
Drgan et al. J Cheminform (2017) 9:30
DOI 10.1186/s13321-017-0218-y

SOFTWARE

CPANNatNIC software
for counter‑propagation neural network
to assist in read‑across
Viktor Drgan1*, Špela Župerl1, Marjan Vračko1, Claudia Ileana Cappelli2 and Marjana Novič1

Abstract 

Background:  CPANNatNIC is software for development of counter-propagation artificial neural network models.
Besides the interface for training of a new neural network it also provides an interface for visualisation of the results
which was developed to aid in interpretation of the results and to use the program as a tool for read-across.

Results:  The work presents the details of the program’s interface. Parts of the interface are presented and how they
can be used. The examples provided show how the user can build a new model and view the results of predictions
using the interface. Examples are given to show how the software may be used in read-across.

Conclusions:  CPANNatNIC provides a simple user interface for model development and visualisation. The interface
implements options which may simplify read-across procedure. Statistical results show better prediction accuracy of
read-across predictions than model predictions where similar compounds could be identified, which indicates the
importance of using read-across and usefulness of the program.

Keywords:  Counter-propagation neural network, Read-across, Software

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In the past several years, there is an increasing inter-
est in using in silico tools for risk assessment of chemi-
cals. The reasons for higher interest can be found in
Registration, Evaluation, Authorisation and Restriction
of Chemicals (REACH) legislation in European Union
which requires registration of a large number of chemi-
cals in use. The legislation allows using read-across for
toxicity assessment under certain conditions written in
the regulation. Definition of read-across and its correct
use are still rather unclear. Patlewicz et al. [1] gathered
several definitions of read-across from different sources
[e.g. United States Environmental Protection Agency (US
EPA), European Chemical Agency (ECHA), The Organi-
sation for Economic Co-operation and Development
(OECD)]. Concisely, we may understand the definitions
of read-across as an approach to predict a property of

a chemical based on the same property of one or more
similar chemicals. Different tools already exist which can
be used for read-across, for example OECD QSAR Tool-
box [2], ToxRead [3], TEST [4] and VEGA [5].

In this paper we present a new tool which can be used
for development of counter-propagation artificial neu-
ral network (CPANN) models. The models can be later
used either for direct prediction of the endpoint under
consideration for new, i.e. untested compounds, or for
read-across approach. The software provides a graphi-
cal user interface which was designed to facilitate read-
across based on analogue or category approach using
CPANN models. CPANNs are particularly suitable for
these approaches because of their ability to group com-
pounds according to their structural similarity. Although
the software was initially built to facilitate read-across for
toxicity assessment of substances, its usage is not lim-
ited to toxicity-related endpoints since the user describes
compounds in the input data file(s) which may include
numerical values of any property.

Open Access

*Correspondence: viktor.drgan@ki.si
1 Department of Cheminformatics, National Institute of Chemistry,
Hajdrihova 19, 1001 Ljubljana, Slovenia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0218-y&domain=pdf

Page 2 of 15Drgan et al. J Cheminform (2017) 9:30

Basis for read‑across
As mentioned above, the software uses CPANN models.
The results of the predictions can be viewed in a simple
graphical user interface with compounds placed on the
map, called a “top-map”, according to their similarity
which can be used as the basis for read-across predic-
tions. The learning principles of Kohonen and CPANNs
are well established and can be found in detail elsewhere
[6–8]. Some definitions are given below so that the
user can better understand the results produced by the
software.

Schematic representation of a CPANN is shown in Fig. 1.
It is composed of Kohonen layer and output (Grossberg)
layer. It can be visualized as a 3D matrix of values called
weights (W). One column (vector) of weights is called neu-
ron. The figure schematically shows how the results of pre-
dictions (R1–R3) are obtained. First, the Euclidean distance
between each neuron and the object is calculated using
descriptor values and weights in Kohonen layer. Then

the most similar neuron to the objects is identified as the
neuron with the shortest Euclidean distance to the object,
which is indicated on Fig. 1 with red colour. This neuron,
excited by the object, is called “central neuron”. To get
the predictions from the output layer, the position of the
central neuron is projected onto the output layer and the
results are read from the corresponding position for each
target (property/endpoint). For each descriptor and target,
a 2D surface plot can be obtained from the weights which
is called “level plot”.

When all the training set and external set objects are
tested one can obtain a top-map showing how the objects
excited the neuron. The objects which are more close to
each other are more structurally similar, and vice versa.
This offers us a method which can be used for read-
across; first similar compounds to our object are found
and then experimental value of similar compounds
can be used to predict property value of the selected
compound.

R1

R2

R3

x1

x2

x3

x4

x5

x6

x7

W1,1,1

W1,1,2

W1,1,3

W1,1,4

W1,1,5

W1,1,6

W1,1,7

y1

y2

y3

Kohonen layer

output (Grossberg)
layer

D
es

cr
ip

to
rs

Ta

rg
et

 v
al

ue
s

Object
Neuron

Fig. 1  A scheme of counter-propagation neural network. An input object (vector of X values—descriptors) with descriptors (top-left) and endpoint
values (bottom-left). CPANN scheme is shown on the right. Kohonen layer is on the top and the output layer with three response levels used to draw
response surfaces is below the Kohonen layer

Page 3 of 15Drgan et al. J Cheminform (2017) 9:30

The neurons shown in Fig. 1 will be represented in the
graphical user interface of the software as squares con-
taining the compounds which excited the neurons (i.e.
a “top-map” will be shown). When “level plots” will be
shown, each square will correspond to one weight in the
selected level which corresponds to a descriptor or tar-
get (2D surface plot). The compounds can be represented
by identification number, class label or as a 2D structure
of the compound. The Euclidean distances which will be
reported together with other information related with
the predictions for objects are those Euclidean distances
calculated between the object and the neuron.

Implementation
The counter-propagation artificial neural network learn-
ing method presented in the article by Zupan et al. [8]
was used for implementation. CPANNatNIC is entirely
written in Java programming language. The program
uses The Chemistry Development Kit (CDK) library (ver-
sion 1.5.4) [9] for displaying 2D structures of compounds
from SMILES strings. The program was written using
NetBeans IDE 8.1 and Java JDK version 1.8 (64-bit).

Installation
Java version 8 is needed to run CPANNatNIC software.
The software can be freely downloaded from http://www.
ki.si/fileadmin/user_upload/datoteke-L03/SOM_ver/
v1_01/. The software is also available in Additional file 1
and its source files in Additional file 2. To install CPAN-
NatNIC, unzip the downloaded file to a new folder. The
folder will now contain two files. The file “CPANNat-
NIC.zip” contains all necessary files to run CPANNat-
NIC application and the file “example_input_data.zip”
contains example input files. Unzip CPANNatNIC.zip
file. The application “CPANNatNIC.jar” will be located
in CPANNatNIC folder. To run the application, use
command prompt and change current directory to the
directory with the application and type java-jar “CPAN-
NatNIC.jar”. Alternatively, you can double click “CPAN-
NatNIC.jar” in case your operating system can execute
“jar” files in this way.

Limitations
The program was tested using Windows 7, 64-bit. Java
1.8 should be installed prior using the program. Success-
ful execution of CPANNatNIC software is dependent on
available Java heap memory. It is recommended that you
have at least 8 GB of RAM installed on your computer.
For example, you can allocate Java heap memory by exe-
cuting command java-Xmx4096m-jar “CPANNatNIC.
jar” to allocate 4 GB of Java heap memory for the appli-
cation. There may be high memory requirements when
saving large “top-maps” to PNG files, thus using smaller

neuron sizes is preferred. Higher number of available
processor cores may decrease the time needed to display
2D structures of compounds on the “top-map”. The rec-
ommended screen resolution is at least 1280 × 1024 pix-
els. The description given within this text presumes that
the user uses standard “right-handed mouse” where left
mouse button is used for primary click (a “click”) and the
right mouse button is used for secondary click.

CPANN models are stored in text files where each col-
umn corresponds to a specific variable. When the user is
using an existing model he/she should prepare an input
file where the variables are stored in the same column
order to obtain correct results. The software will pro-
duce warnings when the variable names in the input file
are not the same as in the model file but will not stop the
calculation.

The program structure
The main parts of the program were individually devel-
oped as Java classes. Figure 2 schematically shows hierar-
chy of these classes. The classes shown in Fig. 2 represent
visible objects, such as frames, dialogs or panels. An
exception is “MyInputData” class which is used for stor-
ing different variables used during program execu-
tion (e.g.: descriptor values, weights of CPANN model,
variable names, predicted values for objects, position of
excited neurons).

As shown in Fig. 2, the main class used is “Mainframe”
which represents the main window of the application and
is used mainly for model development. “AboutDialog”
is used to show basic information about the program.
“DialogTrainNN” is used for training of CPANN, “Dia-
logselectdescriptors” is used to select descriptors when

Mainframe

DrawingFrame

DrawingPanel

DisplaySelectedNeuronDialog

DisplaySelectedObjectDialog

MyInputData

MyTable

Dialogselectdescriptors

AboutDialog

DialogTrainNN

Fig. 2  The main classes of the program and their hierarchy. Main-
frame corresponds to the main window of CPANNatNIC and Drawing-
Frame to the user interface for graphical representation of the results

http://www.ki.si/fileadmin/user_upload/datoteke-L03/SOM_ver/v1_01/
http://www.ki.si/fileadmin/user_upload/datoteke-L03/SOM_ver/v1_01/
http://www.ki.si/fileadmin/user_upload/datoteke-L03/SOM_ver/v1_01/

Page 4 of 15Drgan et al. J Cheminform (2017) 9:30

performing predictions, and “MyTable” is used to show
descriptor values or CPANN weights.

The main window of the interface which is used for dis-
playing of the results represents “DrawingFrame” class.
The “DrawingFrame” class uses “DrawingPanel” for dis-
playing neurons of the top-map. “DisplaySelectedNeu-
ronDialog” is used within “DrawingPanel” for displaying
individual neurons and “DisplaySelectedObjectDialog” is
used when displaying an individual compound.

Graphical user interface
Before using the software, the data should be prepared
in an appropriate format. The data which are required
for each object are the values for independent variables
(descriptors), dependent variables (targets), class and
object identification number (object’s ID). A detailed
description of input dataset files is given in the user guide
provided with the application so that the user can manu-
ally prepare input files in the required format. An exam-
ple of Excel file which can be exported to tab-delimited
text file (Additional file 3) used as a data input file is
included within the article as Additional file 4.

Graphical user interface consists of the main window
which opens when the application starts and a window
which is used for graphical representation of the results
and becomes available when the results of predictions
are available from the main window. The main window
provides functionality of the software which can be used
for the development of new CPANN models and pro-
vides access to the interface for graphical representation
of results. The options available in both windows are
described in the following sections.

The main window is shown in Fig. 3. The central area
of the main window is a text area window which is used
for displaying relevant information generated during
program execution. The data which are displayed in the
text area are related to the datasets and models read by
the program, the results of the predictions made by the
program and information regarding certain errors which
may occur during program execution. When the pro-
gram is started from command prompt, some additional
information may be displayed in the command prompt or
in a file in case the output is redirected to a file which can
be then used as a log file (for example by using command
java–jar “CPANNatNIC” > logfile.txt).

Below the text area, there are several options which
become accessible when there are certain conditions
fulfilled during program execution. For example, “Train
CPANN” button will not be available until appropriate
data are read from a dataset file. Importing data from
an input file should be the first step after an appropri-
ate delimiter, used in the file, is selected from drop-down
menu.

When the data are available in the program they can be
viewed by clicking button “Check data values”. This will
show a table similar to the one shown in Fig. 4. When
a CPANN model is available, a similar table will appear
also for the model that will display values of CPANN
weights. Each line in the table represents an object in the
same order as it appears in the input file and each column
represents one variable (the names of the variables are
written as column labels). If the dataset is training set, it
can now be used to build a new model. If the dataset has
not been normalized, the program can be used to nor-
malize descriptor data. This is convenient if we have sev-
eral datasets and they should all be normalized using the
same normalization factors. When a new model is gener-
ated using training set data which were normalized using
the software, the normalization factors are automatically
saved into the model file and can be later used for nor-
malization of new datasets. The normalization is done
only for independent variables (descriptors) using Eq. (1).

In Eq. (1), Xnormalized represents normalized value of Xi
which is the descriptor X of object i. Xaverage represents
an average of all descriptor X values in the dataset used
for training CPANN, and s is standard deviation of these
values.

A new model can be developed using imported data-
set by pressing the button “Train CPANN”. A window,
such as shown in Fig. 5, will appear with default values
of the required parameters shown in the window. After
the “Train” button is pressed CPANN training will start.
When a model has been successfully generated model
validation can be performed using button “Model valida-
tion” or predictions can be made for currently imported
data using button “Make predictions for the objects”. In
both cases, the results will be displayed in the text area of
the main window. The results of the predictions will show
for each object its identification number (ID), the neu-
ron excited by the object, experimental value (the value
written in the dataset file) and Euclidean distance of the
object to the neuron. Additionally, information regarding
root-mean-square error (RMSE) and correlation coeffi-
cient between experimental and predicted values will be
given. Also, a textual representation of the top-map that
is showing IDs or classes of the objects will be written. In
the case of model validation, experimental and predicted
property values, root-mean-square error of cross-valida-
tion (RMSEcv) and correlation coefficient of cross-vali-
dation (Rcv) will be reported. When the button “Model
validation” is pressed a dialog, shown in Fig. 6, will open
and the user may select between different options for
model validation, such as: leave-one-out cross-valida-
tion, leave-many-out cross-validation, Y-scrambling,

(1)Xnormalized = (Xi − Xaverage)/s

Page 5 of 15Drgan et al. J Cheminform (2017) 9:30

and repeated leave-many-out cross-validation. The pro-
cedures implemented for leave-one-out cross-validation
and leave-many-out cross-validation keep the initial
order of the training set object while the procedure for
repeated leave-many-out cross-validation first shuffles
the objects before each repetition and then performs
leave-many-out cross-validation. When “Make predic-
tions for the objects” button is clicked, a dialog box,
such as the one in Fig. 7, will appear where the user may
select the descriptors which are used to determine the

position of the central neuron for all objects when mak-
ing predictions. Usually, all the descriptors used during
the training are selected. The user may change the selec-
tion to observe how different selection affects the group-
ing of objects. The button “Define applicability domain”
becomes available after the predictions are made. When
the user presses the button a dialog shown in Fig. 8 will
appear where the user can select one or more datasets
which can be used to define applicability domain. The
applicability domain is defined according to the method

Fig. 3  The main window of CPANNatNIC

Page 6 of 15Drgan et al. J Cheminform (2017) 9:30

proposed by Minovski et al. [10]. The objects with the
Euclidean distance to the central neuron which is smaller
or equal to the limiting Euclidean distance are within the
applicability domain. The user may also manually enter
the value which he/she considers as appropriate for the
limiting Euclidean distance. When new predictions are
made after the applicability domain is defined, then in the
prediction results in the text area of the main window it
will be also written whether the object is in applicability
domain or not.

Some results of the predictions made using CPANN
model can be viewed in a graphical user interface which
is shown in Fig. 9 and can be accessed using button
“Draw results” from the main window shown in Fig. 3.

A top-map will be graphically displayed when the but-
ton “Draw” is pressed. The options that affect the appear-
ance of the results and the content shown are accessible
from the blue panel in Fig. 9. Some functions are avail-
able using left and right mouse clicks on the neurons
shown on the map.

The top-map will initially show ID numbers of the
objects (compounds) that excited the neurons on the
map. The datasets which are used to build the map can be
selected from the list of datasets labelled as “Select data-
sets to be used for the graph”. Different colours can be
defined for objects from different datasets or for objects
belonging to different classes. This can be done using
appropriate selection at the bottom of the blue panel
which will open a new window where the user can define

colours for datasets or classes. This may help to visu-
ally assess distribution of objects belonging to different
classes or datasets.

Besides the presentation of ID numbers or classes
the interface also supports displaying 2D structures of
compounds on the map. To display 2D structures of
compounds, “Show structures” check-box should be
checked and a file containing a list of compounds’ ID
numbers and corresponding smiles should be opened.
The content shown on the map can be changed using
drop-down menu labelled as “Select content for the
map”. From the drop-down menu each descriptor
and target level can be shown on a map as 2D surface
which is coloured according to the weight values corre-
sponding to the selected variable of the CPANN model.
Classes or IDs of the compounds can be seen when
“Show structures” check-box is not selected and the
item “top-map (classes)” or “top-map (IDs)” is selected,
respectively.

When there are many objects shown on the map, find-
ing one particular object can be a tedious task. Thus,
an option for locating an object on the map has been
added. An object can be located by selecting the object’s
ID from the drop-down menu labelled as “Select object
ID” and then pressing the button “Find selected object”.
The position of the neuron with the object will be shown
in the text area below the button. A new window will
appear that is showing the neuron which was excited
by the object. The selected object shown on the neuron
will be marked by a red rectangle. Any other neuron can
also be shown in a new window by “double-clicking” on
the desired neuron. Right-hand mouse button click on
the object can be used to view any object shown on the
neuron.

As mentioned before, CPANN training produces mod-
els which group similar objects close together on the top-
map. This can be useful for the assessment of reliability
of the prediction made for an object and also makes it
possible to use the objects from neighbouring neurons
for read-across. The interface gives the possibility to visu-
ally identify similar neurons using Euclidean distance or
Tanimoto coefficient. Tanimoto coefficient is calculated
using formula for continuous variables as reported in
the literature [11, 12]. To visualize Euclidean distances or
Tanimoto coefficient between neurons, the user should
right-click on the neuron which should be compared to
other neurons. A menu will appear with a few options on
the list. The user can select “Show map of Euclidean dis-
tances to the selected neuron” or “Show map of Tanimoto
similarity coefficients to the selected neuron” which will
show a map of Euclidean distances or Tanimoto simi-
larity coefficients between the selected neuron and the
other neurons.

Fig. 4  Table showing descriptor and target values

Page 7 of 15Drgan et al. J Cheminform (2017) 9:30

The map showing the Euclidean distances or Tani-
moto coefficient can be saved by selecting “Save map of
distances/similarities between neurons” from the menu,
while the map showing the content selected from the
dialog box can be saved using “Save to file” button below
the map. When “Save to file” button is used, the program
will also generate images of neurons in folder “result-
ingimages” representing neurons and “graphview.html”
file for viewing the map in a web-browser. The files will be
saved in the folder where the last input file was selected.

Results and discussion
The functionality of the program described in the previ-
ous section can assist in read-across process. Two data-
sets will be used below to show how the program may
be used for read-across. Here, it should be stressed that
the models used for read-across are the same as the ones
used to obtain model predictions. The examples will be
shown using one pre-built model for prediction of acute
toxicity towards rainbow trout (Oncorhynchus mykiss)

and one example will show how a model can be built
using bio-concentration factor. The models and datasets
supporting the conclusions of this article are included
within the article as additional files.

As the first example, we show an example which
requires smallest number of steps to obtain CPANN top-
map that can be used for read-across assessment. In this
example, we will use an existing model for acute toxicity
which is available in the Additional file 5. The data used
for the development and testing of the model are in Addi-
tional file 6, Additional file 7 and Additional file 8 which
correspond to training, internal test and external valida-
tion set, respectively. The data in the files are normalized
and can be thus directly used to obtain predictions using
the model. After selecting and importing the training
set (using the button “Select file with objects”) and the
model (using the button “Select CPANN model”) the pre-
dictions for the training set can be made using the button
“Make predictions for the objects”. After the predictions
are obtained, the checkbox “Save existing dataset data” is

Fig. 5  The dialog box used to define parameters needed for training of CPANN

Page 8 of 15Drgan et al. J Cheminform (2017) 9:30

selected to save the results for later use by the software.
The same can be done for the other two sets. When the
predictions for all the sets are obtained the button “Draw
results” should be pressed to open the interface shown
in Fig. 9. The interface can now be used as mentioned in
the previous section. The interface in Fig. 9 shows a part
of the top-map which was obtained using the data for
acute toxicity. To show 2D structures of the compounds
“Show structures” checkbox was selected and the smiles
from Additional file 9 were imported. Figure 10a shows
the neuron which was excited by external set object
with ID = 7 which will be used here for demonstration
purposes. The same neuron is visible also on the top-
map shown in Fig. 9. To show the neuron on Fig. 10a,
the user should select 7 from drop-down list available
under “Select object ID” and then press the button “Find
selected object”. After the button is pressed, a window
showing the neuron will appear and the visible area of
the top map will change so that the region of the top-map
with the neuron will be visible. Figure 10b shows each of
the compounds in its own window with the information
regarding the compound.

The predicted value of −log(LC50) [log—common
logarithm, LC50—concentration of the compounds
which kills 50% of organisms (rainbow trout in our
case)] for all the compounds was 1.99 (“pred.1” indicates

prediction for the first target), which in this case matches
the arithmetic mean of −log(LC50) values of two train-
ing set compounds that excited the neuron. The com-
pound with ID = 7 is the only compound from external
set that excited this neuron, therefore we may use other
three compounds for read-across. When we look at the
experimental values (“exp.1” indicates experimental value
for the first target) of the compounds we can observe
that the values are not the same. The bottom-left com-
pound (ID = 145) has the highest experimental values
2.64, the upper-right compound (ID = 126) which has
one methyl group less has experimental value 2.19, and
the compound with two chlorines (ID = 26) has experi-
mental value 1.79. For read-across, we selected com-
pound 126 as the most similar to compound 7. Thus, we
may say that −log(LC50) value predicted by read-across
for the compound 7 is 2.19. Further, it can be observed
that −log(LC50) value is smaller on the compound
with one methyl group than on the compound with two
methyl groups. Thus we could expect lower experimen-
tal value for the compound 7. The actual experimental
value for compound 7 is 1.83. If we knew in this particu-
lar case that a linear relationship exists, we could use the
compounds 126 and 145 for the linear regression where
−log(LC50) depends on the number of methyl groups.
The calculated linear regression would predict 1.74 for

Fig. 6  The dialog box for selection of a validation method

Page 9 of 15Drgan et al. J Cheminform (2017) 9:30

−log(LC50) value for a compound without any methyl
group.

An inspection of the whole top-map shows that the
compounds in the dataset used are structurally very dif-
ferent which makes the read-across method difficult to
apply. From 69 compounds in the external set we could
perform read-across for only 24 compounds. In the case
of compound 7, the read-across value was slightly higher
from the predicted one. However, when we performed
some analysis of RMSE of –log(LC50) values predicted
by the model and by read-across for the 24 compounds,
we observed that RMSE was lower for read-across pre-
dictions. The highest error in read-across was made for
acetaldehyde (ID = 80) based on acetone (ID = 74) data.
In this case, the model made larger error. When the pre-
dictions for the acetaldehyde were not considered, the
RMSE error calculated from predictions for 23 com-
pounds was 0.80 for the model predictions and 0.49 for
the read-across predictions. Among 24 read-across pre-
dictions, 18 predictions were made using a compound

Fig. 7  The dialog box for selecting descriptors before making predictions

Fig. 8  The dialog used to define applicability domain

Page 10 of 15Drgan et al. J Cheminform (2017) 9:30

that excited the same neuron as the compound under
consideration. The results of read-across predictions are
included within the article in Additional file 10.

In the second example, the model will be built using
bio-concentration factor (BCF) data obtained from the
article written by Gissi et al. [13]. The descriptors used
were the same as those reported in the supplementary
material of the article for MLR method with 10 descrip-
tors. Descriptors were calculated using Dragon 7.0 soft-
ware for molecular descriptor calculation [14]. The data
used can be found in supplementary material. The Addi-
tional file 11, Additional file 12 and Additional file 13
contain training set, internal validation (test) set and
blind (external) set data, respectively. The smiles of the
structures are available in the Additional file 15.

In this example, the number of neurons used will be
small in comparison to the number of objects used in
the training set. This will cause that the top-map will
be densely populated while similar compounds will still
be grouped together and will excite the same or similar
neurons. In the input files “tab” is used as a delimiter,
therefore the item “tab delimited” should be selected in
the main window from the list used to define the delim-
iter for the file with object data. Training set should
be imported as the first set. Then a check box “Use as
normalization set” should be selected and the button

“Normalize current descriptor data” should be pressed.
In this way, the normalization factors are calculated from
the training set data and the training set is normalized.
Using these normalized data a new model can be built
using “Train CPANN” button. The training parameters
required and their values for this example (in brackets)
are random seed (1234), number of neurons in x direc-
tion (9), number of neurons in y direction (9), toroid
boundary conditions (Non-toroid NN), type of neigh-
bourhood correction (Triangular), furthest neuron for
correction (9), maximal learning rate (0.47), minimal
learning rate (0.04), type of the best match (neuron with
the weights most similar to the input) and number of
epochs (161). The same parameters can also be found
in Fig. 5 which shows a dialog box that is used to enter
CPANN training parameters. The resulting model will
be saved in file “modelweights.unw”. For this example, the
resulting model file is given as Additional file 14. After
the training, we can perform model validation by press-
ing the button “Model validation”. Then the predictions
can be made and dataset data can be saved for further
use by the software. After importing each of the other
sets, the normalization of descriptor data should be done
using training set data and then predictions can be made.

When the predictions are obtained for all the sets, a
CPANN top-map can be shown. Additional file 15 should

Fig. 9  The interface for graphical representation of results showing a top-map

Page 11 of 15Drgan et al. J Cheminform (2017) 9:30

Fig. 10  A neuron excited by different objects. The external set object with ID = 7 on a is surrounded by a red rectangle. The objects from training
set and internal test set can be used for read-across. b The same objects in separate windows where information about the objects and model
predictions can be found. Each of the windows can be opened by right-hand mouse button click (when using “right-handed mouse”) on the cor-
responding structures shown in a

Page 12 of 15Drgan et al. J Cheminform (2017) 9:30

be selected when asked for the file with IDs and smiles.
Using the model, we tried to perform read-across for the
structures in the blind set. For approximately half of the
compounds in the blind set we made read-across. The
RMSE of 37 model predictions was 0.79, while the RMSE
of read-across predictions for the same compounds was
0.55. Among 37 read-across predictions 30 predictions
were made using a compound that excited the same neu-
ron as the compound under consideration. The results of
read-across predictions are included within the article in
Additional file 16.

The interface can be used also to identify neurons
which have for example large or small weight value for
certain descriptor or response. Subsequently, compounds
with similar descriptor or target values can be identi-
fied. For example, if we wish to identify compounds with
high log(BCF) then we first draw response by select-
ing “tar.1 = logBCF” from drop-down menu on the blue
panel an redraw the map. The neuron with the highest
response can be found based on the available colour scale.
In the same way as before we can now display the neuron
in a new window and identify the structures which excite
the neuron. As can be found from the response surface,
the compounds which have highest log(BCF) and are of
the highest concern in this dataset are polychlorinated
biphenyls which are commonly abbreviated as PCBs. The
response surface and the neuron corresponding to the
highest response are shown in Fig. 11.

Similarity between the selected neuron and other
neurons on the map can be evaluated using Tanimoto
similarity coefficient or Euclidean distance between the
neurons. This can be done using a right-click on the neu-
ron and selecting the preferred similarity measure from
the pop-up menu. An example of the resulting surface
plot corresponding to the selected similarity measure
is given in Fig. 12. The second item “Show map of Tani-
moto similarity coefficients to the selected neuron” was
selected from the pop-up menu, as shown in Fig. 12. The
same neuron as before (i.e. the neuron with the highest
response at the position [1, 7]) was selected to calculate
Tanimoto similarity coefficients to all other neurons. In
Fig. 12, the most similar neurons to the selected neuron
are shown in red colours which correspond to relatively
high values of Tanimoto coefficients.

The two examples shown above were described in
detail. Some additional tests were also performed using
other datasets. For that purpose the Sutherland’s eight
datasets [15] were used and QuBiLS-MIDAS 3D-indi-
ces provided in the paper by García-Jacas et al. [16]
were used to build CPANN models for the datasets.
The eight datasets included datasets for angiotensin
converting enzyme inhibitors (ACE), acetylcholinester-
ase inhibitors (ACHE), ligands for the benzodiazepine
receptor (BZR), cyclooxygenase-2 inhibitors (COX2),
dihydrofolate reductase inhibitors (DHFR), glycogen
phosphorylase b inhibitors (GPB), thermolysin inhibitors

Fig. 11  Response surface of the model and the neuron corresponding to the highest response value. The highest response value is at position [1,
7]. The structures that excited the neuron are polychlorinated biphenyls with log(BCF) above 4

Page 13 of 15Drgan et al. J Cheminform (2017) 9:30

(THER), and thrombin inhibitors (THR). The same split-
ting of the data into training and external set was used
as in the previous publications. The models were evalu-
ated by repeated leave-many-out cross-validation and
Y-scrambling. Y-scrambling validation was decisive for
the selection of the models’ size since correlation coef-
ficient became higher when larger number of neurons
was used in the model. The results obtained for the eight
models and their use in read-across are available in Addi-
tional file 17. The models found did not show very good
performance for external set objects. One of the pos-
sible reasons could be the splitting of the objects. It was
found also that maximal and/or minimal values for the

set under consideration were in most cases not included
in the training set. Using the developed models, read-
across was performed for external set objects and com-
parison was made between the model predictions and
read-across predictions for the objects where read-across
could be performed. For six datasets read-across showed
better prediction performance, and for two datasets bet-
ter prediction performance was obtained using model
predictions.

Comparison with the Kohonen and CP‑ANN toolbox
The software described within this paper is not the
only one existing for development of CPANN models;

Fig. 12  Surface plot of Tanimoto similarity coefficients for the neuron with the highest response value

Page 14 of 15Drgan et al. J Cheminform (2017) 9:30

nevertheless it offers unique possibilities for effective
read-across on training/test data. The Kohonen and CP-
ANN toolbox with similar functionality was recently
developed in Milano Chemometrics and QSAR Research
Group [17]. The software was developed as a toolbox
to be used in Matlab. The learning algorithm used in
the toolbox is essentially based on the same algorithm
for Kohonen and counter-propagation artificial neural
networks [18] as in this manuscript. One of the valu-
able properties of the toolbox is that its methods can be
directly used through command prompt in Matlab apart
of the provided GUI. This gives the user the possibility
to use the methods in new Matlab applications. For the
preparation of the data, the toolbox range scales the data
and offers some additional options for data scaling. On
the other hand, CPANNatNIC software accepts the data
“as is” or offers standardization of independent variables
based on the training set data. Both applications provide
model weights and the possibility to visualize the results.
The toolbox additionally gives the user an opportunity
to analyse the weights of the model by using principal
component analysis (PCA) to investigate the relation-
ship between the variables used in the model. Such PCA
analysis is not available in CPANNatNIC software. While
both applications provide similar visualization of the
results, CPANNatNIC software has different visualisa-
tion features and can also visualize 2D chemical struc-
tures from SMILES on the Kohonen map to help in the
interpretation of the results and to facilitate read-across.
Additionally, CPANNatNIC provides an option for locat-
ing an object on a top-map which may be needed when
there are many objects on the top-map or the map has
a large number of neurons. While the Kohonen and CP-
ANN toolbox and CPANNatNIC are both freely avail-
able, the Matlab toolbox requires access to Matlab which
is not freely available and CPANNatNIC requires freely
available Java environment and CDK library.

Conclusions
We present a program for building counter-propagation
neural network models with an interface for viewing top-
maps, descriptor levels and response surface. 2D repre-
sentations of compounds can be shown on the top-map.
This is useful when performing read-across for identi-
fication of similar compounds. The program provides
simple interface which can be used to quickly find neu-
ron excited by the compound under consideration. Thus,
similar structures can be quickly identified and also used
for read-across. Since the user both provides the data-
set for the modelling and can develop new models, the
model predictions as well as read-across predictions are
not limited to any specific endpoint.

CPANNatNIC will be further developed in the future.
We are planning to add features, such as descriptor selec-
tion and optimization, which will simplify model devel-
opment process. Also, the representation of the objects
within the software will be modified so that new infor-
mation regarding the objects can be added and displayed
within the software.

Authors’ contributions
VD designed and implemented the software, ŠŽ and MV tested the software
and performed read-across, CIC prepared the datasets and tested the soft-
ware, MN tested the software and contributed CPANN training and testing
algorithm. All authors read and approved the final manuscript.

Author details
1 Department of Cheminformatics, National Institute of Chemistry, Hajdri-
hova 19, 1001 Ljubljana, Slovenia. 2 Laboratory of Environmental Chemistry
and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La
Masa 19, Milan, Italy.

Acknowledgements
The authors thank to Dr. Emilio Benfenati for providing the data for acute
toxicity.

Competing interests
The authors declare that they have no competing interests.

Availability and requirements
Project name: CPANNatNIC.

Additional files

Additional file 1. File containing CPANNatNIC program.

Additional file 2. File containing CPANNatNIC source files.

Additional file 3. Example input data file.

Additional file 4. Example Excel file used to prepare file Example_input_
prepared_in_Excel.txt.

Additional file 5. The model file for acute toxicity.

Additional file 6. Training set input file for acute toxicity.

Additional file 7. Test set input file for acute toxicity.

Additional file 8. Validation set input file for acute toxicity.

Additional file 9. The file containing smiles of compounds used for mod-
elling acute toxicity.

Additional file 10. File with read-across results for acute toxicity valida-
tion set.

Additional file 11. Training set input file used for the modelling of bio-
concentration factor.

Additional file 12. Internal test set input file used for the modelling of
bio-concentration factor.

Additional file 13. External/blind set input file used for the modelling of
bio-concentration factor.

Additional file 14. The resulting model for bio-concentration factor.

Additional file 15. The file containing smiles of compounds used for
modelling bio-concentration factor.

Additional file 16. File with read-across results for bio-concentration
factor external set.

Additional file 17. File containing results obtained for additional tests on
eight datasets.

http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y
http://dx.doi.org/10.1186/s13321-017-0218-y

Page 15 of 15Drgan et al. J Cheminform (2017) 9:30

Project home page: CPANNatNIC can be downloaded together with all
necessary libraries from the following web-page: http://www.ki.si/fileadmin/
user_upload/datoteke-L03/SOM_ver/v1_01/.

Operating system(s): platform independent.
Programming language: Java.
Other requirements: Java 1.8, The Chemistry Development Kit (version

1.5.4).
License: GNU GPL, Version 2.0, 1991.
Any restrictions to use by non-academics: none additional.

Funding
The research reported in this manuscript was financially supported by Euro-
pean Commission, Directorate-General for Environment, through Grant LIFE12
ENV/IT/000154 (project LIFE + PROSIL; the full project title: Promoting the use
of in silico methods in industry).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 23 December 2016 Accepted: 15 May 2017

References
	1.	 Patlewicz G, Ball N, Becker RA, Booth ED, Cronin MTD, Kroese D, Steup

D, van Ravenzwaay B, Hartung T (2014) Food for thought… read-across
approaches—misconceptions, promises and challenges ahead. Altex
31(4):387–396

	2.	 The OECD QSAR Toolbox. http://www.oecd.org/chemicalsafety/risk-
assessment/theoecdqsartoolbox.htm. Accessed 18 Nov 2016

	3.	 Gini G, Franchi AM, Manganaro A, Golbamaki A, Benfenati E (2014)
ToxRead: a tool to assist in read across and its use to assess mutagenicity
of chemicals. SAR QSAR Environ Res 25(12):999–1011

	4.	 Toxicity Estimation Software Tool (TEST). https://www.epa.gov/chemical-
research/toxicity-estimation-software-tool-test. Accessed 18 Nov 2016

	5.	 VEGA. http://www.vega-qsar.eu/. Accessed 18 Nov 2016
	6.	 Novič M, Zupan J (1995) Investigation of infrared spectra-structure cor-

relation using Kohonen and counterpropagation neural network. J Chem
Inf Comput Sci 35:454–466

	7.	 Zupan J, Gasteiger J (1993) Neural networks for chemists. An introduc-
tion. VCH Verlagsgesellschaft mbH, Weinheim

	8.	 Zupan J, Novič M, Gasteiger J (1995) Neural networks with counter-
propagation learning strategy used for modelling. Chemom Intell Lab
27:175–187

	9.	 The Chemistry Development Kit. https://sourceforge.net/projects/cdk/.
Last accessed 18 Nov 2016

	10.	 Minovski N, Župerl Š, Drgan V, Novič M (2013) Assessment of applicability
domain for multivariate counter-propagation artificial neural network
predictive models by minimum Euclidean distance space analysis: a case
study. Anal Chim Acta 759:28–42

	11.	 Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate
choice for fingerprint-based similarity calculations? J Cheminf 7:20

	12.	 Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J
Chem Inf Comput Sci 38:983–996

	13.	 Gissi A, Gadaleta D, Floris M, Olla S, Carotti A, Novellino E, Benfenati E,
Nicolotti O (2014) An Alternative QSAR-based approach for predicting
the bioconcentration factor for regulatory purposes. Altex 31:23–36

	14.	 Dragon (software for molecular descriptor calculation) version 7.0.6
(2016). https://chm.kode-solutions.net

	15.	 Sutherland JJ, O’Brien LA, Weaver DF (2004) A comparison of methods
for modeling quantitative structure-activity relationships. J Med Chem
47:5541–5554

	16.	 García-Jacas CR, Contreras-Torres E, Marrero-Ponce Y, Pupo-Merino M,
Barigye SJ, Cabrera-Leyva L (2016) Examining the predictive accuracy of
the novel 3D N-linear algebraic molecular codifications on benchmark
datasets. J Cheminform 8:10

	17.	 Ballabio D, Consonni V, Todeschini R (2009) The Kohonen and CP-ANN
toolbox: a collection of MATLAB modules for self organizing maps and
counterpropagation artificial neural networks. Chemom Intell Lab Syst
98:115–122

	18.	 Zupan J, Novič M, Ruisánchez I (1997) Kohonen and counterpropagation
artificial neural networks in analytical chemistry. Chemom Intell Lab Syst
38:1–23

http://www.ki.si/fileadmin/user_upload/datoteke-L03/SOM_ver/v1_01/
http://www.ki.si/fileadmin/user_upload/datoteke-L03/SOM_ver/v1_01/
http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm
http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
http://www.vega-qsar.eu/
https://sourceforge.net/projects/cdk/
https://chm.kode-solutions.net

	CPANNatNIC software for counter-propagation neural network to assist in read-across
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Basis for read-across

	Implementation
	Installation
	Limitations
	The program structure
	Graphical user interface

	Results and discussion
	Comparison with the Kohonen and CP-ANN toolbox

	Conclusions
	Authors’ contributions
	References

