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SOFTWARE

CPANNatNIC software 
for counter‑propagation neural network 
to assist in read‑across
Viktor Drgan1*, Špela Župerl1, Marjan Vračko1, Claudia Ileana Cappelli2 and Marjana Novič1

Abstract 

Background:  CPANNatNIC is software for development of counter-propagation artificial neural network models. 
Besides the interface for training of a new neural network it also provides an interface for visualisation of the results 
which was developed to aid in interpretation of the results and to use the program as a tool for read-across.

Results:  The work presents the details of the program’s interface. Parts of the interface are presented and how they 
can be used. The examples provided show how the user can build a new model and view the results of predictions 
using the interface. Examples are given to show how the software may be used in read-across.

Conclusions:  CPANNatNIC provides a simple user interface for model development and visualisation. The interface 
implements options which may simplify read-across procedure. Statistical results show better prediction accuracy of 
read-across predictions than model predictions where similar compounds could be identified, which indicates the 
importance of using read-across and usefulness of the program.

Keywords:  Counter-propagation neural network, Read-across, Software

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In the past several years, there is an increasing inter-
est in using in silico tools for risk assessment of chemi-
cals. The reasons for higher interest can be found in 
Registration, Evaluation, Authorisation and Restriction 
of Chemicals (REACH) legislation in European Union 
which requires registration of a large number of chemi-
cals in use. The legislation allows using read-across for 
toxicity assessment under certain conditions written in 
the regulation. Definition of read-across and its correct 
use are still rather unclear. Patlewicz et  al. [1] gathered 
several definitions of read-across from different sources 
[e.g. United States Environmental Protection Agency (US 
EPA), European Chemical Agency (ECHA), The Organi-
sation for Economic Co-operation and Development 
(OECD)]. Concisely, we may understand the definitions 
of read-across as an approach to predict a property of 

a chemical based on the same property of one or more 
similar chemicals. Different tools already exist which can 
be used for read-across, for example OECD QSAR Tool-
box [2], ToxRead [3], TEST [4] and VEGA [5].

In this paper we present a new tool which can be used 
for development of counter-propagation artificial neu-
ral network (CPANN) models. The models can be later 
used either for direct prediction of the endpoint under 
consideration for new, i.e. untested compounds, or for 
read-across approach. The software provides a graphi-
cal user interface which was designed to facilitate read-
across based on analogue or category approach using 
CPANN models. CPANNs are particularly suitable for 
these approaches because of their ability to group com-
pounds according to their structural similarity. Although 
the software was initially built to facilitate read-across for 
toxicity assessment of substances, its usage is not lim-
ited to toxicity-related endpoints since the user describes 
compounds in the input data file(s) which may include 
numerical values of any property.
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Basis for read‑across
As mentioned above, the software uses CPANN models. 
The results of the predictions can be viewed in a simple 
graphical user interface with compounds placed on the 
map, called a “top-map”, according to their similarity 
which can be used as the basis for read-across predic-
tions. The learning principles of Kohonen and CPANNs 
are well established and can be found in detail elsewhere 
[6–8]. Some definitions are given below so that the 
user can better understand the results produced by the 
software.

Schematic representation of a CPANN is shown in Fig. 1. 
It is composed of Kohonen layer and output (Grossberg) 
layer. It can be visualized as a 3D matrix of values called 
weights (W). One column (vector) of weights is called neu-
ron. The figure schematically shows how the results of pre-
dictions (R1–R3) are obtained. First, the Euclidean distance 
between each neuron and the object is calculated using 
descriptor values and weights in Kohonen layer. Then 

the most similar neuron to the objects is identified as the 
neuron with the shortest Euclidean distance to the object, 
which is indicated on Fig. 1 with red colour. This neuron, 
excited by the object, is called “central neuron”. To get 
the predictions from the output layer, the position of the 
central neuron is projected onto the output layer and the 
results are read from the corresponding position for each 
target (property/endpoint). For each descriptor and target, 
a 2D surface plot can be obtained from the weights which 
is called “level plot”.

When all the training set and external set objects are 
tested one can obtain a top-map showing how the objects 
excited the neuron. The objects which are more close to 
each other are more structurally similar, and vice versa. 
This offers us a method which can be used for read-
across; first similar compounds to our object are found 
and then experimental value of similar compounds 
can be used to predict property value of the selected 
compound.
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Fig. 1  A scheme of counter-propagation neural network. An input object (vector of X values—descriptors) with descriptors (top-left) and endpoint 
values (bottom-left). CPANN scheme is shown on the right. Kohonen layer is on the top and the output layer with three response levels used to draw 
response surfaces is below the Kohonen layer



Page 3 of 15Drgan et al. J Cheminform  (2017) 9:30 

The neurons shown in Fig. 1 will be represented in the 
graphical user interface of the software as squares con-
taining the compounds which excited the neurons (i.e. 
a “top-map” will be shown). When “level plots” will be 
shown, each square will correspond to one weight in the 
selected level which corresponds to a descriptor or tar-
get (2D surface plot). The compounds can be represented 
by identification number, class label or as a 2D structure 
of the compound. The Euclidean distances which will be 
reported together with other information related with 
the predictions for objects are those Euclidean distances 
calculated between the object and the neuron.

Implementation
The counter-propagation artificial neural network learn-
ing method presented in the article by Zupan et  al. [8] 
was used for implementation. CPANNatNIC is entirely 
written in Java programming language. The program 
uses The Chemistry Development Kit (CDK) library (ver-
sion 1.5.4) [9] for displaying 2D structures of compounds 
from SMILES strings. The program was written using 
NetBeans IDE 8.1 and Java JDK version 1.8 (64-bit).

Installation
Java version 8 is needed to run CPANNatNIC software. 
The software can be freely downloaded from http://www.
ki.si/fileadmin/user_upload/datoteke-L03/SOM_ver/
v1_01/. The software is also available in Additional file 1 
and its source files in Additional file 2. To install CPAN-
NatNIC, unzip the downloaded file to a new folder. The 
folder will now contain two files. The file “CPANNat-
NIC.zip” contains all necessary files to run CPANNat-
NIC application and the file “example_input_data.zip” 
contains example input files. Unzip CPANNatNIC.zip 
file. The application “CPANNatNIC.jar” will be located 
in CPANNatNIC folder. To run the application, use 
command prompt and change current directory to the 
directory with the application and type java-jar “CPAN-
NatNIC.jar”. Alternatively, you can double click “CPAN-
NatNIC.jar” in case your operating system can execute 
“jar” files in this way.

Limitations
The program was tested using Windows 7, 64-bit. Java 
1.8 should be installed prior using the program. Success-
ful execution of CPANNatNIC software is dependent on 
available Java heap memory. It is recommended that you 
have at least 8  GB of RAM installed on your computer. 
For example, you can allocate Java heap memory by exe-
cuting command java-Xmx4096m-jar “CPANNatNIC.
jar” to allocate 4 GB of Java heap memory for the appli-
cation. There may be high memory requirements when 
saving large “top-maps” to PNG files, thus using smaller 

neuron sizes is preferred. Higher number of available 
processor cores may decrease the time needed to display 
2D structures of compounds on the “top-map”. The rec-
ommended screen resolution is at least 1280 × 1024 pix-
els. The description given within this text presumes that 
the user uses standard “right-handed mouse” where left 
mouse button is used for primary click (a “click”) and the 
right mouse button is used for secondary click.

CPANN models are stored in text files where each col-
umn corresponds to a specific variable. When the user is 
using an existing model he/she should prepare an input 
file where the variables are stored in the same column 
order to obtain correct results. The software will pro-
duce warnings when the variable names in the input file 
are not the same as in the model file but will not stop the 
calculation.

The program structure
The main parts of the program were individually devel-
oped as Java classes. Figure 2 schematically shows hierar-
chy of these classes. The classes shown in Fig. 2 represent 
visible objects, such as frames, dialogs or panels. An 
exception is “MyInputData” class which is used for stor-
ing different variables used during program execu-
tion (e.g.: descriptor values, weights of CPANN model, 
variable names, predicted values for objects, position of 
excited neurons).

As shown in Fig. 2, the main class used is “Mainframe” 
which represents the main window of the application and 
is used mainly for model development. “AboutDialog” 
is used to show basic information about the program. 
“DialogTrainNN” is used for training of CPANN, “Dia-
logselectdescriptors” is used to select descriptors when 
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Fig. 2  The main classes of the program and their hierarchy. Main-
frame corresponds to the main window of CPANNatNIC and Drawing-
Frame to the user interface for graphical representation of the results
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performing predictions, and “MyTable” is used to show 
descriptor values or CPANN weights.

The main window of the interface which is used for dis-
playing of the results represents “DrawingFrame” class. 
The “DrawingFrame” class uses “DrawingPanel” for dis-
playing neurons of the top-map. “DisplaySelectedNeu-
ronDialog” is used within “DrawingPanel” for displaying 
individual neurons and “DisplaySelectedObjectDialog” is 
used when displaying an individual compound.

Graphical user interface
Before using the software, the data should be prepared 
in an appropriate format. The data which are required 
for each object are the values for independent variables 
(descriptors), dependent variables (targets), class and 
object identification number (object’s ID). A detailed 
description of input dataset files is given in the user guide 
provided with the application so that the user can manu-
ally prepare input files in the required format. An exam-
ple of Excel file which can be exported to tab-delimited 
text file (Additional file  3) used as a data input file is 
included within the article as Additional file 4.

Graphical user interface consists of the main window 
which opens when the application starts and a window 
which is used for graphical representation of the results 
and becomes available when the results of predictions 
are available from the main window. The main window 
provides functionality of the software which can be used 
for the development of new CPANN models and pro-
vides access to the interface for graphical representation 
of results. The options available in both windows are 
described in the following sections.

The main window is shown in Fig. 3. The central area 
of the main window is a text area window which is used 
for displaying relevant information generated during 
program execution. The data which are displayed in the 
text area are related to the datasets and models read by 
the program, the results of the predictions made by the 
program and information regarding certain errors which 
may occur during program execution. When the pro-
gram is started from command prompt, some additional 
information may be displayed in the command prompt or 
in a file in case the output is redirected to a file which can 
be then used as a log file (for example by using command 
java–jar “CPANNatNIC” > logfile.txt).

Below the text area, there are several options which 
become accessible when there are certain conditions 
fulfilled during program execution. For example, “Train 
CPANN” button will not be available until appropriate 
data are read from a dataset file. Importing data from 
an input file should be the first step after an appropri-
ate delimiter, used in the file, is selected from drop-down 
menu.

When the data are available in the program they can be 
viewed by clicking button “Check data values”. This will 
show a table similar to the one shown in Fig.  4. When 
a CPANN model is available, a similar table will appear 
also for the model that will display values of CPANN 
weights. Each line in the table represents an object in the 
same order as it appears in the input file and each column 
represents one variable (the names of the variables are 
written as column labels). If the dataset is training set, it 
can now be used to build a new model. If the dataset has 
not been normalized, the program can be used to nor-
malize descriptor data. This is convenient if we have sev-
eral datasets and they should all be normalized using the 
same normalization factors. When a new model is gener-
ated using training set data which were normalized using 
the software, the normalization factors are automatically 
saved into the model file and can be later used for nor-
malization of new datasets. The normalization is done 
only for independent variables (descriptors) using Eq. (1).

In Eq.  (1), Xnormalized represents normalized value of Xi 
which is the descriptor X of object i. Xaverage represents 
an average of all descriptor X values in the dataset used 
for training CPANN, and s is standard deviation of these 
values.

A new model can be developed using imported data-
set by pressing the button “Train CPANN”. A window, 
such as shown in Fig.  5, will appear with default values 
of the required parameters shown in the window. After 
the “Train” button is pressed CPANN training will start. 
When a model has been successfully generated model 
validation can be performed using button “Model valida-
tion” or predictions can be made for currently imported 
data using button “Make predictions for the objects”. In 
both cases, the results will be displayed in the text area of 
the main window. The results of the predictions will show 
for each object its identification number (ID), the neu-
ron excited by the object, experimental value (the value 
written in the dataset file) and Euclidean distance of the 
object to the neuron. Additionally, information regarding 
root-mean-square error (RMSE) and correlation coeffi-
cient between experimental and predicted values will be 
given. Also, a textual representation of the top-map that 
is showing IDs or classes of the objects will be written. In 
the case of model validation, experimental and predicted 
property values, root-mean-square error of cross-valida-
tion (RMSEcv) and correlation coefficient of cross-vali-
dation (Rcv) will be reported. When the button “Model 
validation” is pressed a dialog, shown in Fig. 6, will open 
and the user may select between different options for 
model validation, such as: leave-one-out cross-valida-
tion, leave-many-out cross-validation, Y-scrambling, 

(1)Xnormalized = (Xi − Xaverage)/s
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and repeated leave-many-out cross-validation. The pro-
cedures implemented for leave-one-out cross-validation 
and leave-many-out cross-validation keep the initial 
order of the training set object while the procedure for 
repeated leave-many-out cross-validation first shuffles 
the objects before each repetition and then performs 
leave-many-out cross-validation. When “Make predic-
tions for the objects” button is clicked, a dialog box, 
such as the one in Fig. 7, will appear where the user may 
select the descriptors which are used to determine the 

position of the central neuron for all objects when mak-
ing predictions. Usually, all the descriptors used during 
the training are selected. The user may change the selec-
tion to observe how different selection affects the group-
ing of objects. The button “Define applicability domain” 
becomes available after the predictions are made. When 
the user presses the button a dialog shown in Fig. 8 will 
appear where the user can select one or more datasets 
which can be used to define applicability domain. The 
applicability domain is defined according to the method 

Fig. 3  The main window of CPANNatNIC
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proposed by Minovski et  al. [10]. The objects with the 
Euclidean distance to the central neuron which is smaller 
or equal to the limiting Euclidean distance are within the 
applicability domain. The user may also manually enter 
the value which he/she considers as appropriate for the 
limiting Euclidean distance. When new predictions are 
made after the applicability domain is defined, then in the 
prediction results in the text area of the main window it 
will be also written whether the object is in applicability 
domain or not.

Some results of the predictions made using CPANN 
model can be viewed in a graphical user interface which 
is shown in Fig.  9 and can be accessed using button 
“Draw results” from the main window shown in Fig. 3.

A top-map will be graphically displayed when the but-
ton “Draw” is pressed. The options that affect the appear-
ance of the results and the content shown are accessible 
from the blue panel in Fig. 9. Some functions are avail-
able using left and right mouse clicks on the neurons 
shown on the map.

The top-map will initially show ID numbers of the 
objects (compounds) that excited the neurons on the 
map. The datasets which are used to build the map can be 
selected from the list of datasets labelled as “Select data-
sets to be used for the graph”. Different colours can be 
defined for objects from different datasets or for objects 
belonging to different classes. This can be done using 
appropriate selection at the bottom of the blue panel 
which will open a new window where the user can define 

colours for datasets or classes. This may help to visu-
ally assess distribution of objects belonging to different 
classes or datasets.

Besides the presentation of ID numbers or classes 
the interface also supports displaying 2D structures of 
compounds on the map. To display 2D structures of 
compounds, “Show structures” check-box should be 
checked and a file containing a list of compounds’ ID 
numbers and corresponding smiles should be opened. 
The content shown on the map can be changed using 
drop-down menu labelled as “Select content for the 
map”. From the drop-down menu each descriptor 
and target level can be shown on a map as 2D surface 
which is coloured according to the weight values corre-
sponding to the selected variable of the CPANN model. 
Classes or IDs of the compounds can be seen when 
“Show structures” check-box is not selected and the 
item “top-map (classes)” or “top-map (IDs)” is selected, 
respectively.

When there are many objects shown on the map, find-
ing one particular object can be a tedious task. Thus, 
an option for locating an object on the map has been 
added. An object can be located by selecting the object’s 
ID from the drop-down menu labelled as “Select object 
ID” and then pressing the button “Find selected object”. 
The position of the neuron with the object will be shown 
in the text area below the button. A new window will 
appear that is showing the neuron which was excited 
by the object. The selected object shown on the neuron 
will be marked by a red rectangle. Any other neuron can 
also be shown in a new window by “double-clicking” on 
the desired neuron. Right-hand mouse button click on 
the object can be used to view any object shown on the 
neuron.

As mentioned before, CPANN training produces mod-
els which group similar objects close together on the top-
map. This can be useful for the assessment of reliability 
of the prediction made for an object and also makes it 
possible to use the objects from neighbouring neurons 
for read-across. The interface gives the possibility to visu-
ally identify similar neurons using Euclidean distance or 
Tanimoto coefficient. Tanimoto coefficient is calculated 
using formula for continuous variables as reported in 
the literature [11, 12]. To visualize Euclidean distances or 
Tanimoto coefficient between neurons, the user should 
right-click on the neuron which should be compared to 
other neurons. A menu will appear with a few options on 
the list. The user can select “Show map of Euclidean dis-
tances to the selected neuron” or “Show map of Tanimoto 
similarity coefficients to the selected neuron” which will 
show a map of Euclidean distances or Tanimoto simi-
larity coefficients between the selected neuron and the 
other neurons.

Fig. 4  Table showing descriptor and target values
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The map showing the Euclidean distances or Tani-
moto coefficient can be saved by selecting “Save map of 
distances/similarities between neurons” from the menu, 
while the map showing the content selected from the 
dialog box can be saved using “Save to file” button below 
the map. When “Save to file” button is used, the program 
will also generate images of neurons in folder “result-
ingimages” representing neurons and “graphview.html” 
file for viewing the map in a web-browser. The files will be 
saved in the folder where the last input file was selected.

Results and discussion
The functionality of the program described in the previ-
ous section can assist in read-across process. Two data-
sets will be used below to show how the program may 
be used for read-across. Here, it should be stressed that 
the models used for read-across are the same as the ones 
used to obtain model predictions. The examples will be 
shown using one pre-built model for prediction of acute 
toxicity towards rainbow trout (Oncorhynchus mykiss) 

and one example will show how a model can be built 
using bio-concentration factor. The models and datasets 
supporting the conclusions of this article are included 
within the article as additional files.

As the first example, we show an example which 
requires smallest number of steps to obtain CPANN top-
map that can be used for read-across assessment. In this 
example, we will use an existing model for acute toxicity 
which is available in the Additional file 5. The data used 
for the development and testing of the model are in Addi-
tional file 6, Additional file 7 and Additional file 8 which 
correspond to training, internal test and external valida-
tion set, respectively. The data in the files are normalized 
and can be thus directly used to obtain predictions using 
the model. After selecting and importing the training 
set (using the button “Select file with objects”) and the 
model (using the button “Select CPANN model”) the pre-
dictions for the training set can be made using the button 
“Make predictions for the objects”. After the predictions 
are obtained, the checkbox “Save existing dataset data” is 

Fig. 5  The dialog box used to define parameters needed for training of CPANN
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selected to save the results for later use by the software. 
The same can be done for the other two sets. When the 
predictions for all the sets are obtained the button “Draw 
results” should be pressed to open the interface shown 
in Fig. 9. The interface can now be used as mentioned in 
the previous section. The interface in Fig. 9 shows a part 
of the top-map which was obtained using the data for 
acute toxicity. To show 2D structures of the compounds 
“Show structures” checkbox was selected and the smiles 
from Additional file 9 were imported. Figure 10a shows 
the neuron which was excited by external set object 
with ID =  7 which will be used here for demonstration 
purposes. The same neuron is visible also on the top-
map shown in Fig.  9. To show the neuron on Fig.  10a, 
the user should select 7 from drop-down list available 
under “Select object ID” and then press the button “Find 
selected object”. After the button is pressed, a window 
showing the neuron will appear and the visible area of 
the top map will change so that the region of the top-map 
with the neuron will be visible. Figure 10b shows each of 
the compounds in its own window with the information 
regarding the compound.

The predicted value of −log(LC50) [log—common 
logarithm, LC50—concentration of the compounds 
which kills 50% of organisms (rainbow trout in our 
case)] for all the compounds was 1.99 (“pred.1” indicates 

prediction for the first target), which in this case matches 
the arithmetic mean of −log(LC50) values of two train-
ing set compounds that excited the neuron. The com-
pound with ID = 7 is the only compound from external 
set that excited this neuron, therefore we may use other 
three compounds for read-across. When we look at the 
experimental values (“exp.1” indicates experimental value 
for the first target) of the compounds we can observe 
that the values are not the same. The bottom-left com-
pound (ID =  145) has the highest experimental values 
2.64, the upper-right compound (ID =  126) which has 
one methyl group less has experimental value 2.19, and 
the compound with two chlorines (ID = 26) has experi-
mental value 1.79. For read-across, we selected com-
pound 126 as the most similar to compound 7. Thus, we 
may say that −log(LC50) value predicted by read-across 
for the compound 7 is 2.19. Further, it can be observed 
that −log(LC50) value is smaller on the compound 
with one methyl group than on the compound with two 
methyl groups. Thus we could expect lower experimen-
tal value for the compound 7. The actual experimental 
value for compound 7 is 1.83. If we knew in this particu-
lar case that a linear relationship exists, we could use the 
compounds 126 and 145 for the linear regression where 
−log(LC50) depends on the number of methyl groups. 
The calculated linear regression would predict 1.74 for 

Fig. 6  The dialog box for selection of a validation method
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−log(LC50) value for a compound without any methyl 
group.

An inspection of the whole top-map shows that the 
compounds in the dataset used are structurally very dif-
ferent which makes the read-across method difficult to 
apply. From 69 compounds in the external set we could 
perform read-across for only 24 compounds. In the case 
of compound 7, the read-across value was slightly higher 
from the predicted one. However, when we performed 
some analysis of RMSE of –log(LC50) values predicted 
by the model and by read-across for the 24 compounds, 
we observed that RMSE was lower for read-across pre-
dictions. The highest error in read-across was made for 
acetaldehyde (ID = 80) based on acetone (ID = 74) data. 
In this case, the model made larger error. When the pre-
dictions for the acetaldehyde were not considered, the 
RMSE error calculated from predictions for 23 com-
pounds was 0.80 for the model predictions and 0.49 for 
the read-across predictions. Among 24 read-across pre-
dictions, 18 predictions were made using a compound 

Fig. 7  The dialog box for selecting descriptors before making predictions

Fig. 8  The dialog used to define applicability domain



Page 10 of 15Drgan et al. J Cheminform  (2017) 9:30 

that excited the same neuron as the compound under 
consideration. The results of read-across predictions are 
included within the article in Additional file 10.

In the second example, the model will be built using 
bio-concentration factor (BCF) data obtained from the 
article written by Gissi et  al. [13]. The descriptors used 
were the same as those reported in the supplementary 
material of the article for MLR method with 10 descrip-
tors. Descriptors were calculated using Dragon 7.0 soft-
ware for molecular descriptor calculation [14]. The data 
used can be found in supplementary material. The Addi-
tional file  11, Additional file  12 and Additional file  13 
contain training set, internal validation (test) set and 
blind (external) set data, respectively. The smiles of the 
structures are available in the Additional file 15.

In this example, the number of neurons used will be 
small in comparison to the number of objects used in 
the training set. This will cause that the top-map will 
be densely populated while similar compounds will still 
be grouped together and will excite the same or similar 
neurons. In the input files “tab” is used as a delimiter, 
therefore the item “tab delimited” should be selected in 
the main window from the list used to define the delim-
iter for the file with object data. Training set should 
be imported as the first set. Then a check box “Use as 
normalization set” should be selected and the button 

“Normalize current descriptor data” should be pressed. 
In this way, the normalization factors are calculated from 
the training set data and the training set is normalized. 
Using these normalized data a new model can be built 
using “Train CPANN” button. The training parameters 
required and their values for this example (in brackets) 
are random seed (1234), number of neurons in x direc-
tion (9), number of neurons in y direction (9), toroid 
boundary conditions (Non-toroid NN), type of neigh-
bourhood correction (Triangular), furthest neuron for 
correction (9), maximal learning rate (0.47), minimal 
learning rate (0.04), type of the best match (neuron with 
the weights most similar to the input) and number of 
epochs (161). The same parameters can also be found 
in Fig. 5 which shows a dialog box that is used to enter 
CPANN training parameters. The resulting model will 
be saved in file “modelweights.unw”. For this example, the 
resulting model file is given as Additional file  14. After 
the training, we can perform model validation by press-
ing the button “Model validation”. Then the predictions 
can be made and dataset data can be saved for further 
use by the software. After importing each of the other 
sets, the normalization of descriptor data should be done 
using training set data and then predictions can be made.

When the predictions are obtained for all the sets, a 
CPANN top-map can be shown. Additional file 15 should 

Fig. 9  The interface for graphical representation of results showing a top-map
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Fig. 10  A neuron excited by different objects. The external set object with ID = 7 on a is surrounded by a red rectangle. The objects from training 
set and internal test set can be used for read-across. b The same objects in separate windows where information about the objects and model 
predictions can be found. Each of the windows can be opened by right-hand mouse button click (when using “right-handed mouse”) on the cor-
responding structures shown in a
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be selected when asked for the file with IDs and smiles. 
Using the model, we tried to perform read-across for the 
structures in the blind set. For approximately half of the 
compounds in the blind set we made read-across. The 
RMSE of 37 model predictions was 0.79, while the RMSE 
of read-across predictions for the same compounds was 
0.55. Among 37 read-across predictions 30 predictions 
were made using a compound that excited the same neu-
ron as the compound under consideration. The results of 
read-across predictions are included within the article in 
Additional file 16.

The interface can be used also to identify neurons 
which have for example large or small weight value for 
certain descriptor or response. Subsequently, compounds 
with similar descriptor or target values can be identi-
fied. For example, if we wish to identify compounds with 
high log(BCF) then we first draw response by select-
ing “tar.1 = logBCF” from drop-down menu on the blue 
panel an redraw the map. The neuron with the highest 
response can be found based on the available colour scale. 
In the same way as before we can now display the neuron 
in a new window and identify the structures which excite 
the neuron. As can be found from the response surface, 
the compounds which have highest log(BCF) and are of 
the highest concern in this dataset are polychlorinated 
biphenyls which are commonly abbreviated as PCBs. The 
response surface and the neuron corresponding to the 
highest response are shown in Fig. 11.

Similarity between the selected neuron and other 
neurons on the map can be evaluated using Tanimoto 
similarity coefficient or Euclidean distance between the 
neurons. This can be done using a right-click on the neu-
ron and selecting the preferred similarity measure from 
the pop-up menu. An example of the resulting surface 
plot corresponding to the selected similarity measure 
is given in Fig. 12. The second item “Show map of Tani-
moto similarity coefficients to the selected neuron” was 
selected from the pop-up menu, as shown in Fig. 12. The 
same neuron as before (i.e. the neuron with the highest 
response at the position [1, 7]) was selected to calculate 
Tanimoto similarity coefficients to all other neurons. In 
Fig. 12, the most similar neurons to the selected neuron 
are shown in red colours which correspond to relatively 
high values of Tanimoto coefficients.

The two examples shown above were described in 
detail. Some additional tests were also performed using 
other datasets. For that purpose the Sutherland’s eight 
datasets [15] were used and QuBiLS-MIDAS 3D-indi-
ces provided in the paper by García-Jacas et  al. [16] 
were used to build CPANN models for the datasets. 
The eight datasets included datasets for angiotensin 
converting enzyme inhibitors (ACE), acetylcholinester-
ase inhibitors (ACHE), ligands for the benzodiazepine 
receptor (BZR), cyclooxygenase-2 inhibitors (COX2), 
dihydrofolate reductase inhibitors (DHFR), glycogen 
phosphorylase b inhibitors (GPB), thermolysin inhibitors 

Fig. 11  Response surface of the model and the neuron corresponding to the highest response value. The highest response value is at position [1, 
7]. The structures that excited the neuron are polychlorinated biphenyls with log(BCF) above 4
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(THER), and thrombin inhibitors (THR). The same split-
ting of the data into training and external set was used 
as in the previous publications. The models were evalu-
ated by repeated leave-many-out cross-validation and 
Y-scrambling. Y-scrambling validation was decisive for 
the selection of the models’ size since correlation coef-
ficient became higher when larger number of neurons 
was used in the model. The results obtained for the eight 
models and their use in read-across are available in Addi-
tional file 17. The models found did not show very good 
performance for external set objects. One of the pos-
sible reasons could be the splitting of the objects. It was 
found also that maximal and/or minimal values for the 

set under consideration were in most cases not included 
in the training set. Using the developed models, read-
across was performed for external set objects and com-
parison was made between the model predictions and 
read-across predictions for the objects where read-across 
could be performed. For six datasets read-across showed 
better prediction performance, and for two datasets bet-
ter prediction performance was obtained using model 
predictions.

Comparison with the Kohonen and CP‑ANN toolbox
The software described within this paper is not the 
only one existing for development of CPANN models; 

Fig. 12  Surface plot of Tanimoto similarity coefficients for the neuron with the highest response value
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nevertheless it offers unique possibilities for effective 
read-across on training/test data. The Kohonen and CP-
ANN toolbox with similar functionality was recently 
developed in Milano Chemometrics and QSAR Research 
Group [17]. The software was developed as a toolbox 
to be used in Matlab. The learning algorithm used in 
the toolbox is essentially based on the same algorithm 
for Kohonen and counter-propagation artificial neural 
networks [18] as in this manuscript. One of the valu-
able properties of the toolbox is that its methods can be 
directly used through command prompt in Matlab apart 
of the provided GUI. This gives the user the possibility 
to use the methods in new Matlab applications. For the 
preparation of the data, the toolbox range scales the data 
and offers some additional options for data scaling. On 
the other hand, CPANNatNIC software accepts the data 
“as is” or offers standardization of independent variables 
based on the training set data. Both applications provide 
model weights and the possibility to visualize the results. 
The toolbox additionally gives the user an opportunity 
to analyse the weights of the model by using principal 
component analysis (PCA) to investigate the relation-
ship between the variables used in the model. Such PCA 
analysis is not available in CPANNatNIC software. While 
both applications provide similar visualization of the 
results, CPANNatNIC software has different visualisa-
tion features and can also visualize 2D chemical struc-
tures from SMILES on the Kohonen map to help in the 
interpretation of the results and to facilitate read-across. 
Additionally, CPANNatNIC provides an option for locat-
ing an object on a top-map which may be needed when 
there are many objects on the top-map or the map has 
a large number of neurons. While the Kohonen and CP-
ANN toolbox and CPANNatNIC are both freely avail-
able, the Matlab toolbox requires access to Matlab which 
is not freely available and CPANNatNIC requires freely 
available Java environment and CDK library.

Conclusions
We present a program for building counter-propagation 
neural network models with an interface for viewing top-
maps, descriptor levels and response surface. 2D repre-
sentations of compounds can be shown on the top-map. 
This is useful when performing read-across for identi-
fication of similar compounds. The program provides 
simple interface which can be used to quickly find neu-
ron excited by the compound under consideration. Thus, 
similar structures can be quickly identified and also used 
for read-across. Since the user both provides the data-
set for the modelling and can develop new models, the 
model predictions as well as read-across predictions are 
not limited to any specific endpoint.

CPANNatNIC will be further developed in the future. 
We are planning to add features, such as descriptor selec-
tion and optimization, which will simplify model devel-
opment process. Also, the representation of the objects 
within the software will be modified so that new infor-
mation regarding the objects can be added and displayed 
within the software.
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