this study, we developed the ChemSAR platform as 
an online pipelining of building SAR classification mod-
els. It is freely accessible to the public and is platform-
independent so users can access this platform via almost 
all different types of operation systems (Linux, Micro-
soft windows, Mac OS, Android) and clients (PC clients, 
mobile clients). The main advantages of the proposed 
platform are summarized as follows: (1) ChemSAR imple-
ments a complete online model-building process, which 
enables biomedical investigators to construct predictive 
models easily without suffering from tedious program-
ming and deployment work. (2) ChemSAR provides a 

comprehensive modelling pipelining by integrating six 
model generation steps into a unified workflow. (3) The 
modular design of the framework enables six sub-mod-
ules to run independently to accomplish specific func-
tionalities. (4) The job submission strategy allows users to 
query the calculation results at spare time. This provides 
an essential basis for the report system to generate a clear 
modeling report. (5) The modular design of the frame-
work allows researchers to deal with not only the analy-
sis of small molecules but also modelling problems in the 
biomedical field. For example, building a classification 
model based on the biochemical indicators of patients 
helps to study the disease classification or stage. In addi-
tion, we conducted a case study to illustrate the use of this 
platform in practice, and several models were obtained to 
evaluate the Caco-2 Cell permeability at the same time.

A major goal of the cheminformatics development is to 
make its techniques to be applied into the study of practi-
cal problems. The trend for future development of SAR 
models is towards making models publicly accessible 
on-line, interactive, and usable [78]. ChemSAR, to some 
extent, has made a step in this direction. It is expected 
that ChemSAR can be applied to a wide variety of stud-
ies when there exists a significant demand of using SAR 
models. In the future, we will continue to implement 
more classification algorithms and add the options for 
a more flexible parameter control. Also, we will add the 
regression algorithms if needed.
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